高速铁路客运量预测方法选择_图文(精)
高铁客流量预测模型研究与应用

高铁客流量预测模型研究与应用第一章:引言高铁作为现代化交通方式的代表之一,其快速、方便、舒适的特点受到了广大旅客的喜爱和追捧。
伴随着高铁的迅速发展,如何科学地预测高铁客流量,为高铁运营提供科学依据,成为了高铁运营管理的重要问题之一。
客流量预测是指通过历史客流数据、天气预报等数据,预测未来一段时间(一般是日、周、月)内的客流量。
预测准确率的高低影响着高铁运营的安排、调度、收益等各方面。
高铁客流量预测模型的研究和应用,对于提高高铁运营效率,优化运作安排具有重要的现实意义和应用价值。
本文将就高铁客流量预测的方法,模型选择、算法应用、机器学习在模型中的应用、高铁士气调节以及未来发展趋势等方面进行探讨。
第二章:高铁客流量预测的方法高铁客流量预测可以采用传统统计学方法以及机器学习的方法进行,其中传统统计学方法常用的有灰色预测、ARIMA、Holt-Winters、时间序列等方法。
灰色预测是一种新兴的时间序列预测方法,该方法不需要假设数据服从某个特定的分布形式,因而广泛适用于各种类型的时间序列分析。
其原理可以简单概括为:“先建立模型、确定微分方程、再求解参数、最后将模型推广应用”。
ARIMA模型是一种时间序列预测方法,其基本思想是通过拟合时间序列多项式滞后运算的目标式来进行时间序列的预测。
适用于具有稳定周期变动和未来趋势难以预测等情况。
Holt-Winters模型是一种考虑趋势和季节因素的时间序列预测方法,其基本思想是将时间序列分解成趋势、循环和随机三个因素,进行对各个因素的独立预测,最后通过相加得到整体预测结果。
时间序列分析方法是一种重要的预测方法,其运用较为广泛,具有较高的可解释性。
但是当数据量大、变量复杂时,其适应性与准确性较弱,因此传统的时间序列方法仍然需结合机器学习方法进行提升。
第三章:模型选择与算法应用选择合适的模型和算法是高铁客流量预测工作的基础。
目前,普遍采用的客流量预测模型有线性回归模型、支持向量机模型、神经网络模型等。
铁路客流量预测

铁路客流量预测铁路客流量预测目录一、摘要 (2)二、选题背景与意义 (3)三、模型建立与求解 (5)3.1、ARIMA 模型 (5)3.1.1、自回归移动平均模型 (6)3.1.2、季节性预测法 (6)3.1.3、模型求解 (7)3.2、灰色预测模型 (12)3.2.1 、GM(1,1)模型. (6)3.2.2、模型检验 (8)3.2.3、模型求解 (9)四、模型分析与结论 (11)4.1 、方法分析 (11)4.2、模型缺点 (12)五、附录 (12)一、摘要摘要:文章以铁路客流量的短期预测作为切入点,采用定量的时间序列分析方法,建立季节自回归综合移动平均(季节性ARIMA 模型)模型对时间序列进行量化分析。
首先阐述基于该模型的预测的一般过程,即:平稳化处理、差分变换的阶数辨识、参数估计,时间序列模型的构建,然后利用标准 BIC 值,确定较适合的季节自回归综合移动平均模型,取得了较为理想的预测效果。
同时运用灰色预测模型建立铁路客流预测模型,对我国铁路客运量进行预测,灰色模型的方法简单,适合在数据少的情况下预测短期客流量,对未来的结果有很好的预测效果。
关键词:季节性ARIMA 灰色预测铁路客流量预测二、选题背景与意义宏观上来讲铁路客流预测是铁路客运系统合理规划的基础,只有在对规划年度客流的流量、流向、流径进行合理预测与分析的基础之上,才能合理规划未来铁路客运系统的设施设备,合理安排运量,合理确定系统各阶段的发展目标使整个铁路客运系统与社会经济发展、生产力布局相适应,确保国民经济的正常发展。
