火力发电及其生产过程(4)-电厂污染-洁净煤技术
火力发电厂生产流程介绍

目录一、火力发电厂概况 (1)1、火电厂的分类 (1)2、火力发电厂的工作流程 (1)二、火力发电厂的工作原理 (2)1、燃煤系统 (2)2、汽水系统 (3)3、电气系统 (4)三、火力发电厂对环境的影响 (5)一、火力发电厂概况1、火电厂的分类(1)按燃料分类:①燃煤发电厂,即以煤作为燃料的发电厂;②燃油发电厂,即以石油(实际是提取汽油、煤油、柴油后的渣油)为燃料的发电厂;③燃气发电厂,即以天然气、煤气等可燃气体为燃料的发电厂;④余热发电厂,即用工业企业的各种余热进行发电的发电厂。
此外还有利用垃圾及工业废料作燃料的发电厂。
(2)按原动机分类:凝汽式汽轮机发电厂、燃汽轮机发电厂、内燃机发电厂和蒸汽-燃汽轮机发电厂等。
(3)按供出能源分类:①凝汽式发电厂,即只向外供应电能的电厂;②热电厂,即同时向外供应电能和热能的电厂。
图1 火力发电厂总图2、火力发电厂的工作流程现代化火电厂是一个庞大而又复杂的生产电能与热能的工厂。
它由下列5个系统组成:①燃料系统。
②燃烧系统。
③汽水系统。
④电气系统。
在上述系统中,最主要的设备是锅炉、汽轮机和发电机,它们安装在发电厂的主厂房内。
主变压器和配电装置一般装放在独立的建筑物内或户外,其他辅助设备如给水系统、供水设备、水处理设备、除尘设备、燃料储运设备等,有的安装在主厂房内,有的则安装在辅助建筑中或在露天场地。
火电厂基本生产过程是,燃料在锅炉中燃烧,将其热量释放出来,传给锅炉中的水,从而产生高温高压蒸汽;蒸汽通过汽轮机又将热能转化为旋转动力,以驱动发电机输出电能。
到80年代为止,世界上最好的火电厂的效率达到40%,即把燃料中40%的热能转化为电能。
在上述系统的所有设备中,最主要的设备是锅炉、汽轮机和发电机,它们安装在发电厂的主厂房内。
主变压器和配电设备一般是安装在独立的建筑物内和户外;其他辅助设备如给水系统、供水设备、水处理设备、除尘设备、燃料储运设备等,有的安装在主厂房内,有的则是安装在辅助建筑中或在露天场地。
火力发电厂的生产工艺流程分析介绍

火力发电厂的生产工艺流程分析介绍-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII一.火力发电厂的生产工艺流程分析介绍1.1 火力发电过程中能量的转化过程火力发电的过程涉及到五次能量的转换,每一次能量的转换都在不同的设备中完成。
首先,火电厂中采用的原料〔煤),本身具备的是化学能,煤粉碎后被鼓风机吹入锅炉内进行烧烧,实现化学能向热能的转换。
锅炉内煤燃烧产生的热能通过热传递被水吸收,水的温度升高并且汽化,在锅炉内产生温度和压力都非常高的水蒸汽,热能转变成水蒸汽的内能。
高温、高压的水蒸汽在管道中被输送入汽轮机内,并在汽轮机的喷嘴中沿特定的方向膨胀,流动速度加快,压力降低,水蒸汽具有的内能转换为流动蒸汽动能。
高速流动的水蒸汽在汽轮机内吹动动叶栅旋转,水蒸汽动能转变为汽轮机的旋转机械能。
高速转动的汽轮机再次带动与其相连的发电机的转子旋转切割磁力线产生电能,电能经过变压器变压后被输送出去。
经过上述五次能量形式的转换,将煤具有的化学能转化为电能输送出去。
1.2 火力发电厂的生产工艺流程1.2.1 生产工艺流程简介:电厂以原煤、煤干石为原料,以水为工质,产生电能和热能。
