机械工程材料名词解释
机械工程材料-赵亚忠-参考答案上-性能-晶体-结晶-塑性变形

《机械工程材料》复习思考题答案 一赵亚忠主编 西安电子科技大学出版社第1章 工程材料的性能及使用性能要求1、名词解释:强度,硬度,弹性,塑性,韧性,韧脆转变温度。
答:强度是反映材料承力能力的力学指标,一般指材料不发生塑性变形时的承力能力,或是不发生断裂破坏时的承力能力;硬度是衡量材料软硬程度的性能指标,反映了材料表面抵抗局部塑形变形的能力;弹性是材料受外力作用时产生变形,当外力去除时,变形随之消失,材料恢复到原来形状尺寸的性能;塑性是表征材料在静载荷作用下,断裂前发生永久变形能力的指标; 韧性反映材料抵抗冲击载荷破坏或是交变载荷破坏的能力。
冲击韧性反映材料对冲击负荷的抵抗能力,用材料冲击断裂时所能吸收的能量与截面积的比值表示;断裂韧性反映材料阻止微裂纹失稳扩展的能力。
韧脆转变温度是指对某些合金当温度低于某一温度时,材料由韧性状态转变为脆性状态,此时的温度为韧脆转变温度。
2、说明以下符号的含义及其单位。
①R m ;②R el (R 0.2);③R -1;④A ;⑤Z ;⑥a K ;⑦K I ;⑧K I c ;⑨t τσ答:①R m 为抗拉强度,表示材料在拉断前所能承受的最大应力,单位为MPa ;②R el 表示屈服强度,是指材料在外力作用下开始产生塑性变形的最低应力值。
对于在σ-ε曲线上没有屈服平台的材料,把使试样产生0.2%的残余塑性变形量的应力值规定为该材料的条件屈服强度,用R 0.2表示,单位为MPa ;③R -1表示疲劳强度,是指材料在无限次交变应力作用下而不发生疲劳断裂的最大应力,单位为MPa ;④A 表示断后伸长率,是指试样拉断后标距的伸长量与原始标距长度的百分比,无量纲,%; ⑤Z 表示指断面收缩率,是指试样拉断后缩颈处截面积的最大缩减量与原始横截面积的百分比,无量纲,%;⑥a K 表示冲击韧度,是指材料在冲击载荷作用下抵抗变形和断裂的能力,单位为J/cm 2; ⑦K I 表示应力场强度因子,它反映裂纹尖端应力场的强弱,单位为MPa ⋅m1/2;⑧K I c 表示断裂韧性,是指应力场强度因子K I 的临界值,是反映材料抵抗裂纹失稳扩展能力的力学性能指标,单位为MPa ⋅m1/2;⑨t τσ表示持久强度,反映材料长期在高温应力作用下抵抗断裂的能力。
机械工程材料-绪论-第一章

二、过量变形失效
1 过量弹性变形及抗力指标
2 (1)零构件发生过量弹性变形失效: 3 Dl[Dl] (拉压或者弯曲条件下) 4 或者 q [q] (扭转条件下) 5 (2)过量弹性变形的原因:零构件的刚度不够 6 (3)抗力指标:弹性模量E或者切变模量G
.
2 过量塑性变形及抗力指标
3 (1)发生条件:塑性变形量超过允许变形量 4 (2)原因:偶而过载或者零构件本身抵抗塑
,符号为s
T
.
(2)给定温度下,在规定时间内使试样产生一
定蠕变总变形量d的应力值,符号为:s
T d
/
t
2 持久强度:材料在高温长期载荷作用下抵抗断裂的 能力。
3 表示方法:用给定温度和规定时间内试样发生 断裂时的应力表示,sTt t---时间;T----温度;
三、高温下零件的失效和防止
加工性能(切削、锻造等) 铸造性能(适合铸造与否) 焊接性能(容易焊接与否) 热处理性能(可热处理强化)
.
三、 学习《机械工程材料》的目的
(1) 获得常用的金属材料、非金属材料的基本理论知 识,了解各种机械工程材料的基本特性和应用范围;
(2)在了解材料性能和设计之间关系的基础上,可根 据零件的工作条件和失效形式,正确设计和合理选材;
.
第五节 零件的腐蚀失效
问题 1 什么是腐蚀?可分为几类? 2 高温氧化腐蚀常发生在那些零件中?耐热
钢为什么具有抗高温氧化能力? 3 发生电化学腐蚀的条件是什么? 4 改善零件腐蚀抗力的主要措施是什么
.