微观层上来讲主要有以下三方面。
一是铁路客流量预测是铁路设备建设投资的重要依据。
通过对各项客流预测结果分析,可以合理确定研究线路近期、中期、远期在路网中的功能和作用,从而为新线建设、旧线改造和相关客运场站技术设备修建与改造提供客观的依据。
二是铁路客流预测是编制铁路客流计划的基础。
由于我国目前整体运能不足,再加上铁路运输自身的特点,在日常的客流运输组织中需要定期编制相应的客流计划,而准确的客流资料就是该项工作的基础,如果客流资料不完备就会造成运力资源分配的不平衡,从而致使客流滞塞及运力虚糜。
高速公路客流量预测模型与方法分析

高速公路客流量预测模型与方法分析随着我国经济的不断发展和人民生活水平的提高,高速公路系统在人们的日常出行中扮演着至关重要的角色。
为了更好地管理和规划高速公路的运营,预测客流量成为一项重要的研究课题。
本文将对高速公路客流量预测模型与方法进行分析,以期提供有效的预测方法。
一、模型选择与建立高速公路客流量预测可以使用多种模型和方法,其中一些常用的包括时间序列分析、回归分析、神经网络和决策树等。
选择适当的模型需要综合考虑数据特征、预测准确性和计算效率等因素。
1. 时间序列分析时间序列分析是一种常见的客流量预测方法,通常假设预测数据具有一定的周期性或规律性。
常用的时间序列模型包括ARIMA、ARCH和GARCH等。
通过对历史客流量数据进行分析,可以建立时间序列模型并进行预测。
2. 回归分析回归分析是一种统计方法,用于研究变量之间的依赖关系。
在高速公路客流量预测中,可以考虑一些相关因素,如节假日、天气条件和经济指标等,并利用回归模型来建立客流量与这些因素之间的关系。
通过提取相关特征并进行回归分析,可以预测客流量的变化。
3. 神经网络神经网络是一种模拟人脑神经元工作原理的数学模型,其在模式识别和预测领域有着广泛的应用。
在高速公路客流量预测中,可以利用神经网络来学习历史数据的模式,并预测未来的客流量。
通过调整网络结构和参数,可以提高预测准确性。
决策树是一种基于树状结构的分类和预测方法。
在高速公路客流量预测中,可以利用决策树算法来分析历史数据中的特征,并建立规则集用于预测客流量。
决策树具有可解释性强的特点,便于理解和应用。
二、数据处理与特征提取高速公路客流量预测需要使用历史数据进行模型训练,因此对数据的处理和特征提取非常重要。
以下是一些常用的数据处理和特征提取方法。
1. 数据预处理数据预处理包括数据清洗、去除异常值和缺失值处理等步骤。
在高速公路客流量预测中,可能会出现数据缺失或异常情况,需要对这些问题进行处理,以保证建立的模型具有良好的准确性。
高速公路交通流量预测的模型与算法

高速公路交通流量预测的模型与算法高速公路是现代交通网络中的重要组成部分,它连接着城市之间的各种交通枢纽,是人们日常生活和商业活动中不可或缺的一部分。
随着全球经济的快速发展,越来越多的人开始使用高速公路作为出行方式,这使得高速公路的交通流量成为交通规划中需要重点考虑的问题。
交通管理部门需要了解高速公路的交通流量趋势和变化,以便能够采取及时有效的措施来应对各种情况。
交通流量预测是一种提前分析和预测交通流量的方法,它基于历史数据和未来预测来预测未来交通流量。
交通流量预测在智能交通系统中是非常重要的一环,因为它可以帮助交通管理人员制定科学的交通规划,改善城市交通运输状况。
在本文中,我们将探讨高速公路交通流量预测的一些模型与算法。
一. 时间序列分析法时间序列分析法是一种通过分析历史数据的趋势和周期等信息来预测未来交通流量的方法。