生产工艺流程主要包括输煤系统、破碎煤系统、锅炉系统、汽机系统、电气系统、热工系统、化学水处理系统、除灰渣系统等。
燃煤(煤研石和原煤)运进储煤场存放,之后经两级破碎成循环流化层所需要的粒径后,贮藏在煤仓内。
在锅炉负荷调整好后,将其与储存在石灰粉仓内的石灰石粉按一定的比例一起送入燃烧室。
空气经送风机升压并在空气预热器内预热,一次风被送入风箱,二次风送入燃烧室。
燃烧气体经过各热交换器吸热后进入旋风分离器,然后进入尾部烟道,经布袋除尘器除尘后,通过引风机烟囱排入大气。
炉底的灰渣落入渣斗内和除尘器收集的细灰一起被送入灰场或运至综合利用场所。
锅炉系统的供水经过预处理和化学处理之后,由回热系统经省煤器预热后进入汽包。
洁净煤技术

洁净煤技术1. 引言洁净煤技术是一种通过使用先进的煤燃烧和碳捕集技术来减少燃煤产生的污染物排放,并提高煤燃烧效率的方法。
煤是目前世界上最主要的能源来源之一,但其燃烧会产生大量的二氧化硫、氮氧化物和颗粒物等污染物,对环境和人类健康造成严重影响。
洁净煤技术的发展旨在解决这些问题,使煤燃烧更加环保和高效。
2. 洁净煤技术的分类洁净煤技术可分为燃烧技术和碳捕集技术两大类。
2.1 燃烧技术燃烧技术是通过改进煤燃烧过程来降低污染物排放的方法。
常见的燃烧技术包括:•燃烧控制:通过优化燃烧温度、燃料供给以及燃烧过程中的空气分配,减少煤燃烧过程中产生的污染物;•燃料预处理:对煤进行洗煤、破碎和干燥等处理,去除其中的杂质和水分,提高煤燃烧效率;•燃烧辅助技术:如气体再循环、预混煤粉燃烧等,可以降低煤燃烧过程中的氮氧化物排放。
2.2 碳捕集技术碳捕集技术是一种将二氧化碳从煤燃烧废气中分离和捕集的方法。
常见的碳捕集技术包括:•吸收法:利用化学吸收剂(如氨水和胺溶液)与废气中的二氧化碳发生反应,使其被吸收,并进一步进行分离和回收;•膜分离法:利用特殊薄膜将废气中的二氧化碳分离出来,实现捕集和回收;•吸附法:利用固体吸附剂,如活性炭和分子筛,吸附并分离废气中的二氧化碳。
3. 洁净煤技术的应用洁净煤技术已在全球范围内得到广泛应用。
以下是洁净煤技术在不同领域的应用示例:3.1 发电工业洁净煤技术在发电工业中的应用主要集中在大型燃煤发电厂。
通过采用燃烧控制、燃料预处理和燃烧辅助技术,可以降低发电过程中的污染物排放,并提高煤燃烧效率。
碳捕集技术的应用则可以实现二氧化碳的捕集和回收,减少碳排放。
3.2 工业锅炉工业锅炉是工业生产中常见的燃煤设备,也是污染物排放的重要来源之一。
洁净煤技术在工业锅炉中的应用可以有效减少煤燃烧产生的污染物,并提高能源利用效率。
3.3 煤气化工艺煤气化是一种将煤转化为合成气的过程,合成气可以用于制备液体燃料和化学品。
洁净煤技术

洁净煤技术A12化工一班120702107 吕荣青摘要我国是一个多煤、少油、少气的国家,未来能源发展的政策仍是“煤为基础,多元发展”。
提高煤炭利用率、降低污染率,是我国能源工业发展的紧迫而现实的任务。
而完成这一任务,就需要大力发展洁净煤技术。
关键词:煤炭能源洁净煤技术1. 洁净煤技术的特点洁净煤技术是洁净、高效利用煤炭的先导性技术,最早由美国学者提出,主要是为了解决美国和加拿大边境的酸雨问题。
