统计学例子:品质数列

统计学例子:品质数列

常用医学统计学方法汇总

选择合适的统计学方法 1连续性资料 1.1 两组独立样本比较 1.1.1 资料符合正态分布,且两组方差齐性,直接采用t检验。 1.1.2 资料不符合正态分布,(1)可进行数据转换,如对数转换等,使之服从正态分布,然后对转换后的数据采用t检验;(2)采用非参数检验,如Wilcoxon检验。 1.1.3 资料方差不齐,(1)采用Satterthwate 的t’检验;(2)采用非参数检验,如Wilcoxon检验。 1.2 两组配对样本的比较 1.2.1 两组差值服从正态分布,采用配对t检验。 1.2.2 两组差值不服从正态分布,采用wilcoxon的符号配对秩和检验。 1.3 多组完全随机样本比较 1.3.1资料符合正态分布,且各组方差齐性,直接采用完全随机的方差分析。如果检验结果为有统计学意义,则进一步作两两比较,两两比较的方法有LSD检验,Bonferroni法,tukey 法,Scheffe法,SNK法等。 1.3.2资料不符合正态分布,或各组方差不齐,则采用非参数检验的Kruscal-Wallis法。如果检验结果为有统计学意义,则进一步作两两比较,一般采用Bonferroni法校正P值,然后用成组的Wilcoxon检验。 1.4 多组随机区组样本比较 1.4.1资料符合正态分布,且各组方差齐性,直接采用随机区组的方差分析。如果检验结果为有统计学意义,则进一步作两两比较,两两比较的方法有LSD检验,Bonferroni法,tukey 法,Scheffe法,SNK法等。 1.4.2资料不符合正态分布,或各组方差不齐,则采用非参数检验的Fridman检验法。如果检验结果为有统计学意义,则进一步作两两比较,一般采用Bonferroni法校正P值,然后用符号配对的Wilcoxon检验。 ****需要注意的问题: (1)一般来说,如果是大样本,比如各组例数大于50,可以不作正态性检验,直接采用t 检验或方差分析。因为统计学上有中心极限定理,假定大样本是服从正态分布的。 (2)当进行多组比较时,最容易犯的错误是仅比较其中的两组,而不顾其他组,这样作容易增大犯假阳性错误的概率。正确的做法应该是,先作总的各组间的比较,如果总的来说差别有统计学意义,然后才能作其中任意两组的比较,这些两两比较有特定的统计方法,如上面提到的LSD检验,Bonferroni法,tukey法,Scheffe法,SNK法等。**绝不能对其中的两

统计学实例

统计学基本概念 13.1统计学实例 统计学(Statistics):收集与分析数据的科学与艺术。 统计学与概率论的宗旨都是把不确定现象量化。 概率论是数学,其基本特征是从法则到结果(from rules to results), 统计学是一门科学,其基本特征是从结果到法则(from results to rules)。 ********************************************************** 统计学能够发挥作用的领域不胜枚举,举例如下: ●科学:实证的科学研究离不开搜集和分析数据; ●技术:技术的创新和改进离不开作试验和对试验数据的分析; ●工农业生产:改进质量或提高产量离不开作试验和对试验数据的分析; ●经济金融:对经济金融形势的分析与展望需要建立模型,离不开对大量数据 的分析;投资、保险、股票等; ●政府或公司的管理和决策——进行量化的管理和决策; 天气、医药、人口、社会卫生、收入保障体系的制定等等。 ********************************************************** 实例一统计学帮助政府解决难题 印度独立不久,首都发生暴乱,大量难民聚集到被称为红色堡垒的被保护区域。政府有责任给难民提供食品等必需品,将这个任务委托给了承包商。 政府担心承包商夸大商品的需求量,从中牟取暴利,但无从入手解决 有人建议让统计学家完成这个任务。但问题显得很困难。 全体避难者一天所需的米、豆和盐的总量为R,P,S。 普通人的消费调查,每人每天平均所需米、豆、盐的量分别为r,p,s

R/r,P/p,S/s ********************************************************** 实例二小儿麻痹症疫苗的有效性 问题:小儿麻痹疫苗问世后,1954年进行了一项研究以评价它在预防幼儿麻痹及死亡方面的有效性。两组幼儿参加了这项研究。试验组按规定接受三次疫苗,对照组则不接受疫苗。对照组作为证实疫苗有效性,进行对比是必须的。比较的最重要的判据是两组中发生麻痹以及死亡的幼儿数。由于小儿麻痹症发病率极低,两组都需要大量的幼儿以保证有足够的病例发生,从而为比较提供可靠的基础。Meier的文章称该项研究是“有史以来最大规模的公共卫生试验”。两组人数都略多于200000名小孩。 ********************************************************** 实例二小儿麻痹症疫苗的有效性 随机决定每个小孩是否接受疫苗。 表13.1试验组和对照组小儿麻痹发病率 组别幼儿人数发病人数发病率(每十万人)试验组2007453316 对照组20122911557测试中存在随机因素,如何在概率意义下量化差异?两组幼儿的发病率是否有本质的差异? 回答这些问题是统计推断的重要内容。 ********************************************************** 统计学有自己独特的思维方式与方法 ●统计的目的是回答实际领域中提出的各种问题,对科学结论提供定量分析(而不是单纯的定性分析)的依据;为发现新的理论模型提供线索;预测未来,为决策提供支持等。因此统计学以问题为导向,而不以理论为导向。统计学本质上是一门应用性、方法性的学科。

案例分析:现实数学观与生活数学观[1]