在高速公路交通流量预测中,时间序列法可以分为两类: 简单平均法和指数平滑法。
简单平均法是最直观的一种方法,它将历史数据的平均值作为未来预测值。
指数平滑法则是将历史数据的平均值和当前值进行加权平均,并根据加权系数来预测未来交通流量。
这种方法既考虑了历史趋势,又考虑了当前数据的影响,预测结果更加准确。
二. 神经网络法神经网络法是一种模拟人脑神经线路的机器学习方法,在高速公路交通流量预测中也得到了广泛的应用。
神经网络法通过训练网络模型来寻找数据之间的关系,然后将学习到的关系用于预测未来值。
通过选择合适的网络架构、参数和激活函数等,可以得到非常准确的预测结果。
而且,神经网络法可以自动处理多个输入变量和输出变量之间的关系,适用于复杂的高速公路交通流量预测。
三. 非参数回归法非参数回归法是一种通过拟合数据点之间的关系来预测未来数值的方法。
它不需要预先假设一个函数的特定形式,而是通过对输入变量和输出变量之间的非线性关系进行拟合来生成预测模型。
这种方法对于大量变量有很好的适应性,能够处理各种复杂的非线性关系。
铁路旅客运输需求及运量预测

2 旅客出行选择行为理论——选择模型
• AHP的模型——首先要建立客运交通方式最优选 择层次结构图:
旅客选择主观性因素
产品特性的客观性描述
2 旅客出行选择行为理论——选择模型
这是一个层层排序选优的过程,对于每个层次的因素 都有一个权重,最终找出在某种条件下的各种运输产品 的优劣排序。由此旅客可以做出选择。
主要是通过社会调查,结合人们的经验加以综合分 析比较作出量的直接判断和预测。其优点是简便易 行,没有复杂高深的计算,易于普及采用。但往往 易受预测人员经验和认识上的局限,并常有一定的 主观片面性。它是目前市场预测中运用最广泛的一 类方法,也可用于历史资料不完备情况下的客运量 预测。 定性预测法主要包括运输市场调查法、德尔菲法等。
4 铁路客运量预测——预测方法
德尔菲法: 又称专家预测法,是以专家为索取信息对象,
采用匿名的方式,通过几轮征询,征求专家的意 见和看法,然后进行综合整理和归纳,再反馈给 专家,供他们分析判断、提出新的意见和看法。 这样通过多次反复,使意见逐步趋于一致。德尔 菲法的应用范围十分广泛。
4 铁路客运量预测——预测方法
2 旅客出行选择行为理论——选择模型
旅客出行选择行为模型 – 交通方式的最优选择 – 政策引导的定量描述 – 综合替代值与政策调节 – 大道定量
2 旅客出行选择行为理论——选择模型
1、交通方式的最优选择
旅客选择交通工具时考虑:
主观的因素
旅行距离、旅客经济条件
客观的因素
交通方式或产品的技术特性
采用美国运筹学家A.L.Saaty于20世纪70年代提出的 层次分析法(AHP)模型可以解决这个选择过程。
例如可以针对不同出行距离,可以找出各种运输产品 的最优势的运距分工。
铁路客流预测的方法

第四步:对模型精度的检验。
(计算原始数列、残差数列,与预测精度等级划分表对比)
第五步:如果检验合格,则可以用模型进行预测。预测值:
基于径向基神经网络的短期客流预测
径向基函数神经网络:具有单隐层的三层前馈网络。第一层为输入层, 由信号源节点构成;第二层为隐藏层,节点数视需要而定;第三层为 输出层,对输入模式作出响应。单个输出神经元的RBF神经网络的拓扑 结构:
抽取数据:
调整日期: 为体现周规律的影响 设置参数: 作用,选择与预测日 将微调后日期的客流 期相隔14天的的售票 利用Matlab创建一个 量y作为最终的测试输 数据(t1,t2,…,t14 ) 精确的RBF神经网络。 入,与该日期相隔1 4 作为训练输出数据, 参数包括输入向量、 天的售票数据(y1, 与预测日期对应的前 目标向量(即输出向量) 从输入层到隐藏层的变换是非线性的,从隐藏层到输出层的变换是线 y2,…,y14)作为训练 一年的同一日期发车 和spread值。 输入 性的。隐藏层采用RBF作为激励函数,Ri=exp(一ll x-Cill/(2 i2 )) 的客流量y作为输入数
铁路客流预测的方法
客流预测——在一定的社会经济发展条件下,科学预测各目标年 限铁路线路的断面流量、站点乘降量、站间OD、平均运距等反应 铁路交通客流需求特征的指标
基于客流性质的铁路客流预测方法
基于灰色理论的铁路客流预测
基于径向基神经网络的短期客流预 测
基于客流性质的铁路客流预测方法 ——四阶段法
• 最短路分配模型 交通分 • 静态多路径概率分配,等
配预测
基于灰色理论的铁路客流预测
灰色系统理论是运用于控制与预测的新型横断学科理论。灰色系统是指介于 白色系统(信息完全已知)和黑色系统(信息完全未知)之间,部分信息已知,部 分信息未知的数据系统。 灰色模型:GM(1,1)反映了—个变量对时间的一阶微分函数,其相应的微分 方程为: 第一步:建立一次累加生成数列。 第二步:利用最小二乘法求参数a,u。 第三步:求解GM(1,1)的模型:
高速铁路车站客流预测与优化

高速铁路车站客流预测与优化高速铁路成为了现代城市交通出行的重要方式,随着铁路网络的发展和技术的提高,越来越多的人选择乘坐高速铁路出行。
高速铁路车站的客流量也开始呈现出越来越高的趋势,因此如何进行客流预测和优化,成为了一个不可忽视的问题。
一、客流预测的意义客流预测是指通过对历史数据、天气数据、节假日等因素进行综合分析,来预测未来一段时间铁路车站客流量的趋势和规律,为后续的车站管理和运营调控提供参考依据。
客流预测的重要性在于它能帮助车站及时发现并解决客流过大或过小的问题,对客流进行合理的调节,避免车站拥堵或者座位出现不足的情况,同时也能提高车站的服务质量,提高客户满意度。
二、客流预测的方法常用的客流预测方法有时间序列预测、回归预测和机器学习预测。
时间序列预测方法是利用过去数据拟合一定的数学模型,然后利用该模型对未来数据进行预测。
该方法预测结果精度较高,但只能针对单一因素进行预测,无法对多个因素进行综合分析。
回归预测方法是运用多个变量之间的统计关系,通过某些指标的线性组合得到预测结果,该方法适用于客流与多个因素相关的场景,但该方法的精度相对较低,对数据的要求也较高。
机器学习预测方法是在以往数据基础上,运用机器学习算法,进行预测,能够针对多维度、多因素的场景进行预测。
三、客流预测的优化客流预测的优化主要是指通过预测结果来进行车站资源调配,以达到最大程度利用车站资源的目的。
可以通过优化列车调度、车站布局、服务设施、安全管理等方面来实现客流优化。
例如,通过增加列车班次、改变到站时间、提高服务质量等方式来调节客流量。
还可以通过分流客流、增加引导宣传等方式来优化客流。
四、客流预测案例以重庆北高铁站为例,该车站借助大数据分析、人工智能等技术,进行客流量预测,同时对车站设施、服务等方面进行优化,从而为车站座位出勤率的提高和客户满意度的提升做出了贡献。
通过客流预测,该车站分析了流动人员的流向和分布情况,并且依据不同时间段的客流量、各影响因素等特点,制定了相应的应对措施。
高速公路交通流量预测方法与模型比较

高速公路交通流量预测方法与模型比较近年来,随着人民生活水平的提高和汽车普及率的快速增长,高速公路交通流量问题越来越引起人们的关注。
高速公路交通流量预测是交通管理部门和路况信息服务提供商必不可少的工作内容之一。