洁净煤技术是指从煤炭开发到利用全过程中,旨在减少污染物排放和提高利用效率的煤炭加工、转化、燃烧及污染控制等一系列新技术的总称,是使煤作为一种能源应达到最大限度的潜能利用,而将释放的污染控制在最低水平,实现煤的高效、洁净利用的技术体系。
洁净煤技术具有以下几个显著特点:首先,洁净煤技术以高硫煤为原料,以一碳化学为基础,采用多样化工艺,实现煤炭资源的优化配置、高效和清洁利用;其次,洁净煤技术涉及物理学、化学、生物学、地质学等多学科,化工、热工、环境等多技术,是一项多层次、多学科、综合性很强的系统工程;第三,洁净煤技术注重综合效益,实现了环境友好和经济发展的双重效益,即经济和环境的双赢。
传统意义上的洁净煤技术主要是指煤炭的净化技术及一些加工转换技术,即煤炭的洗选、配煤、型煤以及粉煤灰的综合利用技术,国外煤炭的洗选及配煤技术相当成熟,已被广泛采用;意义上洁净煤技术是指高技术含量的洁净煤技术,发展的主要方向是煤炭的气化、液化、煤炭高效燃烧与发电技术等等。
2.技术工艺洁净煤技术包括两个方面,一是直接烧煤洁净技术,二是煤转化为洁净燃料技术。
2.1直接烧煤洁净技术这是在直接烧煤的情况下,需要采用的技术措施:①燃烧前的净化加工技术,主要是洗选、型煤加工和水煤浆技术。
②燃烧中的净化燃烧技术,主要是流化床燃烧技术和先进燃烧器技术。
③燃烧后的净化处理技术,主要是消烟除尘和脱硫脱氮技术。
2.2煤转化为洁净燃料技术主要有四种:①煤的气化技术②煤的液化技术③煤气化联合循环发电技术④燃煤磁流体发电技术。
洁净煤发电技术

洁净煤发电技术一、洁净煤发电技术概念洁净煤技术是指煤炭从开发到利用全过程中,旨在减少污染排放与提高利用效率的加工、燃烧、转化及污染控制等高新技术的总称。
它将经济效益、社会效益与环保效益结合为一体,成为能源工业中国际高新技术竞争的一个主要领域。
目前“洁净煤发电技术”主要有以下几种:* 循环流化床燃烧技术(CFB)* 整体煤气化燃气-蒸汽联合循环发电(IGCC)* 增压流化床燃气-蒸汽联合循环发电(PCFB-CC)* 超临界燃煤电站加烟气脱硫、脱硝装置(SC +FGD+De-NOx)二、洁净煤发电技术的技术特点1. 循环流化床燃烧(FBC)技术特点循环流化床燃烧(FBC)技术系指小颗粒的煤与空气在炉膛内处于沸腾状态下,即高速气流与所携带的稠密悬浮煤颗粒充分接触燃烧的技术。
循环流化床锅炉脱硫是一种炉内燃烧脱硫工艺,以石灰石为脱硫吸收剂,燃煤和石灰石自锅炉燃烧室下部送入,一次风从布风板下部送入,二次风从燃烧室中部送入。
石灰石受热分解为氧化钙和二氧化碳。
气流使燃煤、石灰颗粒在燃烧室内强烈扰动形成流化床,燃煤烟气中的SO2与氧化钙(CaO)接触发生化学反应被脱除。
为了提高吸收剂的利用率,将未反应的氧化钙、脱硫产物及飞灰送回燃烧室参与循环利用。
钙硫比达到2~2.5左右时,脱硫率可达90%以上。
同时由于该锅炉炉温比较低,并采用分级送风燃烧方式,所以可大大减少氮氧化物(NOx)的生成。
循环流化床燃烧方式的优点主要是:1.清洁燃烧,脱硫率可达80%~95%,NO x 排放可减少50%;2.煤种适应性强,特别适合中、低硫煤;3. 燃烧效率高,可达95%~99%;4.负荷适应性好。