一、腐蚀的定义和分类
1 腐蚀:材料表面和周围介质发生化学反 应或者电化学反应所引起的表面损伤现 象。
5 (2)过程:类似于疲劳断裂,是裂纹萌生和扩展过程。
机械工程材料 名词解释&简答

金属结晶的必要条件是过冷,即实际结晶温度必须低于理论结晶温度。金属结晶过程是由形核、长大两个基本过程组成的,并且这两个过程是同时并进的。
3.指出在铸造生产中细化金属铸件晶粒的途径。
用加大冷却速度,变质处理和振动搅拌等方法,获得细晶小晶粒的铸件。
三、铁碳相图
19.从化学成分、晶体结构、形成条件及组织形态上分析共析渗碳体与共晶渗碳
体的异同点。
共晶渗碳体与共析渗碳体的化学成分、晶体结构是相同的。共晶渗碳体是由共晶成分的液体经共晶转变形成的,为莱氏体的基体。共析渗碳体是由共析成分的奥氏体经共析转变形成的,以片状分布在铁索体基体上。
20. 从化学成分、晶体结构、形成条件及组织形态上分析一次渗碳体与二渗碳体的异同点。
-次渗碳体与二次渗碳体的化学成分、晶体结构是相同的。一次渗碳体是从液体合金中结晶出来的,呈宽条状。二次渗碳体是由奥氏体中析出的,在钢中呈断续网状或网状在白日铁电与共晶渗碳体连为一体
四、热处理
21.简述共析钢的奥氏体化过程。
6.形成间隙固溶体的组元通常应具有哪些条件?举例说明。
形成间隙固溶体的两组元原子直径差要大,即d质/d剂<0. 59,所以间隙固溶体的溶质元素为原子直径小的碳、氮、硼;溶剂元素为过渡族金属元素。如铁碳两元素可形成间隙囤溶体。
7.置换固溶体的溶解度与哪些因素有关?
置换固溶体的溶解度与组元的晶体结构、原子直径差和负电性等因素有关。 .
名词解释
一、性能
1.刚度:材料抵抗弹性变形的能力。
2.抗拉强度:材料抵抗最大均匀塑性变形的能力。
3.屈服强度:材料抵抗微量塑性变形的能力;或材料在屈服(开始产生明显塑性变形)时昀应力。
机械工程材料

04
特种工程材料
超导材料
超导性
某些材料在低温下电阻消 失,电流可以在其中无损 耗地流动,这种现象称为 超导性。
应用领域
超导材料在电力输送、磁 悬浮列车、核磁共振成像 等领域有广泛应用。
研究进展
目前,高温超导材料的研 究取得了重要进展,使得 超导技术的应用范围进一 步扩大。
纳米材料
纳米尺度
应用领域
再生资源回收利用的意义
随着资源的日益紧缺和环保意识的提高,再生资源的回收利用对于实现可持续发展具有重要意义。通 过回收利用废旧机械工程材料,可以减少对原生资源的开采,降低能源消耗和环境污染,同时也有助 于推动循环经济的发展。
废旧机械工程材料的处理方法和技术途径
废旧材料的分类与识别
物理处理方法
化学处理方法
和组织炎症。
应用领域
生物医用材料在医疗器械、人体 植入物、药物载体等领域有广泛
应用。
发展趋势
随着生物技术和医学的不断发展 ,生物医用材料的性能将不断提
高,应用领域也将不断扩大。
05
机械工程材料的性能与选用
力学性能与选用原则
强度
材料在静载荷作用下抵抗破坏 的能力,选用时需考虑工作应
力及安全系数。
刚度
生物处理方法利用微生物或酶 等生物制剂对废旧材料进行分 解和处理。这种方法对于处理 某些含有有机物的废旧材料具 有独特的优势。
循环经济在机械工程材料领域的应用前景
循环经济的理念
循环经济是一种以资源高效利用和循环 利用为核心的经济模式。它强调在生产 和消费过程中减少资源消耗和废弃物排 放,实现经济、社会和环境的协调发展 。
提高材料的耐磨性和耐腐蚀性
通过热处理工艺,可以在材料表面形成一层致密 的氧化膜或氮化膜,提高材料的耐磨性和耐腐蚀 性。
机械工程材料名词解释汇总 配上海理工大学出版社_New

机械工程材料名词解释汇总配上海理工大学出版社αk:冲击韧性,表示材料抵抗冲击载荷和破坏的一种能力。