案例分析:现实数学观与生活数学观 课题:平均数 课时:一课时 材料准备:教师的讲台上有一个“工具箱”,里面预先准备了一些粉笔头、一些碎纸、一些纱线,一些正方体的小积木,而学生则准备有铅笔盒、记录本等。 临床描述 在本节课的一开始,教师就先向学生呈现了一段录像,在录像中描述了这样一段情节(简述): 在一个幼儿园的某一个教室里,十几个幼儿正围坐在一起,玩着“搭纸”游戏。这时,一位女教师手捧一个纸盒走进来,从镜头中可以看到,里面有许多有着漂亮包装的糖果。教师将这个纸盒放在学生前面的一个小桌上(类似于教师的讲台),又匆匆出去了。 小朋友们开始好像并没有太多的注意,老师拿了什么进来,又为什么要出去。但是,因为这位老师好久没有进来,小朋友们就开始有些奇怪了。先是窃窃私语,然后是出声的争论。这时可以听到他们议论最多的是,盒子里面究竟是什么。再后,有一个小朋友大着胆子走上前,看到了纸盒里是好多的糖果,大为兴奋,挥着小手大声地告诉大家。于是,小朋友纷纷上前探个究竟。开始是二、三个,然后就有许多小朋友上来看。 瞧这些小朋友,有些兴奋和骚动。还有几个小朋友的小手开始不停地动着,而且头不断地向前张望着。 终于,一个小朋友忍不住悄悄上来,在纸盒前驻足片刻,拿了一颗糖果。于是,又有几个小朋友开始学样,上来向纸盒伸手,但并未看清他们都拿了多少糖果。再后,就是所有小朋友都一拥而上,纷纷伸手去抓糖果。 这下可好,那些小朋友坐的、站的都有;有的在将糖果往自己的小口袋放,有的在向别人要糖果,有的则在哭, ……。 此时,教师进来了,看到小朋友们乱作一团的场景,再看纸盒,里面早已空了,就知道是怎么回事了。 教师免不了要向幼儿做一番教育。然后问了他们几个问题:你们想过没有,为什么有的小朋友很高兴,有的小朋友很不高兴?应该怎样做,才能使大家都高兴?接下来你们应该怎么做?想一想,然后老师可能会怎么做?(录像结束) 接着,教师边播放第二遍录像,边让全班学生思考幼儿园老师的问题。提出,可以每四个同学组成一组进行讨论,并利用自己的学习用品来模拟刚才幼儿园小朋友的行为过程,提出自己想要弄懂的问题。 于是,学生有的用画线段图的方式,有的用用摆小物品(如一些长短不一的细绳)的方式,也有的利用教师预先给出的正方体小积木,纷纷根据教师提出的问题,去尝试解决的方法。 可以看到,有一个小组先是将一堆小积木分成多少不一的几堆,然后是试着将多的积木往少的地方放。可能是由于积木的块数不巧,加上多少相差太大,所以,四个人边动手,边争论,最终也没有获得成功。突然,其中一个学生提出,为什么不将这些积木先全部集中起来,然后来重新分呢?这次,小组获得了成功,他们先将不同块数的几堆积木堆在了一起,然后像“发牌”一样,每次一块,一次发给每一堆。 这时,教师正好在巡视中走了过来,她向小组的同学提了一个问题:想想看,还有什么办法能更快的解决问题呢?于是,小组又展开了讨论。新的方法出现了,就是先数出积木的总数目,然后数一数要放几堆,用除法一算,就知道每一堆应该有几块,这样,只要直接将积木一次发给每一堆就可以了。

统计学案例集

统计学教学案例集统计学精品课建设小组 2004年11月

【案例一】全国电视观众抽样调查抽样方案 一、调查目的、范围和对象 1.1 调查目的 准确获取全国电视观众群体规模、构成以及分布情况;获取这些观众的收视习惯,对电视频道和栏目的选择倾向、收视人数、收视率与喜爱程度,为改进电视频道和栏目、开展电视观众行为研究提供新的依据。 1.2 调查范围 全国31个省、自治区、直辖市(港澳台除外)中所有电视信号覆盖区域。 1.3 调查对象 全国城乡家庭户中的13岁以上可视居民以及4-12岁的儿童。包括有户籍的正式住户也包括所有临时的或其他的住户,只要已在本居(村)委会内居住满6个月或预计居住6个月以上,都包括在内。不包括住在军营内的现役军人、集体户及无固定住所的人口。 二、抽样方案设计的原则与特点 2.1 设计原则 抽样设计按照科学、效率、便利的原则。首先,作为一项全国性抽样调查,整体方案必须是严格的概率抽样,要求样本对全国及某些指定的城市或地区有代表性。其次,抽样方案必须保证有较高的效率,即在相同样本量的条件下,方案设计应使调查精度尽可能高,也即目标量估计的抽样误差尽可能小。第三,方案必须有较强的可操作性,不仅便于具体抽样的实施,也要求便于后期的数据处理。 2.2 需要考虑的具体问题、特殊要求及相应的处理方法 2.2.1 城乡区分 城市与农村的电视观众的收视习惯与爱好有很大的区别。理所当然地应分别研究,

以便于对比。最方便的处理是将他们作为两个研究域进行独立抽样,但代价是,这样做的样本点数量较大,调查的地域较为分散,相应的费用也就较高。另一种处理方式是在第一阶抽样中不考虑区分城乡,统一抽取抽样单元(例如区、县),在其后的抽样中再区分城、乡。这样做的优点是样本点相对集中,但数据处理较为复杂。综合考虑各种因素,本方案采用第二种处理方式。 在样本区、县中,以居委会的数据代表城市;以村委会的数据代表农村。2.2.2 抽样方案的类型与抽样单元的确定 全国性抽样必须采用多阶抽样,而多阶抽样中设计的关键是各阶抽样单元的选择,其中尤以第一阶抽样单元最为重要。本项调查除个别直辖市及城市外,不要求对省、自治区进行推断,从而可不考虑样本对省的代表性。在这种情况下,选择区、县作为初级抽样单元最为适宜。因为全国区、县的总数量很大,区、县样本量也会比较大,因而第一阶的抽样误差比较小。另外对区、县的分层也可分得更为精细。 本抽样方案采用分层五阶抽样。各阶抽样单元确定为: 第一阶抽样:区(地级市以上城市的市辖区)、县(包括县级市等); 第二阶抽样:街道、乡、镇; 第三阶抽样:居委会、村委会; 第四阶抽样:家庭户; 第五阶抽样:个人。 为提高抽样效率,减少抽样误差, 在第一阶抽样中对区、县采用按地域及类别分层。在每一层内前三阶抽样均采用按与人口成正比的不等概率系统抽样(PPS系统抽样),而第四阶抽样采用等概率系统抽样,即等距抽样,第五阶抽样采用简单随机抽样。 2.2.3 自我代表层的设立 根据要求,本次调查需要对北京、上海两个直辖市以及广州、成都、长沙与西安四个省会城市进行独立分析,因而在处理上将这些城市(包括下辖的所有区、县)每个都作为单独的一层处理。为方便起见,以下把这样的层称为自我代表层。考虑到在这样处理后,全国其他区县在分层中的一些具体问题以及各地的特殊情况,将天津市也作为自我代表层处理。另外,鉴于西藏情况特殊,所属区县与其它省(自治区)的差别很大,因此也将它作为自我代表层处理。这样自我代表层共有8个,包括以下城市与地区:

生活中有趣的6个数学小故事教案资料

生活中有趣的6个数 学小故事

生活中有趣的6个数学小故事 你觉得自己很聪明,但是数学经常会让你感觉自己笨得不行。很多人不喜欢数学,事实上,数学本身非常有趣,它是我们日常生活的一部分,每个人都能从中获得享受。请跟随我们的脚步,来探寻有趣的数学吧! 身体计算器 我们的身体真得很奇妙,手是一个常见的计算器。最常见的手的计算是9的倍数计算。计算9的倍数时,将手放在膝盖上,如下图所示,从左到右给你的手指编号。现在选择你想计算的9的倍数,假设这个乘式是7×9。只要弯曲标有数字7的手指,然后数左边剩下的手指数是6,右边剩下的手指数是3,将它们放在一起,得出7×9的答案是63。 多少只袜子才能配成一对 关于多少只袜子能配成对的问题,答案并非两只。为什么会这样呢?那是因为在冬季黑蒙蒙的早上,如果从装着黑色和蓝色袜子的抽屉里拿出两只,它们或许始终都无法配成一对。虽然不是太幸运,但是如果从抽屉里拿出3只袜子,肯定有一双颜色是一样的。不管成对的那双袜子是黑色还是蓝色,最终都会有一双颜色一样的。如此说来,只要借助一只额外的袜子,数学规则就能战胜墨菲法则。通过上述情况可以得出,“多少只袜子能配成一对”的答案是3只。

当然只有当袜子是两种颜色时,这种情况才成立。如果抽屉里有3种颜色的袜子,例如蓝色、黑色和白色袜子,你要想拿出一双颜色一样的,至少必须取出4只袜子。如果抽屉里有10种不同颜色的袜子,你就必须拿出11只。根据上述情况总结出来的数学规则是:如果你有N种类型的袜子,你必须取出 N+1只,才能确保有一双完全一样的。 燃绳计时 一根绳子,从一端开始燃烧,烧完需要1小时。现在要在不看表的情况下,仅借助这根绳子和一盒火柴测量出半小时的时间。你可能认为这很容易,只要在绳子中间做个标记,然后测量出这根绳子燃烧完一半所用的时间就行了。然而不幸的是,这根绳子并不均匀,有些地方比较粗,有些地方却很细,因此这根绳子不同地方的燃烧率不同。也许其中一半绳子燃烧完仅需5分钟,而另一半燃烧完却需要55分钟。面对这种情况,似乎想利用上面的绳子准确测出30分钟时间根本不可能,但是事实并非如此,因此大家可以利用一种创新方法解决上述问题,这种方法是同时从绳子两头点火。绳子燃烧完所用的时间一定是30分钟。 火车相向而行问题 两辆火车沿相同轨道相向而行,每辆火车的时速都是50英里。两车相距100英里时,一只苍蝇以每小时60英里的速度从火车A开始向火车B方向飞行。它与火车B相遇后,马上掉头向火车A飞行,如此反复,直到两辆火车相撞在一起,把这只苍蝇压得粉碎。苍蝇在被压碎前一共飞行了多远? 我们知道两车相距100英里,每辆车的时速都是50英里。这说明每辆车行驶50英里,即一小时后两车相撞。在火车出发到相撞的这一段时间,苍蝇一直以每小时60英里的速度飞行,因此在两车相撞时,苍蝇飞行了60英里。不管苍蝇是沿直线飞行,还是沿”z”型线路飞行,或者在空中翻滚着飞行,其结果都一样。 掷硬币并非最公平 抛硬币是做决定时普遍使用的一种方法。人们认为这种方法对当事人双方都很公平。因为他们认为钱币落下后正面朝上和反面朝上的概率都一样,都是50%。但是有趣的是,这种非常受欢迎的想法并不正确。

