初中数学应用题归纳总结公式一览表
数学应用题公式大全

数学应用题公式大全一、和差倍数问题1、和差问题(求两数之和与差)大数=和+差÷2小数=和-大数=差+大数2、和倍问题(已知两个数的和,又知其中的一个数是另一个数的几倍,求另一个数)和÷(倍数+1)=小数小数×倍数=大数或者和-小数=大数)3、差倍问题(已知两个数的差,又知其中的一个数是另一个数的几倍,求另一个数)小数=差÷(倍数-1)小数+差=大数或者小数×倍数=大数二、相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间三、追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间四、流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2 五、鸡兔同笼问题鸡数=(兔头数×4-总头数)÷2兔数=(总头数-鸡头数)÷2六、植树问题与方阵问题1、植树问题的模型: (1)分清棵树与间隔的关系 (2)画图分析 (3)标出已知数据与未知数据 (4)列方程求解。
5若在封闭图形上栽树则棵树等于间隔数。
6若在环行图形上栽树则棵树与间隔数相等。
7若在方形图形上栽树则四个角上各栽一棵并且棵树等于行数列数之和。
8若在三角形图形上栽树则棵树等于行数列数之积。
9若在长方形图形上栽树则棵树等于行数的平方列数的积。
10若在等腰梯形图形上栽树则棵树等于(上底+下底)×高÷2。
11若在五角星形图形上栽树则棵树等于顶点数×2-1。
12若在正六边形图形上栽树则棵树等于边数。
13若在正n边形图形上栽树则棵树等于顶点数×(n-2)。
14若在求各种形状的周长与面积时也可栽培树。
方法是在第一象限内顺次连接图形各点两点之间划断两点之间栽一棵树。
(完整版)初中数学公式大全(整理打印版)

初中数学定理、公式汇编一、数与代数1.数与式(1) 实数实数的性质:①实数a 的相反数是—a ,实数a 的倒数是a1(a ≠0); ②实数a 的绝对值:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a③正数大于0,负数小于0,两个负实数,绝对值大的反而小。
二次根式:①积与商的方根的运算性质:b a ab ⋅=(a ≥0,b ≥0);b a b a =(a ≥0,b >0);②二次根式的性质:⎩⎨⎧<-≥==)0()0(2a a a a a a (2)整式与分式①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即n m n m a a a +=⋅(m 、n 为正整数);②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即n m n m a a a -=÷(a ≠0,m 、n 为正整数,m>n );③幂的乘方法则:幂的乘方,底数不变,指数相乘,即n n n b a ab =)((n 为正整数);④零指数:10=a (a ≠0); ⑤负整数指数:n n aa 1=-(a ≠0,n 为正整数); ⑥平方差公式:两个数的和与这两个数的差的积等于这两个数的平方,即22))((b a b a b a -=-+;⑦完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即2222)(b ab a b a +±=±;分式①分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即m b m a b a ⨯⨯=;mb m a b a ÷÷=,其中m 是不等于零的代数式; ②分式的乘法法则:bdac d c b a =⋅; ③分式的除法法则:)0(≠=⋅=÷c bcad c d b a d c b a ; ④分式的乘方法则:n nn ba b a =)((n 为正整数); ⑤同分母分式加减法则:cb ac b c a ±=±; ⑥异分母分式加减法则:bccd ab b d c a ±=±; 2.方程与不等式 ①一元二次方程02=++c bx ax (a ≠0)的求根公式:)04(2422≥--+-=ac b aac b b x ②一元二次方程根的判别式:ac b 42-=∆叫做一元二次方程02=++c bx ax (a ≠0)的根的判别式:⇔>∆0方程有两个不相等的实数根;⇔=∆0方程有两个相等的实数根;⇔<∆0方程没有实数根;③一元二次方程根与系数的关系:设1x 、2x 是方程02=++c bx ax (a ≠0)的两个根,那么1x +2x =a b -,1x 2x =ac ; 不等式的基本性质:①不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;②不等式两边都乘以(或除以)同一个正数,不等号的方向不变; ③不等式两边都乘以(或除以)同一个负数,不等号的方向改变;2. 函数一次函数的图象:函数y=kx+b(k 、b 是常数,k ≠0)的图象是过点(0,b )且与直线y=kx 平行的一条直线;一次函数的性质:设y=kx+b (k ≠0),则当k>0时,y 随x 的增大而增大;当k<0, y 随x 的增大而减小;正比例函数的图象:函数kx y =的图象是过原点及点(1,k )的一条直线。
初中数学重要公式总结材料