αk全面理解:冲击韧性,材料在冲击载荷作用下,抵抗破坏的一种能力。
零件工作时,通常是小能量多次冲击积累,此时,零件坏否取决于零件的强度,与αk值无关,当受到大能量冲击时,零件坏否取决于αk值的大小。
αk值如何理解:零件工作时,通常受到小能量冲击而积累,此时,零件坏否取决于材料强度的高低。
但意外受到大能量冲击时,此时零件坏否取决于零件αk值的高低。
σ0.2的物理意义:材料在外力作用下,塑性变形的伸长量是标准试样长度的0.2%是的应力值。
σ0.2技术意义:零件不能在大于σ0.2的条件下工作,如大于就要导致构件因变形而失效。
σ0.2指标由来:有的金属材料有屈服强度,有的材料没有,即使有也不好测定,为不影响人们对金属的使用,人为地特意规定一个指标,取名伟条件屈服强度。
σ-1:疲劳强度,材料在无数次交变载荷应力作用下,不至于引起突然断裂是的应力值。
σb:抗拉强度,表示材料从开始加载到断裂时所能承受的最大应力值。
σb技术意义:零件不能在大于σb的条件下工作,如大于就要导致构件的破坏。
A:奥氏体,碳溶解于γ-Fe中的一种间隙固溶体。
F (铁素体)来源:是奥氏体降温至A 3线时,A→FF 共析 :共析铁素体,是经共析转变而来,即奥氏体降温至727℃时,发生共析转变,从奥氏体中同时Fe 3C,该F 即为F 共析 ,转变式为: P :珠光体,由铁素体和渗碳体层片相间所组成的机械混合物。
P 来源:奥氏体经共析转变而来,即 ,产物为珠光体。
S :索氏体,在等温转变过程中的产物(T=600℃~650℃),得到层厚间距较小的珠光体称为索氏体。
T :屈氏体,在等温转变过程中得到的产物(T=550℃~650℃),得到层厚间距较小的珠光体称为屈氏体。
奥氏体晶粒度:表示晶粒大小的一种尺度。
比重偏析:因比重不同而导致化学成分不均匀的现象,即比重轻的在上面,比重较重的元素在下面,使其成分不均。
机械工程材料名词解释

单晶体:如果一块晶体内部晶格的方位完全一致,则称这块晶体为单晶体。
多晶体:这种实际由多个晶粒组成的晶体结构成为多晶体各向异性:由于晶体中不同晶面和晶向上的原子密度不同,原子间的结合力也就不同,在不同的晶面和晶向上表现出不同的性能。
过冷度;金属的实际结晶温度与理论结晶温度之差称为自发形核:当过冷度较大时,经过一段时间孕育以后一些尺寸较大的晶胚开始变得稳定,而成为晶体生长的核心,这就是均匀形核非自发形核:晶体依附在杂质表面形成,这就是变质处理;变质处理就是向金属液体中加入一些细小的形核剂(又称为孕育剂或变质剂),使它在金属液中形成大量分散的人工制造的非自发晶核,从而获得细小的铸造晶粒,达到提高材料性能的目的。
过冷现象:实际结晶温度低于理论结晶温度的现象第二章滑移:晶体的一部分相对于另一部分沿一定的晶面(滑移面)按着一定的方向(滑移方向)发生相对滑动。
滑移系:一个滑移面和面上的一个滑移方向构成一个滑移系。
孪生:孪生是在切应力作用下形成孪晶的过程。
是塑性变形的另一种方式。
软位向:凡滑移面和滑移方向位于或接近于与外力成45度方位的晶粒必将首先发生滑移变形,通常称这些位向的晶粒处于软位向硬位向:滑移面和滑移方向处于或接近于与外力相平行或垂直的晶粒则处于硬位向‘回复:在加热温度较低时,由于点缺陷和位错的迁移引起的某些晶内变化称为回复。
再结晶:把变形金属加热至较高温度,进一步提升原子的活动能力,晶粒的外形便开始发生变化,从破碎拉长的晶粒变成新的等轴晶粒这一过程织构:由于晶体中滑移系的数量有限,当金属的塑性变形量很大时70%,各晶粒的位向将大体趋近与一致,形成特殊的“择尤取向”这种有序化的结构称为加工硬化:随着变形量的增大,金属的强度和硬度显著提高而塑性和韧性明显下降的现象。