本文将对目前常用的高速公路交通流量预测方法和模型进行比较分析,为相关领域的研究者和从业者提供参考。
一、基于统计学的方法基于统计学的方法是一种常见的高速公路交通流量预测方法。
该方法主要通过对历史数据进行统计分析,掌握历史交通流量的规律,然后利用这些规律来预测未来的交通流量。
常见的统计学方法包括移动平均法、指数平滑法和ARIMA模型等。
1. 移动平均法移动平均法是一种简单有效的统计学方法。
该方法通过计算一定时间段内的平均值,来预测未来的交通流量。
移动平均法的优点是简单易懂,计算量小,适用于短期交通流量预测。
然而,该方法无法捕捉到交通流量随时间变化的趋势和周期性,对于长期预测效果不佳。
2. 指数平滑法指数平滑法是一种利用历史数据加权平均的方法。
该方法主要考虑最近数据的权重高于较早的数据,以反映近期流量变化的趋势。
指数平滑法能够较好地模拟出交通流量的长期趋势,适用于短期和中期的交通流量预测。
然而,该方法对异常数据敏感,如突发事件或假期等会对预测结果产生较大影响。
3. ARIMA模型ARIMA模型是一种基于时间序列的统计模型。
该模型通过对时间序列数据的自回归、滑动平均和差分操作,来捕捉交通流量的长期趋势、季节变化和随机波动。
ARIMA 模型能够很好地预测未来的交通流量,尤其适用于中期和长期交通流量预测。
然而,ARIMA模型对数据的平稳性要求较高,需要进行数据处理和调参,且计算量较大。
二、基于机器学习的方法随着机器学习的发展和交通数据的积累,基于机器学习的方法在高速公路交通流量预测领域得到广泛应用。
机器学习方法主要通过训练一个预测模型,将历史数据中的特征与交通流量进行关联,从而实现对未来交通流量的预测。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
65
YUNSHUSHICHANG 2007/
7
高速铁路客运量预测是项目规划和建设的依据, 也是经济效益计算的基础。
目前常用的高速铁路客运量预测方法是四阶段法,其中最主要的方式划分预测又基本采用了Logit 模型。
但由于Logit模型存在的某些特性会在一定程度上影响预测的准确性,因此在应用四阶段法进行预测时,必须分析和掌握这种特性, 以便选择适当的高速铁路客运量预测方法。
目前大部分高速铁路客运量预测所采用的预测方法(包括京沪高速铁路客运量预测主要由以下两部分内容组成:
一是以社会经济变量(各交通小区的GDP或人口和阻抗变量(各交通小区间的广义价格作为自变量预测研究区域内特征年度总的旅客 OD 交流量,预测一般采用重力模型;
二是用一个涉及多种运输方式的选择模型确定现有运输方式和新的高速铁路的出行份额和出行量,而且所有方式的出行份额加总为 100%。
典型地,用于方式选择的是一个多元的 Logit 模型。
然而,由于 Logit 模型的非相关选择方案独立特性(IIA, 高速铁路的预测运量必须直接与现有方式间的运量份额比值成正比关系,因而使预测结果的准
确性降低, 这也是该方法最主要的缺陷。
如果不进行改进, 该方法的模型运行结果就会出现如下情况:当一种现有运输方式本身占有较高的份额时,高速铁路从中得到的转移到运量份额也随之较高。
例如,假设任意两个区域间的出行 50%是由小
汽车完成的,则采用该方法预测将会得到 50%的高速铁路运量份额是从小汽车转移过来的。
分析我国现状的客流组成,这一情况实际上是不可能发生的。
为了减少非相关选择方案独立特性所产生的问题,某些预测采用了另外一种方法。
该方法也是首先预测各种运输方式的合计 OD 客流量,然后用一个多层的 Logit 模型(NL来确定高速铁路和其他相关方式的市场份额。