初中数学重要公式总结材料初中数学中的重要公式总结如下:1.平方差公式:(a + b)^2 = a^2 + 2ab + b^2(a - b)^2 = a^2 - 2ab + b^22.立方差公式:(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3(a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^33.倍角公式:sin2θ = 2sinθcosθcos2θ = cos^2θ - sin^2θ = 1 - 2sin^2θ = 2cos^2θ - 1 4.和差化积公式:sin(a ± b) = sinacosb ± cosasinbcos(a ± b) = cosacosb - sinasinb5.二项式展开:(a+b)^n=C(n,0)a^n+C(n,1)a^(n-1)b+C(n,2)a^(n-2)b^2+...+C(n,n)b^n其中,C(n,r)表示组合数,即C(n,r)=n!/(r!(n-r)!)6.相似三角形的边比公式:若两个三角形ABC和XYZ相似,且对应顶点的边长比为a:b,则AB/XY=BC/YZ=AC/XZ=a/b7.相似三角形的面积比公式:若两个三角形ABC和XYZ相似,且对应边长比为a:b,则△ABC的面积/△XYZ的面积=(a/b)^28.三角函数的定义关系:sinθ = 对边/斜边,cosθ = 邻边/斜边,tanθ = 对边/邻边9.三角函数的周期性:sin(θ + 2π) = sinθ, cos(θ + 2π) = cosθ,tan(θ + π) = tanθ10.三角函数的正负关系:在单位圆上,sinθ和cosθ的正负号取决于θ所在的象限:第一象限:sinθ > 0,cosθ > 0第二象限:sinθ > 0,cosθ < 0第三象限:sinθ < 0,cosθ < 0第四象限:sinθ < 0,cosθ > 0这些公式在初中数学中经常使用,掌握它们可以帮助我们解决各种数学问题,如求解方程、展开公式、计算三角函数等。
初中数学公式大全完整版可打印

初中数学公式大全完整版可打印一、有理数。
1. 有理数加法法则。
- 同号两数相加,取相同的符号,并把绝对值相加。
例如:3 + 5=8,( - 3)+(-5)= - 8。
- 异号两数相加,绝对值相等时和为0(即互为相反数的两数相加得0);绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
例如:3+( - 5)= - 2,5+( - 3)=2。
- 一个数同0相加,仍得这个数。
例如:0 + 3=3。
2. 有理数减法法则。
- 减去一个数,等于加上这个数的相反数。
即a - b=a+( - b)。
例如:5 - 3 =5+( - 3)=2。
3. 有理数乘法法则。
- 两数相乘,同号得正,异号得负,并把绝对值相乘。
例如:3×5 = 15,( - 3)×(-5)=15,3×(-5)= - 15。
- 任何数同0相乘,都得0。
4. 有理数除法法则。
- 除以一个不等于0的数,等于乘这个数的倒数。
即a÷ b=a×(1)/(b)(b≠0)。
- 两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得0。
5. 乘方的定义。
- 求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
在a^n中,a 叫做底数,n叫做指数。
例如:2^3=2×2×2 = 8。
二、整式的加减。
1. 单项式。
- 由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。
例如:3x,-5,a都是单项式。
- 单项式中的数字因数叫做这个单项式的系数,一个单项式中,所有字母的指数的和叫做这个单项式的次数。
例如:在单项式3x^2中,系数是3,次数是2。
2. 多项式。
- 几个单项式的和叫做多项式。
其中每个单项式叫做多项式的项,不含字母的项叫做常数项。
例如:2x^2+3x - 1,2x^2、3x、-1都是它的项,-1是常数项。
- 多项式里次数最高项的次数,叫做这个多项式的次数。
初中数学各种公式(包括应用题)