固溶强化:这种通过形成固溶体是金属的强度和硬度提高的现象叫做热加工:凡在其再结晶温度以上的加工变形即为热加工冷加工相反即是‘第三章合金:通过熔炼、烧结或其他方法将一种金属元素同一种或几种其他元素结合在一起形成具有金属特性的新物质成为合金。
机械工程材料 名词解释

名词解释过冷:温度低于凝固点但仍不凝固或结晶的液体称为过冷液体。
过冷液体是不稳定的,只要投入少许该物质的晶体,便能诱发结晶,并使过冷液体的温度回升到凝固点。
这种在微小扰动下就会很快转变的不稳定状态称为亚稳态。
过冷度:理论结晶温度与实际结晶之差称为过冷度。
形核率:单位时间单位体积液相中形成的晶核数目。
非自发形核:非自发形核:晶核是依附外来杂质而生成的. △T ≈ 20℃。
变质处理:变质处理就是向金属液体中加入一些细小的形核剂(又称为孕育剂或变质剂),使它在金属液中形成大量分散的人工制造的非自发晶核,从而获得细小的铸造晶粒,达到提高材料性能的目的。
热处理:热处理是将金属材料放在一定的介质内加热、保温、冷却,通过改变材料表面或内部的金相组织结构,来控制其性能的一种金属热加工工艺。
过冷奥氏体:过冷至A1(727C)以下的奥氏体成为不稳定的过冷奥氏体,符号A冷。
马氏体:奥氏体获得极大过冷至Ms以下(对于共析钢为230C以下)时,转变成的组织类型。
贝氏体:过冷奥氏体在550C~Ms温度范围内将转变成贝氏体类型组织,符号B。
C曲线:过冷奥氏体等温转变动力学曲线是表示不同温度下过冷奥氏体转变量与转变时间关系的曲线。
由于通常不需要了解某时刻转变量的多少,而比较注重转变的开始和结束时间,因此常常将这种曲线绘制成温度—时间曲线,简称C曲线。
临界冷却速度:临界冷却速度(critical cooling rate):Rc合金冷却凝固过程中发生非晶转变所要求的最小冷速称为临界冷却速度.实验表明ΔTx越大,Rc越小,并且随着Trg增大,Rc减小。
(在钢的生产中,只发生马氏体转变的最小冷却速度,称为临界冷却速度。
)完全退火:将亚共析钢加热到Ac3以上30~50℃,保温后随炉冷却到500℃以下在空气中冷却,以获得接近平衡组织的热处理工艺。
所谓“完全”是指退火时钢的内部组织全部进行了重结晶。
通过完全退火来细化晶粒,均匀组织,消除内应力,降低硬度,便于切削加工,并为加工后零件的淬火作好组织准备。
工程材料名词解释汇总

工程材料名词解释汇总一、材料性质:1.回火稳定性:钢对回火时发生软化的抵抗能力2.红硬性:指钢在高温条件下仍能保持高的硬度和切削能力的性能3.热强性:指耐热钢在高温和载荷的共同作用下抵抗塑性变形和破坏的能力4.热脆性:在某一温度下长期工作,发生冲击韧性大幅度下降,突然发生脆性断裂的现象5.冷脆:当试验温度低于某一温度Tk时,材料由塑性转变为脆性的现象6.二次淬火:在含有大量的W Mo Cr V等合金元素的钢在回火过程中,过冷A分解析出碳化物,A中的C和合金元素的含量降低,使Ms点回升至室温,在冷却过程中,过冷A 转变为M7.二次硬化:在含有大量W Mo Cr等合金元素的钢中,回火后硬度随回火温度的升高不是单调降低,而是在某一回火温度硬度反而增加,并在某一温度出现峰值的现象8.回火脆性:指淬火钢在回火后出现韧性下降,而在某一温度范围表现脆化的现象9.屈服:材料受到的应力增加到某一值后,应力不再增加而变形继续发生,发生塑性变形10.蓝脆:低碳钢在300~400℃的温度范围内光亮的钢具有蓝的颜色,却出现反常的强度增高而塑性降低的现象11.焊接脆性:由于钢材化学成分和组织的变化而导致焊接构件脆断倾向增大的现象12.凝固脆性:指焊肉和熔合线金属由于熔化和凝固的过程引起组织和化学成分的变化,而形成裂纹的倾向性增大的现象13.钝化效应:通过改变钢的表面状态而造成基体金属表面部分电极电位升高的现象14.