常用医学统计学方法汇总

选择合适的统计学方法 1 连续性资料 1.1 两组独立样本比较 1.1.1 资料符合正态分布,且两组方差齐性,直接采用t 检验。 1.1.2 资料不符合正态分布,(1)可进行数据转换,如对数转换等,使之服从正态分布,然后对转换后的数据采用t 检验;(2)采用非参数检验,如Wilcoxon 检验。 1.1.3 资料方差不齐,(1)采用Satterthwate 的t '检验;(2)采用非参数检验,如Wilcoxon 检验。 1.2 两组配对样本的比较 1.2.1 两组差值服从正态分布,采用配对t 检验。 1.2.2 两组差值不服从正态分布,采用wilcoxon 的符号配对秩和检验。 1.3 多组完全随机样本比较 1.3.1 资料符合正态分布,且各组方差齐性,直接采用完全随机的方差分析。如果检验结果 为有统计学意义,则进一步作两两比较,两两比较的方法有LSD检验,Bonferroni法,tukey 法,Scheffe 法,SNK 法等。 1.3.2 资料不符合正态分布,或各组方差不齐,则采用非参数检验的Kruscal -Wallis 法。如 果检验结果为有统计学意义,则进一步作两两比较,一般采用Bonferroni 法校正P 值,然后用成组的Wilcoxon 检验。 1.4 多组随机区组样本比较 1.4.1 资料符合正态分布,且各组方差齐性,直接采用随机区组的方差分析。如果检验结果为有统计学意义,则进一步作两两比较,两两比较的方法有LSD 检验,Bonferroni 法,tukey 法,Scheffe 法,SNK 法等。 1.4.2 资料不符合正态分布,或各组方差不齐,则采用非参数检验的Fridman 检验法。如果 检验结果为有统计学意义,则进一步作两两比较,一般采用Bonferroni 法校正P 值,然后用符号配对的Wilcoxon 检验。 **** 需要注意的问题: (1)一般来说,如果是大样本,比如各组例数大于50,可以不作正态性检验,直接采用t 检验或方差分析。因为统计学上有中心极限定理,假定大样本是服从正态分布的。 (2)当进行多组比较时,最容易犯的错误是仅比较其中的两组,而不顾其他组,这样作容易增大犯假阳性错误的概率。正确的做法应该是,先作总的各组间的比较,如果总的来说差别有统计学意义,然后才能作其中任意两组的比较,这些两两比较有特定的统计方法,如上面提到的LSD 检验,Bonferroni 法,tukey 法,Scheffe 法,SNK 法等。** 绝不能对其中的两 组直接采用t检验,这样即使得出结果也未必正确**

《医学统计学》复习题

医学统计学复习题 一、名词解释 1.总体:根据研究目的确定的同质的观察单位的全体,更确切的说,是同质的所有观察单位某种观察值(变量值)的集合。总体可分为有限总体和无限总体。总体中的所有单位都能够标识者为有限总体,反之为无限总体。 2.样本:从总体中随机抽取部分观察单位,其测量结果的集合称为样本(sample)。样本应具有代表性。所谓有代表性的样本,是指用随机抽样方法获得的样本。 3.随机抽样:随机抽样(random sampling)是指按照随机化的原则(总体中每一个观察单位都有同等的机会被选入到样本中),从总体中抽取部分观察单位的过程。随机抽样是样本具有代表性的保证。 4.变异:在自然状态下,个体间测量结果的差异称为变异(variation)。变异是生物医学研究领域普遍存在的现象。严格的说,在自然状态下,任何两个患者或研究群体间都存在差异,其表现为各种生理测量值的参差不齐。 5.计量资料:对每个观察单位用定量的方法测定某项指标量的大小,所得的资料称为计量资料(measurement data)。计量资料亦称定量资料、测量资料。.其变量值是定量的,表现为数值大小,一般有度量衡单位。如某一患者的身高(cm)、体重(kg)、红细胞计数(1012/L)、脉搏(次/分)、血压(KPa)等。 6.计数资料:将观察单位按某种属性或类别分组,所得的观察单位数称为计数资料(count data)。计数资料亦称定性资料或分类资料。其观察值是定性的,表现为互不相容的类别或属性。如调查某地某时的男、女性人口数;治疗一批患者,其治疗效果为有效、无效的人数;调查一批少数民族居民的A、B、AB、O四种血型的人数等。 7.等级资料:将观察单位按测量结果的某种属性的不同程度分组,所得各组的观察单位数,称为等级资料(ordinal data)。等级资料又称有序资料。如患者的治疗结果可分为治愈、好转、有效、无效、死亡,各种结果既是分类结果,又有顺序和等级差别,但这种差别却不能准确测量。 8.概率:概率(probability)又称几率,是度量某一随机事件A发生可能性大小的一个数值,记为P(A),P(A)越大,说明A事件发生的可能性越大。0﹤P(A)﹤1。 9.频率:在相同的条件下,独立重复做n次试验,事件A出现了m次,则比值m/n称为随机事件A在n次试验中出现的频率(freqency)。当试验重复很多次时P(A)= m/n。 10. 随机误差:随机误差(random error)又称偶然误差,是指排除了系统误差后尚存的误差。它受多种因素的影响,使观察值不按方向性和系统性而随机的变化。误差变量一般服从正态分布。随机误差可以通过统计处理来估计。 11.系统误差:是指由于仪器未校正、测量者感官的某种偏差、医生掌握疗效标准偏高或偏低等原因,使观察值不是分散在真值的两侧,而是有方向性、系统性或周期性地偏离真值。系统误差可以通过实验设计和完善技术措施来消除或使之减少。 12.参数:指总体的统计指标,如总体均数、总体率等。总体参数是固定的常数。多数情况下,总体参数是不易知道的,但可通过随机抽样抽取有代表性的样本,用算得的样本统

统计学原理计算题例子及答案

例:根据下表资料计算销售额的变动并对其进行分析。 某商店三种商品的价格和销售量资料 解:(1)销售额总变动 元) 增减销售额==销售额指数= (27150156000183150% 4.117156000183150 0.6100000.820000.1080005.6105000.925005.10880000110 1 1=-=-=?+?+??+?+?= ∑∑∑∑p q p q p q p q (2)因素分析 ①销售量变动的影响 ∑∑∑∑=-==?+?+?=(元) =—=影响增减销售额 销售量指数= 150001560001710006 .109156000 1710001560000.6105000.825000.10880000010 01p q p q p q p q

②商品价格变动的影响 ∑∑∑∑=-=-元) 影响增减销售额===价格指数=(12150171000183150%1.107171000 1831500 1 1 1 1 11 p q p q p q p q ③综合影响 27150 1215015000%4.117%1.107%6.109=+=? 由于销售量综合提高9.6%,同时由于价格综合上涨7.1%,二者共同作用,使销售额增长17.4%。从绝对量看,销售量提高使销售额增加15000元,由于价格上涨使销售额增加12150元,从而使总销售额增加27150元。 例:以某月抽样调查的1000户农民家庭收入的分组资料计算平均数/标准差,见下表。