多层 Logit 模型
高速铁路客运量预测方法选择
□张康敏刘晓青
66
YUNSHUSHICHANG
2007/
7
通过一种树状结构将选择方案分为若干层次, 其中同一层次的方案类似性较大, 而不同类型的方案则作为不同层次, 这样就解决了模型误差项的独立同分布性,即 IIA 问题。
该方法的另一个特点是可以根据选择方案对高速铁路的影响分别进行处理。
例如, 小汽车的份额较低, 可以将其从常用的运输方式中分离出来作为独立的选择方案子集。
此外,这种模型结构还可以分析不同运输方式在时间和票价
上的优势。
例如,乘坐长途公共汽车和常规铁路的旅客对票价的敏感度高于对时间的敏感度, 而民航乘客则相反,对时间的敏感度更高。
将这些运输方式放入不同的选择集, 即可准确预测各自的市场份额, 并避免彼此间的相互影响。
由此看出, 采用这一方法首先必
须建立合理的选择树, 即确定对高速铁路影响较大的现有运输方式, 例如民航和常规铁路, 而这又是与影响最小的方式例如小汽车发生相互作用的。
然后通过计算不同层的广义价格变量(或 log-sum 变量得到运输方式
的市场份额,其中 log-sum 变量是由
各运输方式的服务水平组成的。
但该方法的应用主要有两个问题:
1.log-sum 的函数形式比较复
杂,故其参数标定不易得到准确结
果, 而多层的选择方案又增加了构造log-sum 变量和参数标定的难度。
虽
然也可采用较为简单的全有全无法,
特别是在计算小汽车向高速铁路的转移率时,但受方法本身原理的限制,
有时会得到来自小汽车的高速铁路转移率为 0,致使高速铁路运量的预测
结果偏低。
2. 用log-sum变量计算运输方式
的转移率时,各层选择方案的嵌套系
数并没有改变旅行时间和费用组成部分的基本关系,而这些组成部分的数
值又决定了人们对不同运输方式的偏好。
例如, 如果出行时面临小汽车、民航、长途公共汽车或常规铁路等运输方式,人们要在这些方式的时间、费
用和方便性之间做出不同的选择,因
此必须采用不同的模型预测从这些现有方式上转移到高速铁路的出行量。
总之, 第二种方法基本解决了非
相关选择方案独立特性问题, 因而总
体上优于第一种方法, 但在处理运输
方式选择的多样性方面还存在一定缺
陷。
随出行目的(例如公务和非公务出行而变化,这一方法也注意到:面对高速铁路的出现人们也会表现出不同的选择行为。
这是因为现有方式,例如小汽车和其他常用运输方式的出行具有广泛的时间价值和需求弹性, 而且对方便性和灵活性的处理也不相同。
由于本方法认为现有的出行者已经揭示或表现出了他们选择可能的运输方式的偏好, 因此对于每一种方式和出行目的的市场份额, 惟一需要做的是确定出行者在给定服务水平条件下转移到高速铁路的百分比。
此外,这种
针对以上两种方法的不足, 本文
提出了一种高速铁路客运量预测方
法。
它的主要过程是首先预测每一种
现有运输方式的出行量, 然后用不同
的方式选择模型确定每一现有运输方
式转移到高速铁路上的出行份额, 即
这一份额是高速铁路和现有运输方式
的相对服务特征和其他因素的函数。
正如人们普遍意识到个体选择行为会
方法还可以检查函数形式和区别每一市场划分的变量定义, 而前两种方法是做不到这一点的。
在非相关选择方案独立特性上, 由于这一方法没有用一个统一的模型描述所有选择方案, 而是将每一方案与高速铁路进行比较,然后分别计算转移运量,因而不受非相关选择方案独立特性的影响。
本文提出的高速铁路客运量预测方法包括以下 3个步骤:
1.首先应用直接需求模型预测
特定时间段每一现有方式的总出行