弹性极限:指材料抵抗弹性变形的能力15.疲劳极限:在疲劳试验中,应力应变的循环次数增加大无限次而不发生破损的最大应力16.黑脆:碳素刃具钢在退火处理时由于加热时间长或冷却速度慢会有石墨析出,使钢脆化17.热疲劳现象:反复受热和冷却是金属表层产生反复的热胀冷缩,即反复承受拉、压应力作用而出现龟裂的现象18.腐蚀:在外界介质的作用下使金属逐渐受到破坏的现象19.一般腐蚀:金属表面大面积均匀的腐蚀20.晶界腐蚀:指沿着晶界进行的腐蚀,使晶粒的连续性遭到破坏21.应力腐蚀:在应力和腐蚀介质共同作用下发生的破坏22.点腐蚀:指在金属表面局部区域的一种腐蚀破坏形式23.宏观电池作用腐蚀:如铆钉和铆接金属材料不同、异种金属焊接时由于不同金属间电极电位不同造成电势差而构成原电池而造成的腐蚀24.腐蚀疲劳:指在腐蚀介质和交变应力的作用下发生的破坏25.475℃脆性:Cr含量大于15%的高铬钢在400~525℃范围长时间加热或在此温度范围内缓冷时,会导致室温脆化,强度升高,塑韧性降低,在475℃脆化现象最严重26.σ相脆性:F不锈钢在500~850℃长期停留会析出Fe Cr金属间化合物(高硬度)沿晶界分布,同时会引起大的体积变化造成钢很大的脆性,引起晶间腐蚀,降低钢的耐蚀性27.强度:指金属材料对塑性变形的抗力28.韧性:指钢在断裂前吸收能量和进行塑性变形的能力29.钢的热稳定性:指在高温下抗氧化或抗高温介质腐蚀的能力30.铸铁的氧化:高温下受氧化气氛的侵蚀,铸件表面发生化学腐蚀的现象31.铸铁的生长:铸铁在较高温度下及反复加热和冷却时发生体积长大的现象二、钢种定义:1、结构钢:用于制造各种大型金属结构的钢种,又称工程用钢2、机器零件用钢:用于制造各种机械零件的钢种3、调质钢:经过调质处理而使用的结构钢称为调质钢4、渗碳钢:低碳钢表面渗碳后进行热处理强化,提高其表面性能的钢种5、弹簧钢:用于制造各种弹簧或者类似弹簧性能的零件的钢种6、冷作模具钢:使金属在冷状态下变形的冷模具钢,工作温度小于250℃7、热作模具钢:使金属在热状态下变形的热模具钢,工作时模腔表面高于600℃8、工具钢:用于制造各种加工工具的钢种9、刃具钢:用于制造各种切削加工工具的钢种10、高速钢:一种高碳且含有大量W Mo Cr V Co等合金元素的合金刃具钢11、不锈钢:能够抵抗大气腐蚀和弱腐蚀介质腐蚀的钢种12、耐酸钢:指在各种强腐蚀介质中能偶耐蚀的钢种13、耐热钢:指在高温条件下工作并具有一定强度和抗氧化、耐腐蚀能力的钢种14、热强钢:在高温下有一定的抗氧化能力并具有足够强度而不产生大量变形或断裂的钢种15、热稳定钢:在高温下抗氧化或抗高温介质腐蚀而不破坏的钢种16、铸铁:指以Fe C Si为主要成分并在结晶过程中发生共晶转变的多元铁基合金三、热处理工艺及其他强化方式:1、合金化:加入适当合金元素改善金属性能的方法2、强化:使金属屈服强度增大的过程3、沉淀强化:通过过饱和的固溶体在时效处理后沉淀析出第二相粒子引起的合金强化4、弥散强化:利用碳化物作弥散强化相引起的合金强化5、水韧处理:将碳钢在950℃加热快冷后在400℃回火处理6、控制轧制:将普低钢加热至高温(1250~1350℃)进行轧制,终轧温度控制在Ar3附近7、调质处理:淬火加上高温回火的工艺8、固溶处理:指将合金加热到高温单相固溶体区恒温保持,使过剩相充分溶解到固溶体中后快速冷却,以得到过饱和的固溶体的热处理工艺9、稳定化处理:固溶处理后将钢加热到850~880℃保温后空冷,此时Cr的碳化物完全溶解而Ti的碳化物不完全溶解并在冷却时充分析出,使C不能和Cr形成碳化物10、铸铁的一次结晶:把初生A的析出和以后的共晶转变称为一次结晶11、铸铁的二次结晶:把凝固后进行的C自A中的脱溶和共析转变称为铸铁的二次结晶12、孕育处理:浇注前在铁水中加入少量强烈促进石墨化的物质(孕育剂)进行处理的过程13、球化处理:浇注前在铁水中加入一定量的球化剂促使石墨结晶后生产成为球状的工艺第一章:钢的合金化1. 