由表中资料可以计算: ()元075.3541000 354075=== ∑∑f xf x ()()元126451000 159902752 ==-= ∑∑f f x x δ 结果表明,该月1000户农民家庭人均纯收入为354.075元,人均纯收入标准差为126.45元。 例:对某型号的电子元件进行耐用性能检查,抽查的资料分组列表如下,要求以95%(t=1.96)的置信水平估计该批电子元件的平均耐用时数。

生活中的数学应用案例

数学研究学习 ——生活中的数学应用案例及做一个尽可能大的长方体 生活中无处不存在数学,数学是应用到我们的每个细节。学数学不是当死知识,而是要灵活运用。我们只有真正的学好数学,才能用到实际生活当中。 这天,我正在玩物理学具,因为电学下学期还要学,所以我就玩起了电学里的连接电路。看着那一闪一亮的灯泡,我突然心中起了一个问号,灯泡的容积怎么求呢?那不方不正,又不是球形的灯泡,又怎么能计算求出它的容积呢?最简单的办法就是碗里面灌满水,然后倒出来量。可是灯泡又扭不开,也不可能打碎,这怎么求。我低头思考了一会,就想出办法。 我首先找出一个玻璃钢(鱼缸),然后将灯泡放进去,测量说升高了多少。然后套用公示:升高的高度*长*宽,就计算出来了。 还有一个实例:过年的时候,小姑要和姑父回家乡过年,说是要给我带纪念品。不知道他们什么时候走的,等的我就急了,问爸爸,他这就考我了:“你小姑回去一周,平年2月有28天.,你算算吧。” 我不假思索的回答,“她7号回来,对不对?” 知道我是怎么算的吗?是这样的。设这七天最中间的一天为x,得到一个方程: (x-3+x-2+x-1)+x+(x+1+x+2+x+3)=28 解得x=4 4+3=7 数学在生活中十分有用,只有不断探索,才会获得更多收获 做一个尽可能大的长方体 步骤 1.准备:一张边长为20 cm的正方形纸板,一个无盖的长方体,以及剪刀、直尺、透明胶、细沙。 2.操作:展开一个无盖长方体 3.设疑:一张正方形的纸怎样才能制成一个无盖的长方体? (1)几何思想 (2)把小正方形的边长在2.5cm到4cm之间进行细分,按0.5cm的间隔取值,即分别取2.5cm,3cm,3.5cm,4cm时,折成的无盖长方体形纸盒 的容积将如何变化?请学生按照昨天所分的小组填写下面的表格:

医学统计学总结

医学统计学总结 一.绪论 1,医学统计学:运用概率论和数理统计学的原理和方法,研究医学领域中随机现象有关数据的搜集、整理、分析和推断,进而阐明其客观规律性的一门应用科学。 2,医学统计学的主要内容: 1)统计研究设计调查研究设计和实验研究设计 2)医学统计学的基本原理和方法研究设计和数据处理中的基本统计理论和方法。A:资料的搜集与整理 B:常用统计描述,集中趋势和离散趋势,相对数,相关系数,回归系数,统计表,统计图 C:统计推断,如参数估计和假设检验。 3)医学多元统计方法多元线性回归和逐步回归分析、判别分析、聚类分析、主成分分析、因子分析、logistic回归与Cox回归分析。 3,统计工作步骤: 1)设计明确研究目的和研究假说,确定观察对象与观察单位,样本含量和抽样方法,拟定研究方案,预期分析指标,误差控制措施,进度与费用。 2)搜集材料 A,搜集材料的原则及时、准确、完整 B,统计资料的来源医学领域的统计资料的来源主要有三个方面。一是统计报表,二是经常性工作记录,三是专题调查或专题实验。 C,资料贮存 3)整理资料 a检查核对b设计分组c拟定整理表d归表 4)分析资料统计分析包括统计描述和统计推断 4,同质(homogeneity):指被研究指标的影响因素相同。 变异(variation):同质基础上的各观察单位间的差异。 变量(variable):收集资料过程中,根据研究目的确定同质观察单位,再对每个观察单位的某 项特征进行测量或观察,这种特征称为变量 变量值:变量的观察结果或测量值。 5,总体(population)根据研究目的所确定的同质研究对象中所有观察单位某变量值的集合。总 体具有的基本特征是:同质性 样本(sample)从总体中随机抽取部分观察单位,其变量值的集合构成样本。样本必须具有代 表性。代表性是指样本来自同质总体,足够的样本含量和随机抽样的前提。 统计量(statistics)描述样本变量值特征的指标(样本率,样本均数,样本标准差)。

统计学案例作业

案例:联合食品公司 联合食品公司在新墨西哥州、亚利桑那州和加利福尼亚州经营连锁超市。近来的一项促销活动已通知连锁店提供一项新的信用卡政策,使联合食品的顾客除了通常的支付现金或个人支票选择外,还有用信用卡如VISA和MasterCard卡进行购买支付的选择权。新的政策正基于试验基础而执行,希望信用卡选择权将鼓励顾客加大采购量。 在第一月经营之后,在一个周期内选择了有100名顾客的随机样本。100名顾客中的每一个的支付方式和消费多少的数据被收集上来。样本数据列示在下表中。在新的信用卡政策出现之前,大约50%的联合食品顾客用现金支付,约50%用个人支票支付。 管理报告1 使用描述性统计的表格法和图形法来汇总下表中的样本数据。你的报告应该包括诸如下列的摘要: 支付方式的频数分布和相对频数分布。 支付方式的条形图或饼形图 每一支付方式下花费金额的频数和相对频数分布 每一支付方式下花费金额的直方图和茎叶图 你对联合食品的消费金额和支付方式有了什么样的初步了解? 管理报告2 对于客户购买以金支付金额,以支票支付金额和以信用卡支付金额的数据分别加以概括,报告应包含的概括和讨论: 对于各个平均数和中位数的比较和理解 对于各个显示变异程度的度量,如全距何标准差进行比较和理解 分别对于3种支付方式用多种多种指标进行比较和理解 在你报告的总结部分,讨论一下从中可以得出关于联合食品公司的客户支付方式和支付金额的什么结论。 现金个人支票信用卡现金个人支票信用卡 7.40 27.60 50.30 5.08 52.87 69.77 5.15 30.60 33.76 20.48 78.16 48.11 4.75 41.58 2 5.57 1 6.28 25.96 15.10 36.09 43.24 15.57 31.07 8.81 2.67 46.13 6.93 35.38 1.85 34.67 14.44 7.17 58.11 7.41 58.61 43.79 11.54 49.21 11.77 57.59 19.78 13.09 31.74 12.07 43.14 52.35 16.69 50.58 9.00 21.11 52.63 7.02 59.78