负荷调节范围为30~100%2. 整体煤炭气化燃气-蒸汽联合循环发电技术特点(IGCC)IGCC发电技术是煤气化和蒸汽联合循环的结合,是当今国际正在兴起的一种先进的洁净煤(CCT)发电技术,具有高效、低污染、节水、综合利用好等优点。
它的原理是:煤经过气化和净化后,除去煤气中99%以上的硫化氢和接近100%的粉尘,将固体燃料转化成燃气轮机能燃用的清洁气体燃料,以驱动燃气轮机发电,使燃气发电与蒸汽发电联合起来。
火电厂的污染和防治技术

火电厂的污染和防治技术火电厂作为一种主要依赖煤炭等化石燃料进行发电的设施,不可避免地会产生大量的污染物。
这些污染物包括大气污染物、水污染物和固体废弃物等。
然而,随着环保意识的提高和环境法规的加强,火电厂也在不断采用新技术和措施来减少污染物的排放并保护环境。
首先,在大气污染方面,火电厂主要产生的污染物为二氧化硫(SO2)、氮氧化物(NOx)和颗粒物等。
为了减少这些污染物的排放,火电厂普遍采用了脱硫、脱硝和除尘技术。
脱硫技术是通过在烟气中加入石灰石等吸收剂,将二氧化硫转化为硫酸钙沉淀物,从而减少二氧化硫的排放。
常见的脱硫技术有湿法石灰石脱硫、半干法石灰石脱硫和干法石灰脱硫等。
脱硝技术主要通过在燃烧过程中控制燃料的氮含量,减少氮氧化物的形成。
常见的脱硝技术有低氮燃烧技术、选择性催化还原(SCR)技术和选择性非催化还原(SNCR)技术等。
除尘技术则是通过利用电除尘、布袋除尘和静电除尘等技术,将颗粒物从烟气中去除。
这些技术可以使烟气中的颗粒物浓度降低到环境标准以下。
其次,在水污染方面,火电厂主要产生的污染物为热水排放和废水。
热水排放是指火电厂将用于冷却发电设备的水排入周围河流或湖泊中,导致水温升高,影响水生物的生存。
为了减少热水排放的影响,火电厂会采取冷却塔和增加冷却水体积等方法来降低热水排放的温度并减少对水生物的影响。
而废水则是指火电厂使用的水经过冷却设备后产生的污水,其中含有大量的重金属和有机物。
为了防止废水对周围水环境产生污染,火电厂会采取污水处理技术将废水进行处理后再排放。
常见的污水处理技术有生化处理、物理化学处理和膜分离等。
最后,在固体废弃物方面,火电厂主要产生的废弃物为灰渣和炉渣等。
为了减少固体废弃物的产生和排放,火电厂会采取灰渣回收和炉渣综合利用等措施。
比如,灰渣可以作为建筑材料进行利用,炉渣可以用于修路等。
综上所述,火电厂的污染和防治技术包括大气污染物的脱硫、脱硝和除尘技术,水污染物的冷却塔和污水处理技术,以及固体废弃物的灰渣回收和炉渣综合利用等。
洁净煤技术

1、洁净煤技术的定义和内涵?在煤炭开发和加工利用全过程中旨在减少污染和提高效率的煤炭加工、燃烧、转化和污染控制等新技术的总称。
是使煤炭作为一种能源应达到最大潜能的利用而释放的污染物控制在最低量,以实现煤的高效、洁净、经济利用为目的技术。
中国洁净煤技术是以煤炭洗选为源头、以煤炭气化为先导、以煤炭高效、洁净燃烧与发电为核心、以煤炭转化和污染控制为重要内容的技术体系。
2、煤炭燃烧的方式根据煤在燃烧过程中的运动状态分为:层状燃烧、悬浮燃烧、流态化燃烧(沸腾燃烧)3、CO2的捕集方式二氧化碳的捕集方式主要有三种:燃烧前捕集(Pre-combustion)、富氧燃烧(Oxy-fuel combustion)和燃烧后捕集(Post-combustion)。