工艺性能:焊接性能、切削加工性能、铸造性能、锻造性能、热处理性能2. 合金元素的存在形式:固溶体、强化相、第二相、单质3. 合金元素与铁、碳的相互作用以及对奥氏体层错能的影响4. 塑性变形的本质:位错运动5. 钢的强化机制:固溶强化、第二相强化、晶界强化、位错强化(出发点、强化机制、强化量、强化途径)6. 淬火+回火提高钢强度的原理:四种强化机制的利用7. 影响塑性的因素:溶质原子、第二相、晶粒大小、位错密度8. 断裂的类型:延性断裂、解理断裂、沿晶断裂9. 改善断裂抗力(提高韧性)的途径10. 合金元素对铁碳相图的影响(A4 A3 A1 S点E点C点)11. 合金元素对奥氏体形成过程的影响(A的形核、A的长大、渗碳体的溶解、A的均匀化)12. 合金元素对过冷A分解过程的影响(C曲线、Ms点Mf点),减少过冷A的措施13. 合金元素对回火过程的影响(M的分解、过冷A的转变、碳化物的析出、F的回复再结晶)14. 二次淬火、二次硬化、回火脆性以及防止第二类回火脆性的方法第二章:构件用钢1. 力学性能的三大特点:屈服现象、冷脆现象、时效现象(淬火时效、应变时效、蓝脆)——形成原因与防止措施2. 工艺性能:冷变形性能(影响因素)、焊接性能(焊接脆性:M相变脆性、过热过烧脆性、凝固脆性、热影响区的时效脆性)3. 耐大气腐蚀性能:大气腐蚀过程,提高耐大气腐蚀性能的途径(减少微电池数量,提高机体电极电位,钝化(Cr Al Si Cu P))4. 碳素构件用钢:化学成分、分类、热处理工艺、典型钢种(重点:冷冲压用钢)5. 低合金高强度构件用钢、高锰钢6. 进一步提高普低钢力学性能的途径:低碳B型普低钢、低碳S 型普低钢、针状F型普低钢、控制轧制第三章:机器零件用钢1. 分类:调质钢、弹簧钢、渗碳钢、轴承钢2. 生产工艺:型材、改锻——预备热处理——切削——最终热处理——磨削3. 含碳量;合金元素:Cr Mn Si Ni(提高淬透性)4. Mo W V(降低过热敏感性和回火脆性,提高淬透性)5. 调质钢(化学成分、热处理工艺、组织特点)6. 弹簧钢(弹簧的作用,化学成分,热处理(冷成型、热成型))7. 渗碳钢(表面强化的方法、合金元素对渗碳的影响,化学成分,热处理)8. 滚动轴承钢(化学成分、主加合金元素Cr的作用、热处理工艺)9. 特殊性能用钢第四章:工具钢1、分类:刃具钢、模具钢、量具钢/ 合金工具钢、碳素工具钢、高速钢2、化学成分、热处理、组织结构3、碳素刃具钢(化学成分;两个缺点一个不足)4、合金刃具钢(化学成分、合金元素的作用、热处理、性能)5、高速钢(化学成分、合金元素的作用、铸态组织及压力加工、热处理(两次预热的作用、高温淬火的原因、三次回火的作用、冷处理减少回火次数))6、冷作模具钢(热处理:锻打+球化退火+淬火+回火:一次硬化法、二次硬化法;提高冷作模具钢韧性的方法)7、热作模具钢(分类:锤锻模、热挤压模、压铸模、热轧机轧辊)热疲劳现象及影响因素8、量具用钢第五章:不锈钢:1、腐蚀(化学腐蚀、电化学腐蚀)、腐蚀的类型、腐蚀的防止2、不锈钢的合金化原理(钝化、提高基体电极电位、单相基体组织)、合金元素的作用3、不锈钢的牌号4、各种不锈钢的相关知识(重点)第六章:耐热钢及高温合金第七章:铸铁第八章:有色金属及合金。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
强度:材料在外力作用下抵抗变形和断裂的能力
抗拉强度:材料发生均匀变形和断裂所能承受的最大应力值
屈服强度:材料发生明显塑性变形的最小应力值