(完整版)生活中的数学例子

一天有个年轻人来到王老板的店里买了一件礼物 这件礼物成本是18元,标价是21元。 结果是这个年轻人掏出100元要买这件礼物。 王老板当时没有零钱,用那100元向街坊换了100元的零钱,找给年轻人79元。 但是街坊后来发现那100元是假钞,王老板无奈还了街坊100元。 现在问题是:王老板在这次交易中到底损失了多少钱? 在这问题中,大多数人都认为答案损失197元,或者200元.其实答案是97元。这个可是10个人之中有9个人都会错的题目哦。 我们把问题反过来想,想想街坊和年轻人都得到了什么?就更明了了~~ 街坊给老板换了100元的零钱后又和老板换回了100元钱,也就是说街坊和老板是没有利益关系的。老板收到年轻人的100元假币,给了年轻人找给年轻人79元钱,也就是说年轻人得到是的礼物18元的成本+3元的利润和79元钱,这样就很清楚的知道老板失去的就是给年轻人的礼物18元的成本+3元的利润和找给他的79元钱。 老板损失的是79+18=97 元 今天,妈妈带我到超市买东西,妈妈买了许多用品,刚想去结账,又想起还有洗洁精没买,于是我和妈妈又去买洗洁精,我们来到了卖洗洁精的地方,看到两种一样的洗洁精,但价钱,优惠都不同。妈妈说:“你给我算一下,买哪一种划算。”第一种是14元500毫升,第二种是16元500毫升赠80毫升。我便算了起来:500÷14≈35(毫升)每元35毫升,500+80=580(毫升),580÷16=36.25(毫升)每元36.25毫升,我拿起第二种走向了结账台。妈妈对我啧啧赞叹,说我真聪明。 妈妈考我题目:“最近,我在一张试卷上看见一道题目,甲数是乙数的3倍,如果乙数给甲数6,那甲数就是乙数的5倍,求甲,乙是几?” 我思考了一会说:“我还真不会,你能教我吗?”妈妈说:“他说甲数是乙数的3倍,那我们先将乙数是1倍,甲数是3倍,乙数给甲数6,甲数是乙数的5倍,由此可以想到,乙数去掉6,甲数就加上6,现在,甲数是乙数的3倍多6,我们可以将甲数分成跟乙数一样多,都去掉6,可以去掉3个6,再加上乙数给的6,一共是4个6,用4乘6等于24,24加上6等于30,再用30除以2等于15,15加上6等于21,求出原来的乙数,那甲数就好求了,现在我不说了,你能求出甲数么?” “太简单了。用21乘3等于63,甲数是63,乙数是21。 一天,我正在家里写作业,忽然,一道数学题将我难住了:a、b两地相距546千米,两列客车同时从两地出发,相对开出,3小时相遇。已知甲车的速度是乙车的3倍,甲车每小时行多少千米?我相信很多同学看了之后,都会觉得头疼,我也是,这分明不好算吗!最后,还是用>老师上课教我的知识,令我茅塞顿开,解开了这道题。老师不是教过我假设吗?那我可以先假设乙车每小时行a千米,那乙车一共行驶了3a千米,甲车的速度是乙车三倍,一共行驶了9a千米,那么它们一共行驶了12a千米,也就是12a千米=546千米。你看,这样假设之后,解开这个问题就非常简单了。用546÷12=45.5千米,算出乙车的时速是45.5千米,再用45.5×3=136.5千米,算出甲车的时速是136.5千米。可见假设是数学解题的一个小妙招。

医学统计学知识点

实用标准 文档大全第一章绪论 1、统计学,是关于数据收集、整理、分析、表达和解释的普遍原理和方法。 2、研究对象:具有不确定性结果的事物。 3、统计学作用:能够透过偶然现象来探测其规律性,使研究结论具有科学性。 4、统计分析要点:正确选用统计分析方法,结合专业知识作出科学的结论。 5、医学统计学基本内容:统计设计、数据整理、统计描述、统计推断。 6、医学统计学中的基本概念 (1) 同质与变异 同质,指根据研究目的所确定的观察单位其性质应大致相同。 变异,指总体内的个体间存在的、绝对的差异。 统计学通过对变异的研究来探索事物。 (2) 变量与数据类型 变量,是反映实验或观察对象生理、生化、解剖等特征的指标。 变量的观测值,称为数据 分为三种类型:定量数据,也称计量资料,指对每个观察单位某个变量用测量或其他定量方法准确获得的定量结果。(如身高、体重、血压、温度等) 定性数据,也称计数资料,指将观察单位按某种属性分组计数的定性观察结果。包括二分类、无序多分类。(进一步分为二分类和多分类,如性别分为男和女,血型分为A、B、O、AB 等) 有序数据,也称半定量数据或等级资料,指将观察单位按某种属性的不同程度或次序分成等级后分组计数的观察结果,具有半定量性质。 统计方法的选用与数据类型有密切的关系。 (3)总体与样本 总体,指根据研究目的确定的所有同质观察单位的全体,包括所有定义范围内的个体变量值。 样本,是从研究总体中随机抽取部分有代表性的观察单位,对变量进行观测得到的数据。抽样,是从研究总体中随机抽取部分有代表性的观察单位。 参数,指描述总体特征的指标。 统计量,指描述样本特征的指标。 (4)误差 误差,指观测值与真实值、统计量与参数之间的差别。 可分为三种:系统误差,也称统计偏倚,是某种必然因素所致,不是偶然机遇造成的,误差的大小通常恒定,具有明确的方向性。 随机测量误差,是偶然机遇所致,误差没有固定的大小和方向。 抽样误差,是抽样引起的统计量与参数间的差异。 抽样误差主要来源于个体的变异。 统计学主要研究抽样误差。 (5)概率 概率,是描述某事件发生可能性大小的量度。 必然事件,事件肯定发生,概率P(U)=1; 随机事件,事件可能发生,可能不发生,概率介于0≤P(A)≤ 1; 不可能事件,事件肯定不发生,概率P(∮)=0; 小概率事件,事件发生的可能性很小,概率P(A)≤ 0.05、或P(A)≤ 0.01。