依据捕获系统的技术基础和适用性,通常将火电厂CO2的捕集系统分为以下4种:燃烧后脱碳(post-combustion)、燃烧前脱碳(pre-combustion)、富氧燃烧技术(oxyfule)以及化学链燃烧技术(CLC)。
4、IGCC发电系统组成、发电原理、过程、优点整体煤气化联合循环(IGCC-Integrated Gasification Combined Cycle)发电系统,是将煤气化技术和高效的联合循环相结合的先进动力系统。
它由两大部分组成,即煤的气化与净化部分和燃气-蒸汽联合循环发电部分。
第一部分的主要设备有气化炉、空分装置、煤气净化设备(包括硫的回收装置),第二部分的主要设备有燃气轮机发电系统、余热锅炉、蒸汽轮机发电系统。
IGCC的原理是:煤经过气化和净化后,除去煤气中99%以上的硫化氢和接近100%的粉尘,将固体燃料转化成燃气轮机能燃用的清洁气体燃料,供入燃气轮机的燃烧室,产生高温燃气以驱动燃气轮机发电,再利用燃气轮机高温排气经余热锅炉产生的蒸气推动蒸汽轮机做功发电,即使得燃气发电与蒸汽发电联合起来。
指煤经过气化产生中低热值煤气,经过净化除去煤气中的硫化物、氮化物、粉尘等污染物,变为清洁的气化燃料,燃烧后先驱动燃气轮机发电,然后利用高温烟气余热在废热锅炉内产生过热蒸汽驱动蒸汽轮机发电。
洁净煤技术概述

洁净煤技术概述1.能源1.1能源的概念能源亦称能量资源或能源资源。
是指可产生各种能量(如热量、电能、光能和机械能等)或可做功的物质的统称。
是指能够直接取得或者通过加工、转换而取得有用能的各种资源,包括煤炭、原油、天然气、煤层气、水能、核能、风能、太阳能、地热能、生物质能等一次能源和电力、热力、成品油等二次能源,以及其他新能源和可再生能源。
1.2能源的分类能源种类繁多,根据不同的划分方式,可分为不同的类型:(1)按来源分为3类:①来自地球外部天体的能源(主要是太阳能)。
除直接辐射外,并为风能、水能、生物能和矿物能源等的产生提供基础。
②地球本身蕴藏的能量。
如原子核能、地热能等。
③地球和其他天体相互作用而产生的能量。
如潮汐能。
(2)按能源的基本形态分类,有一次能源和二次能源。
前者即天然能源,指在自然界现成存在的能源。
如煤炭、石油、天然气、水能等。
后者指由一次能源加工转换而成的能源产品。
如电力、煤气、蒸汽及各种石油制品等。
一次能源又分为可再生能源(水能、风能及生物质能)和非再生能源(煤炭、石油、天然气、油页岩等)。
根据产生的方式可分为一次能源(天然能源)和二次能源(人工能源)。
一次能源是指自然界中以天然形式存在并没有经过加工或转换的能量资源,一次能源包括可再生的水力资源和不可再生的煤炭、石油、天然气资源,其中包括水、石油和天然气在内的三种能源是一次能源的核心,它们成为全球能源的基础;除此以外,太阳能、风能、地热能、海洋能、生物能以及核能等可再生能源也被包括在一次能源的范围内;二次能源则是指由一次能源直接或间接转换成其他种类和形式的能量资源,例如:电力、煤气、汽油、柴油、焦炭、洁净煤、激光和沼气等能源都属于二次能源。
(3)按能源性质分,有燃料型能源(煤炭、石油、天然气、泥炭、木材)和非燃料型能源(水能、风能、地热能、海洋能)。
(4)根据能源消耗后是否造成环境污染可分为污染型能源和清洁型能源。
污染型能源包括煤炭、石油等,清洁型能源包括水力、电力、太阳能、风能以及核能等。