塑性:材料发生塑性变形不断裂的能力
硬度:反应材料软硬程度的一种性能指标它表达材料表面局部区域内抵抗变形或破裂的能力
滑移:滑移指在切应力作用下,晶体的一部分沿一定晶面和晶向,相对于另一部分发生相对移动。
孪生:孪生系指在切应力作用下,晶体的一部分沿一定晶面和晶向,相对于另一部分所发生的切变。
金属:具有不透明、金属光泽良好的导热和导电性并且其导电能力随温度的增高而减小,富有延性和展性等特性的物质。
金属内部原子具有规律性排列的固体(即晶体)。
合金:由两种或两种以上金属或金属与非金属组成,具有金属特性的物质。
化合物:合金组元间发生化合作用,生成一种具有金属性能的新的晶体固态结构。
机械混合物:由两种晶体结构而组成的合金组成物,虽然是两面种晶体,却是一种组成成分,具有独立的机械性能。
固溶体:是一个(或几个)组元的原子(化合物)溶入另一个组元的晶格中,而仍保持另一组元的晶格类型的固态金属晶体,固溶体分间隙固溶体和置换固溶体两种。
组织:指用肉眼可直接观察的,或用放大镜、显微镜能观察分辨的材料内部微观形貌图像。
相:指金属或合金中化学成分相同、结构相同,或原子聚集状态相同,并与其他部分之间有明确界面的独立均匀组成部分。
相变:相的分解,合成,转变的过程。
匀晶反应:匀晶反应(转变)指结晶时从单一液相结晶出单相固溶体的过程。
共晶反应:共晶反应系指在一定温度下,由一定成分的液相同时结晶出成分各自一定的两个新固相的转变过程。
共析反应:共析反应则指在一定温度下,由一个成分一定的固相同时析出两个成分各自一定的新固相的转变过程。
铁素体:碳在α-Fe(体心立方结构的铁)中的间隙固溶体。
奥氏体:碳在γ-Fe(面心立方结构的铁)中的间隙固溶体。
奥氏体的起始晶粒度:奥氏体的起始晶粒度系指奥氏体化过程中,奥氏体转变刚完成时奥氏体晶粒的大小,是一理论值。
奥氏体的实际晶粒度:奥氏体的实际晶粒度指的是在某一具体加热条件下所得到的奥氏体晶粒大小。
奥氏体的本质晶粒度:奥氏体的本质晶粒度指在规定的加热条件下(930±10℃,3~8h)评定奥氏体晶粒长大倾向的标准。
过冷奥氏体:过冷奥氏体是指处于A1温度以下存在时间很短暂、不稳定的奥氏体。
残余奥氏体:残余奥氏体(Ar)指淬火后尚未转变,被迫保留下来的奥氏体。
渗碳体:碳和铁形成的稳定化合物(Fe3c)。
珠光体:铁素体和渗碳体组成的机械混合物(Fe+Fe3c 含碳0.8%)
片状珠光体:片状珠光体组织系在铁素体基体上分布着片状渗碳体。
球状珠光体(球化体):球状珠光体(球化体)则是在铁素体基体上分布着粒状渗碳体所获得的组织。
莱氏体:渗碳体和奥氏体组成的机械混合物(含碳4.3%)
马氏体:碳溶于a-Fe且含有大量的饱和碳的过饱和固溶液,具有高硬度,是盘式体通过无扩散型相变转变为亚稳定相
固溶强化:由于溶质原子进入溶剂晶格的间隙或结点,使晶格发生畸变,使固溶体硬度和强度升高,这种现象叫固溶强化现象。
固溶处理:使合金中各种相充分溶解,强化固溶体并提高韧性及抗蚀性能,消除应力与软化,以便继续加工成型
加工硬化:金属材料在再结晶温度以下塑性变形时强度和硬度升高,而塑性和韧性降低的现象。
又称冷作硬化
时效强化:合金元素经固溶处理后,获得过饱和固溶体。
在随后的室温放置或低温加热保温时,第二相从过饱和固溶体中析出,引起强度,硬度一己物理和化学性能的显著变化,这一过程被称为时效。
时效分人工时效和自然时效。
室温放置过程中使合金产生强化的效应称为自然时效,低温加热过程中使合金产生强化的称为人工时效。
结晶:结晶系指物质由液态转变为固态晶体的过程。
重结晶:重结晶系指固态下晶体结构的变化过程。
再结晶:当冷变形金属被加热至较高温度时,金属的显微组织将发生明显变化,由变形晶粒变为新的等轴晶粒,这一过程称为再结晶.