统计学教学案例汇总

统计学教学案例集统计学精品课建设小组

2004年11月

【案例一】全国电视观众抽样调查抽样方案 一、调查目的、范围和对象 1.1 调查目的 准确猎取全国电视观众群体规模、构成以及分布情况;猎取这些观众的收视适应,对电视频道和栏目的选择倾向、收视人数、收视率与喜爱程度,为改进电视频道和栏目、开展电视观众行为研究提供新的依据。 1.2 调查范围 全国31个省、自治区、直辖市(港澳台除外)中所有电视信号覆盖区域。 1.3 调查对象 全国城乡家庭户中的13岁以上可视居民以及4-12岁的儿童。包括有户籍的正式住户也包括所有临时的或其他的住户,只要已在本居

(村)委会内居住满6个月或可能居住6个月以上,都包括在内。不包括住在军营内的现役军人、集体户及无固定住宅的人口。 二、抽样方案设计的原则与特点 2.1 设计原则 抽样设计按照科学、效率、便利的原则。首先,作为一项全国性抽样调查,整体方案必须是严格的概率抽样,要求样本对全国及某些指定的都市或地区有代表性。其次,抽样方案必须保证有较高的效率,即在相同样本量的条件下,方案设计应使调查精度尽可能高,也即目标量可能的抽样误差尽可能小。第三,方案必须有较强的可操作性,不仅便于具体抽样的实施,也要求便于后期的数据处理。 2.2 需要考虑的具体问题、专门要求及相应的处理方法 2.2.1 城乡区分 都市与农村的电视观众的收视适应与爱好有专门大的区不。理所因此地应分不研究,以便于对比。最方便的处理是将他们作为两个研

究域进行独立抽样,但代价是,如此做的样本点数量较大,调查的地域较为分散,相应的费用也就较高。另一种处理方式是在第一阶抽样中不考虑区分城乡,统一抽取抽样单元(例如区、县),在其后的抽样中再区分城、乡。如此做的优点是样本点相对集中,但数据处理较为复杂。综合考虑各种因素,本方案采纳第二种处理方式。 在样本区、县中,以居委会的数据代表都市;以村委会的数据代表农村。 2.2.2 抽样方案的类型与抽样单元的确定 全国性抽样必须采纳多阶抽样,而多阶抽样中设计的关键是各阶抽样单元的选择,其中尤以第一阶抽样单元最为重要。本项调查除个不直辖市及都市外,不要求对省、自治区进行推断,从而可不考虑样本对省的代表性。在这种情况下,选择区、县作为初级抽样单元最为适宜。因为全国区、县的总数量专门大,区、县样本量也会比较大,因而第一阶的抽样误差比较小。另外对区、县的分层也可分得更为精细。

生活中的数学实例

生活中的数学实例 一、现实的数学 20世纪60年代兴起的"新数学"运动,对全球的数学教育界产生了巨大影响。根据结构主义的观念,数学本身就是一个有组织的、封闭的演绎体系;因而,数学教育也就意味着应该以体系的结构作为学习过程的指导方针,洞察数学的结构就成了数学教育的最重要的根本;从而提出了数学教育的目的就在于训练学生的逻辑演绎思维与公理化方法,必须以集合论与现代公理为基础,提供给学生一个完善的演绎理论体系。 人们通过数学教学的实践,发现了结构主义的片面性。根据数学发展的历史,无论是数学的概念,还是数学的运算与规则,都是由于现实世界的实际需要而形成的。数学不是符号的游戏,而是现实世界中人类经验的总结。数学来源于现实,因而也必须扎根于现实,并且应用于现实。数学如果脱离了那些丰富多彩而又错综复杂的背景材料,就将成为"无源之水,无本之木"。 另一方面,我们也认为数学是充满了各种关系的科学,通过与不同领域的多种形式的外部联系,不断地充实和丰富着数学的内容;与此同时,由于数学本身内在的联系,形成了自身独特的规律,进而发展成为严谨的形式逻辑演绎体系。因此,也应该让学生了解数学的整个体系一一充满着各种各样内在联系与外部关系的整体结构。 学习数学就意味着能够做数学:熟练地运用数学的语言去解决问题、探索论据并寻求证明,而最重要的活动则应该是从给定的具体情境中,识别或提出一个数学概念。所以,要想引入一个新概念,却缺少足够的具体事实作为基础,或者反复介绍一个概念,却没有具体的应用,这都无法使学生产生求知的冲动;过早地形式化不可能有效果,而过早的抽象化也会引起学生的抵触情绪;因为他们希望知道这究竟有什么用处,又为什么是关联的。 从具体情境中提取适当的概念,从观察到的实例进行概括,再通过归纳、类比,在直觉的基础上形成猜想,这是数学思维的方式。而要引