67
YUNSHUSHICHANG 2007/7
量,预测模型需要输入的变量包括 O 点和 D 点的人口水平或社会经济发展水平以及 OD 点之间每一出行者所能够选择的现有运输方式的服务水平。
基于总出行量需求模型以及各种输入变量(例如人口、收入和服务水平的发
展变化,即可预测现有每一运输方式在没有高速铁路情况下未来年度的出行量。
2.预测现有运输方式转移到高速铁路的出行量份额, 其中对于每一现有的运输方式和出行目的必须采用不同的关系表达式。
这一部分内容的预测变量包括 OD 对间每一现有运输方式和预计的高速铁路进站时间、出站时间和干线旅行时间,O D 对间每一现有运输方式和预计的高速铁路进站费用、出站费用和干线旅行费用, 每一现有运输方式和预计的高速铁路服务频率和终点作业时间, 高速铁路相对于每一现有运输方式的其他服务特征效应。
如前所述, 本方法所采用的关键研究成果是当面对应用高速铁路的选择或机会时,原计划乘坐民航、铁路和小汽车的人们会表现出不同的出行行为。
这就意味着同样的高速铁路选择将在现状和未来的民航、小汽车和铁路用户之间得到不同的转移比例。
如果出行者已经揭示或表现出这些不同的期望值, 相对于目前应用的运输方式, 他们对高速铁路的旅行时间、票价和舒适度将做出完全不同的反应。
以这种方式分解市场得到的结果代表了个体是如何做出城际出行的决策。
当然,任何通道从民航、铁路和小汽车实际转移到高速铁路的运量都将取决于速度、票价、服务频率、车站位置和新铁路服务的舒适度。
应用方式选择模型预测高速铁
路在每一市场划分中的份额需要对众多的解释变量进行实证检验。
例如, 我们可以分别定义干线运输时间、进站和出站时间、等候时间以及旅行费用变量等。
另外,我们也可以有选择地对这些变量进行不同的组合和转换。
在建立城市交通模型时,一个典型的观测是出行者的车外时间是在车时间的两倍。
然而,当建立城际出行的模型时,这种关系肯定要发生变化,至少是由于出行目的和出行距离的不同。
例如, 当出行距离相对较短, 旅行进站和出站时间将比干线运输时间重要得多。
相反,对于距离较长的出行,进站和出站时间的价值将会降低(它们只是被当作干线运
输时间的百分比。
这种结果可以在许多研究中发现,而且是符合一般规律的。
3. 进行诱发运量预测时, 必须将方式选择模型的效用函数结合到需求模型中。
一般来说,诱发需求是一种新方式加入后而产生的需求,它既可以来自其他现有的运输方式,也可以在某些经过选择的 O D 对之间,但诱发需求不包括由于正常人口和就业增长而产生的新的出行需求。
在实践中,新方式的诱发运量应与市场份额
和相对于现有运输方式的吸引度密切相关。
一个预计在现有市场中占有
30%~40%市场份额的新运输方式有可能诱发出本身的出行。
相反,如果这一方式仅仅吸引了 1%的现有出行量,则不可能产生诱发运量。
考虑到诱发运量与方式选择的关系, 诱发运量预测方法必须与方式选择预测模型一致。
这就意味着出行者从方式选择模型得到的服务水平变量的数值要结合到总需求模型中。
具体的方法是采用方式选择模型系数, 使有关新运输方式服务水平的改进等同于有关现有运输方式服务的改进。
因此, 这种方法将保证诱发出行的计算反映所有出行选择的各种运输方式在服务措施上的取舍和决策。
因此, 预测与引进新高速铁路方式相关联的诱发出行只需计算这一引进所导致的可比价格的降低, 也就是新方式引进后由于服务水平提高所降低的广义价格的具体水平。
如果引进的新方式能够占有较大的市场份额, 出行条件的改善效果将非常明显;反之, 如果新方式所占有的市场份额较小,对出行条件改善的影响也非常小。