冷加工:将在再结晶温度以下进行的加工
热加工:将在再结晶温度以上进行的加工
热处理:热处理是将材料放在一定的介质内加热、保温、冷却,通过改变材料表面或内部的组织结构,来控制其性能的一种综合工艺过程。
正火:将钢材或钢件加热到临界点AC3或ACM以上的适当温度保持一定时间后在空气中冷却,得到珠光体类组织的热处理工艺。
退火annealing:将亚共析钢工件加热至AC3以上20—40度,保温一段时间后,随炉缓慢冷却(或埋在砂中或石灰中冷却)至500度以下在空气中冷却的热处理工艺。
去应力退火:将工件加热至较低温度,保温一定时间后冷却,使工件发生回复,从而消除残余内应力的工艺称为去应力退火。
再结晶退火:再结晶退火就是将经过冷变形加工的工件加热至再结晶温度以上,保温一定时间后冷却,使工件发生再结晶,从而消除加工硬化的工艺。
固溶热处理:将合金加热至高温单相区恒温保持,使过剩相充分溶解到固溶体中,然后快速冷却,以得到过饱和固溶体的热处理工艺
淬火:将钢奥氏体化后以适当的冷却速度冷却,使工件在横截面内全部或一定的范围内发生马氏体等不稳定组织结构转变的热处理工艺
表面淬火:紧紧对工件表面层进行淬火的热处理工艺。
淬硬性:指钢在淬火时硬化能力,用淬成马氏体可能得到的最高硬度表示。
主要取决于马氏体中的含碳量,碳含量越高,则钢的淬硬性越高。
其他合金元素的影响比较小。
淬透性才是指奥氏体化后的钢在淬火时获得马氏体的能力。
其大小以钢在一定条件下淬火获得的淬透层深度和硬度分布表示。
淬硬性是指在理想的淬火条件下,以超过临界冷却速度所形成的马氏体组织能够达到的最高硬度,也称可硬性。
淬透性:淬透性表示钢在一定条件下淬火时获得淬透层深度的能力,主要受奥氏体中的碳含量和合金元素的影响。
淬透性可用规定条件下所获得的淬透层深度来表示。
淬透层深度:淬透层深度则指从钢件表面到半马氏体区的距离。
淬透层深度则除了和淬透性有关外,还与试样的尺寸,奥氏体化条件等有关。
回火:将经过淬火的工件加热到临界点AC1以下的适当温度保持一定时间,随后用符合要求的方法冷却,以获得所需要的组织和性能的热处理工艺。
回火的种类及应用
低温回火(150-250度)
低温回火所得组织为回火马氏体。
其目的是在保持淬火钢的高硬度和高耐磨性的前提下,降低其淬火内应力和脆性,以免使用时崩裂或过早损坏。
它主要用于各种高碳的切削刃具,量具,冷冲模具,滚动轴承以及渗碳件等,回火后硬度一般为HRC58-64。
中温回火(350-500度)
中温回火所得组织为回火屈氏体。
其目的是获得高的屈服强度,弹性极限和较高的韧性。
因此,它主要用于各种弹簧和热作模具的处理,回火后硬度一般为HRC35-50。
高温回火(500-650度)
高温回火所得组织为回火索氏体。
习惯上将淬火加高温回火相结合的热处理称为调质处理,其目的是获得强度,硬度和塑性,韧性都较好的综合机械性能。
因此,广泛用于汽车,拖拉机,机床等的重要结构零件,如连杆,螺栓,齿轮及轴类。
回火后硬度一般为HB200-330。
调质处理:一般习惯将淬火加高温回火相结合的热处理称为调质处理。
调质处理广泛应用于各种重要的结构零件,特别是那些在交变负荷下工作的连杆、螺栓、齿轮及轴类等。
调质处理后得到回火索氏体组织,它的机械性能均比相同硬度的正火索氏体组织为优。
它的硬度取决于高温回火温度并与钢的回火稳定性和工件截面尺寸有关,一般在HB200—350之间。
渗碳:渗碳是指使碳原子渗入到钢表面层的过程。
也是使低碳钢的工件具有高碳钢的表面层,再经过淬火和低温回火,使工件的表面层具有高硬度和耐磨性,而工件的中心部分仍然保持着低碳钢的韧性和塑性。
钢的碳氮共渗:碳氮共渗是向钢的表层同时渗入碳和氮的过程。
习惯上碳氮共渗又称为氰化,目前以中温气体碳氮共渗和低温气体碳氮共渗(即气体软氮化)应用较为广泛。
中温气体碳氮共渗的主要目的是提高钢的硬度,耐磨性和疲劳强度。
低温气体碳氮共渗以渗氮为主,其主要目的是提高钢的耐磨性和抗咬合性。
结构钢:制造机械零件用的钢
优质结构钢:Ws,Wp均≤0.035%的碳钢
合金结构钢:在优质碳素结构中加入合金元素得到的钢
工具钢:用于制造工具,模具制造的钢
灰铸钢:c以片状是的分布靠在的铸体。