医学统计学重点总结

<<医学统计学>>重点总结 1. 总体:根据研究的目的确定的同质研究对象中所有的观察单位变量值的集合。 2. 样本:按随机化原则从同质总体中随机抽取的部分观察单位某变量值的集合。 3. 同质:影响研究指标的主要因素易控制的因素基本上相同。 4. 抽样误差:在抽样研究中,由于变异的存在,即使在同一总体中抽取的几个样本,各样本统计量往往不等。样本统计量与总体参数也不等,这种由于抽样研究所至样本之间和样本与总体之间的差异称为。。。 5. 变量:观察指标在统计学上统称为指标变量,它反应的是生物个体间的变异情况,根据其性质可分为定性变量(分类)和定量变量(连续)。 6. 截尾数据:生存时间观察过程被人为的截止称为截尾,又称删失或终检。原因:失访/退出/ 终止(研究时限已到而终止观察)。 7. 卡方基本思想:X2分布是一种连续型分布,可用于检验资料的实际频数和按检验假设计算的理论频数是否相等等问题。X2反应实现了实际频数与理论频数的吻合程度。如果检验假设成立,则A-T 一般不大,X2应很小,即出现大X2值概率很小。即X2越大,P越小,若P≤a时,就怀疑假设的成立,拒绝H0。若P>a则没有理由拒绝H0。 8. X2用途: (1)实际频数与拟合频数拟合优度:A推断两个或两个以上总体率或构成比有无差别(四格表/行x 列表)。B两变量之间有无相互关系。C频数分布的拟合优度检验(判断次样本是否来自某种分布)。(2)某些分布可用X2近似。 (3)间接应用:如t分布和F分布就是在X2分布基础上推导出来的。 9. 方差分析的基本思想:根据研究目的和设计类型,把总体变异中离均差平方和分解成两部分或更多部分,也把总变异中的自由度相应分成两部分或更多部分,然后再进行比较,评价由某种因素引起的变异是否具有统计学意义。 10. 假设检验中P,a,b(倍他)的关系及统计学意义: a:检验水准,即显著性检验,在此概率之下的认为是小概率事件,统计学上以为此事件“不可能发生”,以此判断是否不拒绝H0无效假设,在假设检验中,按a检验水准,拒绝了原来正确的H0,即犯了第1类错误,犯此错误的概率为a。 b:在T假设检验中,按照a检验标准,没有拒绝原来错误的无效假设,即犯了第2类错误,犯次错误的概率是b。 P:是在H0成立时大于等于用样本计算的统计值出现的概率用P值与检验水准a比较,根据比较的结果作出统计判断。如果P≤a时,就怀疑假设的成立,拒绝H0。若P>a则接受H0拒绝H1。P值越小只能说明作出拒绝H0,接受H1的推论时犯错误的机会越小。 11.行x列表X2检验应注意: (1)行x列表中不宜有1/5以上格子的理论频数小于5或有一个格子的理论频数小于1,若发生上述情况可采用:A将理论频数过小的格子所在的行或列与性质相近的邻近行或列中的实际频数合并,使重新计算的理论频数增大。B删去理论频数过小的行或列。C增大样本含量以增大理论频数。 (2)当效应按强弱分为若干级别,则按实验结果可整理为单向有序行x列表,在比较各处理组的效应有无差别时,宜用秩和检验,ridit分析等。如作X2检验只说明各组构成比的差异有无统计学意义。

几则很有趣的医学统计学故事

几则很有趣的医学统计学故事 医学统计学是一门很奇妙的科学。要说它简单吧,其实也挺简单的,常见的统计方法也就十余种,在教科书上都能找到,只要熟练掌握了,虽不敢夸下海口说可以“以秋风扫落叶的气概横扫四海之内的杂志”,但足以轻车熟路地应付99%的科学研究。要说它复杂吧,也挺复杂的,毫不夸张地说,绝大部分国内期刊,甚至在很多低分SCI杂志上,乱用统计学的现象多如牛毛。 很多同行在学习医学统计学时,都在抱怨自己很难走出“一学就会,一会就用,一用就错,一错就懵”的怪圈。究其原因,主要是部分同行学习医学统计学时都抱着一副“依葫芦画瓢”的态度,试图“套用统计学方法”来解决自己面临的问题,而不去仔细思考统计学方法的来龙去脉。本文拟谈几则与医学统计学相关的故事,希望能帮助大家从宏观上正确认识医学统计学这门科学。 1、两个指标诊断疾病的问题 路人甲做了一个研究,旨在比较两个指标(A和B)对肝癌的诊断价值。路人甲以A和B 的参考范围上限作为诊断界值,得出了A和B在该界值下对应的诊断敏感性和特异性。结果表明,A的诊断敏感性为0.80,特异性为0.90;B的诊断敏感性为0.85,特异性为0.87。路人甲很快撰写论文报道了自己的研究成果,指出B诊断肝癌的敏感性高于A,而特异性低于A。 路人乙是这篇文章的审稿人,当他看见这个结论后,脸色铁青,毫不犹豫地在审稿意见中写道:就敏感性而言,B高于A;就特异性而言,A高于B。诊断敏感性和特异性与所采用的界值密切相关,作者得出的敏感性和特异性仅仅代表了一个诊断界点下面的诊断效能,无法从全局上反映A和B的诊断价值。文章的结论到底是想说明A优秀还是B优秀呢?Reject! 这个故事说明:统计指标选错了,统计出来的东西往往难以“自圆其说”。 稿件被退了,路人甲有些许郁闷。经过认真学习科研设计与统计学知识后,路人甲终于明白了一个问题:两个指标诊断性能的比较是不能比较敏感性和特异性的,而应该比较ROC的曲线下面积,因为曲线下面积才是衡量整体诊断效率的最佳指标。路人甲很快绘制了ROC 曲线,统计结果表明,A的曲线下面积为0.80,B的曲线下面积为0.82。路人甲欣喜若狂,赶紧动笔写论文,并且理直气壮地给文章定了一个结论:B的诊断效率是优于A的,其理由就是因为B的曲线下面积大于A。 路人丙是这篇文章的审稿人,当他看见这个结论后,脸色铁青,毫不犹豫地在审稿意见中写道:从表面上看,B的曲线下面积高于A,但是导致这种差异的原因有两种,一种是抽样误差,一种是试验效应,即B确实是高于A的。你怎么能确定这不是抽样误差呢?在统计学上,要确定0.82是否高于0.80,就一定要经过统计学检验的。Reject! 这个故事说明:在医学科研中,没有经过统计学检验的结论多半是不科学的。

相关文档
最新文档