中考数学各种常用公式及性质1.乘法与因式分解①(a+b)(a-b)=a2-b2;②(a±b)2=a2±2ab+b2;③(a+b)(a2-ab+b2)=a3+b3;④(a-b)(a2+ab+b2)=a3-b3;a2+b2=(a+b)2-2ab;(a-b)2=(a+b)2-4ab。
2.幂的运算性质①a m×an=a m+n;②a m÷an=am-n;③(am)n=amn;④(ab)n=anbn;⑤(ab)n=nnab;⑥a-n=1na,特别:()-n=()n;⑦a0=1(a≠0)。
3.二次根式①()2=a(a≥0);②=丨a丨;③=×;④=(a>0,b≥0)。
4.三角不等式|a|-|b|≤|a±b|≤|a|+|b|(定理);加强条件:||a|-|b||≤|a±b|≤|a|+|b|也成立,这个不等式也可称为向量的三角不等式(其中a,b分别为向量a和向量b)|a+b|≤|a|+|b|;|a-b|≤|a|+|b|;|a|≤b<=>-b≤a≤b;|a-b|≥|a|-|b|;-|a|≤a≤|a|;5.某些数列前n项之和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2;1+3+5+7+9+11+13+15+…+(2n-1)=n2 ;2+4+6+8+10+12+14+…+(2n)=n(n+1);12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6;13+23+33+43+53+63+…n3=n2(n+1)2/4;1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3;6.一元二次方程对于方程:ax2+bx+c=0:①求根公式是x24b b ac-±-△=b2-4ac叫做根的判别式。
当△>0时,方程有两个不相等的实数根; 当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根。
初中数学必背100公式,初中一到六年级数学公式大全总结

初中数学必背100公式,初中一到六年级数学公式大全总结公式一:点、角、线。
公式二:平行。
公式三:三角形基本性质。
公式四:三角形全等。
公式五:等腰三角形。
公式六:等边三角形。
公式七:比例。
公式八:相似三角形。
公式九:圆初中生学习数学要掌握和熟悉基本公式。
以下是初中数学公式汇总,希望对考生学习数学有所帮助。
初中数学全部公式总结1一元二次方程解答公式二次函数表达式ax²+bx+c=0;(a≠0),一元二次方程可以参考二次函数进行变形。
解答一元二次方程,我们可以先做出抛物线,然后看与x轴交点。
△=b²-4ac;解答公式:x=(-b±V△)/2a;2因式分解经常会用到公式1、平方差公式:a²-b²=(a+b)(a-b)。
2、完全平方公式:a²+2ab+b²=(a+b)²。
3、立方和公式:a³+b³=(a+b)(a²-ab+b²)。
4、立方差公式:a³-b³=(a-b)(a²+ab+b²)。
5、完全立方和公式:a³+3a²b+3ab²+b³=(a+b)³。
6、完全立方差公式:a³-3a²b+3ab²-b³=(a-b)³。
7、三项完全平方公式:a²+b²+c²+2ab+2bc+2ac=(a+b+c)²。
8、三项立方和公式:a³+b³+c³-3abc=(a+b+c)(a²+b²+c²-ab-bc-ac)。
3三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg认为有用点个赞吧初中生学习数学要掌握和熟悉基本公式。
初中数学公式大全总结归纳

初中数学公式大全总结归纳一、代数部分1. 有理数- 有理数加法法则:- 同号两数相加,取相同的符号,并把绝对值相加。
例如:3 + 5=8,( -3)+(-5)=-(3 + 5)=-8。
- 异号两数相加,绝对值相等时和为0(互为相反数的两数相加得0);绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
例如:3+( - 5)=-(5 - 3)=-2,( - 3)+5 = 5-3 = 2。
- 一个数同0相加,仍得这个数。
- 有理数减法法则:减去一个数,等于加上这个数的相反数。
即a - b=a+( - b)。
- 有理数乘法法则:- 两数相乘,同号得正,异号得负,并把绝对值相乘。
例如:3×5 = 15,( - 3)×(-5)=15,3×(-5)=-15。
- 任何数同0相乘,都得0。
- 有理数除法法则:- 除以一个不等于0的数,等于乘这个数的倒数。
即adiv b=a×(1)/(b)(b≠0)。
- 两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得0。
2. 整式的加减- 合并同类项:同类项的系数相加,所得结果作为系数,字母和指数不变。
例如:3x+2x=(3 + 2)x=5x。
- 去括号法则:- 如果括号前面是“+”号,去括号时括号里面各项不变号。
例如:a+(b - c)=a + b-c。
- 如果括号前面是“-”号,去括号时括号里面各项都变号。
例如:a-(b -c)=a - b + c。
3. 一元一次方程- 一元一次方程的标准形式:ax + b = 0(a≠0)。
- 求解一元一次方程的步骤:- 去分母(方程两边同时乘以各分母的最小公倍数)。
- 去括号。
- 移项(把含未知数的项移到等号一边,常数项移到等号另一边,移项要变号)。
- 合并同类项。
- 系数化为1(方程两边同时除以未知数的系数)。
4. 二元一次方程组- 二元一次方程组的解法:- 代入消元法:将一个方程中的某个未知数用含有另一个未知数的代数式表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。
初一应用题可能涉及的基本公式

初一应用题涉及的详细基本公式1、增长率(或减少率)问题:(1)增长量=原有量×增长率; (2)现在量=原有量+增长量=原有量×(1+增长率)(3)减少量=原有量×减少率 (4)现在量=原有量-减少量=原有量×(1-减少率)2、等积变形问题:(字母含义:体积 V ,面积S ,周长C ,长 a,宽 b,高 c )常见几何图形的面积、体积、周长计算公式,依据形虽变,但总长或体积不变。
(1)圆柱体的体积公式 V=底面积×高=S ·h =πr 2h(2)长方体的体积V =abc 表面积S=2(ab+bc+ac ) 正方体体积 V=a 3,表面积S=6a 2(3) 长方形C=2(a+b ),S=ab 正方形周长 C=4a,面积S=a 2(4) 圆周长C=2πr=πd, 面积S=πr 2, 三角形面积 S=21ah,周长C=a+b+c 3、数字问题:一般可设个位数字为a ,十位数字为b ,百位数字为c 。
两位数可表示为10b+a ,三位数可表示为100c+10b+a 。
然后抓住数字间或新数、原数之间的关系找等量关系列方程。
4、市场经济问题:( 以下“成本价”在不考虑其它因素的情况下指“进价”,“售价”指实际出售的价格 )(1)单件商品利润=单件商品售价-单件商品成本价(2)商品利润率=商品利润商品成本价×100% (3)售价=成本价×(1+利润率) (4)商品总销售额=单件售价×商品总销售量(5)商品总销售利润=(销售价-成本价)×销售量=单件利润×商品总销售量(未另加说明的题目可以不要考虑其它的成本,如工资、租车、食宿等费用)(6)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售。
或者用标价打x 折: 折后价(售价)=标价×10x 计算。
(7)亏损情况下:亏损额=成本-售价,亏损额=成本×亏损率5、行程问题:路程=速度×时间; 时间=路程÷速度; 速度=路程÷时间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学应用题归纳
列出方程(组)解应用题的一般步骤是:
1审题:弄清题意和题目中的已知数、未知数;
2找等量关系:找出能够表示应用题全部含义的一个(或几个)相等关系;
3设未知数:据找出的相等关系选择直接或间接设置未知数
4列方程(组):根据确立的等量关系列出方程
5解方程(或方程组),求出未知数的值;
6检验:针对结果进行必要的检验;
7作答:包括单位名称在内进行完整的答语。
一,行程问题
基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。
基本公式
路程=速度×时间;路程÷时间=速度;路程÷速度=时间
关键问题:确定行程过程中的位置.
相遇问题:速度和×相遇时间=相遇路程
追击问题:追击时间=路程差÷速度差
流水问题:顺水行程=(船速+水速)×顺水时间
逆水行程=(船速-水速)×逆水时间
顺水速度=船速+水速
逆水速度=船速-水速
静水速度=(顺水速度+逆水速度)÷2
水速=(顺水速度-逆水速度)÷2
二、利润问题
现价=原价*折扣率
折扣价=现价/原价*100%
每件商品的利润=售价-进货价=利润率*进价
毛利润=销售额-费用
利润率=(售价--进价)/进价*100%
标价=售价=现价
进价=售价-利润
售价=利润+进价
三、计算利息的基本公式
储蓄存款利息计算的基本公式为:
利息=本金×存期×利率
税率=应纳数额/总收入*100%
本息和=本金+利息
税后利息=本金*存期*利率*(1- 税率)
税后利息=利息*税率
利率-利息/存期/本金/*100%
利率的换算:
年利率、月利率、日利率三者的换算关系是:
年利率=月利率×12(月)=日利率×360(天);
月利率=年利率÷12(月)=日利率×30(天);
日利率=年利率÷360(天)=月利率÷30(天)。
使用利率要注意与存期相一致。
利润与折扣问题的公式
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
四、浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
五、增长率问题
若平均增长(下降)数百分率为x,增长(或下降)前的是a,增长(或下降)n次后的量是b,则它们的数量关系可表示为:a(1+x)n =b或a(1-x) =bn
六工程问题
工作效率=总工作量/工作时间
工作时间=总工作量/工作效率
七赛事,票价问题
赛事
单循环赛:n(n-1)/2
淘汰赛:n个球队,比赛场数为n-1场次
票价则对应的不一样的赛制乘以对应的单价。