倍角、半角、和差化积公式

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

倍角、半角、和差化积公式

一. 教学内容:

3.1 和角公式

3.2 倍角公式和半角公式

二. 教学目的

1. 了解两角和与差的余弦、正弦、正切公式的推导和证明过程,能够利用两角和与差的余弦、正弦、正切公式进行简单的三角函数式的求值、化简和证明,了解两角和与差的余弦、正弦、正切公式的内在联系;

2. 掌握倍角、半角的正弦、余弦、正切公式的推导过程,能够利用倍角、半角的正弦、余弦、正切公式进行求值、化简和证明,了解倍角、半角的正弦、余弦、正切公式的内在联系。

三. 教学重点、难点

重点:能够推导并掌握两角和与差的余弦、正弦、正切公式及倍角、半角的正弦、余弦、正切公式,并应用上述公式进行求值、化简、证明。

难点:能够正确利用上述公式进行求值、化简、证明,并能解决简单实际问题。

四. 知识分析

(一)两角和与差的余弦

1、两角差的余弦公式

推导方法1:向量法

把看成是两个向量夹角的余弦,可以考虑利用两个向量的数量积来研究。如图1,设的终边分别与单位圆交于点P l (,),P2 (,),由于余弦函数是周期为2π的偶函数,所以,我们只需考虑的情况。

图1

设向量

则。

另一方面,由向量数量积的坐标表示,有

于是,对于任意的,都有上述式子成立。

推导方法2:三角函数线法

设、都是锐角,如图2 ,角的终边与单位圆的交点为P l,∠POP1=,则∠Pox=。过点P作MN⊥x 轴于M,则OM即为的余弦线。在这里,我们想法用的三角函数线来表示OM。

图2

过点P作PA⊥OP1于A,过点A作AB⊥x轴于B,过P作PC⊥AB于C,则OA表示,AP表示,并且∠PAC=∠P1Ox=,于是

要说明此结果是否对任意角都成立,还要做不少推广工作,并且这项推广工作的过程也是比较繁难的,在此就不进行研究了。

2. 两角和的余弦公式

比较与,并且注意到与之间的联系:

则由两角差的余弦公式得:

3. 对公式的理解和记忆

(1)上述公式中的都是任意角。

(2)公式右端的两部分为同名三角函数之积,连接符号与左边的连接符号相反。

(3)要注意和(差)角的相对性,掌握角的变化技巧,如,等。

(二)两角和与差的正弦

1. 公式的导出

2. 公式的理解

(1)一样,对任意角均成立,是恒等式。

(2)“和差”公式是诱导公式的推广,诱导公式是“和差”公式的特殊形式。

(3)明确公式的区别与联系:

两公式右边均为两乘积项和差形式,但公式中,左边为角的“和”或“差”,右边也为两项之“和”或“差”,而公式中,左边为角的“和”或“差”,右边则为两项之“差”或“和”,另外公式中右边两项均为角的异名函数之积,牢记公式,才能正确使用这些公式。

3. 函数的最值(a 、b为常数,为任意角)

将函数化为一个三角函数形式可求最值,而此函数为两项之“和”式,所以考虑应用两角和与差的正弦、余弦公式,可化为一个三角函数形式,化简过程如下:

也可如下化简:

注:此处内容与教材P143的例4是一种问题,但表示方法稍有不同,目的是要同学们灵活掌握,运用自如。

(三)两角和与差的正切

1. 正切公式的推导过程

当时,将公式的两边分别相除,有

当cosαcosβ≠0时,将上式的分子分母分别除以cosαcosβ,得:

由于,

在中以-β代β,可得

2. 公式的理解

(1)公式成立的条件

①公式在,α-β≠

时成立,否则是不成立的。

②当tanα、tanβ或tan(α±β)的值不存在时,不能使用公式,处理有关问题时,应改用诱导公式或其他方法来解。

(2)公式的变形形式

①由得

②由得

(四)倍角公式

1. 本节中公式的证明过程较为简单,只要将中的β换作α即可得到的形式,再结合平方关系可推得。

2. 二倍角的正弦、余弦、正切公式及变形

另外,。

公式还可变形为升幂公式:

降幂公式:

以上公式中除且α≠外,其余公式中角α为任意角。

(五)半角的正弦、余弦和正切

1. 应用三个半角公式时,要特别注意根号前的符号,选取依据是所在的象限的原三角函数的符号。同学们往往误认为是根据cosα的符号,确定,、的符号。

如α为第二象限角,且,则为第一或第三象限角,∴可正可负,可正可负,为正。

2. 公式,共有三个,即,显然公式

由于符号问题有时不方便,后两个无符号问题,但易记混淆。对于后两个公式关键是明确公式的推导,如下:

,同理可推得,后两个公式在化简中往往起到事半功倍的效果。

3. 升幂公式:

降幂公式,,等同于倍角公式的升幂与降幂公式。

升降幂公式主要用于化简、求值、证明,在应用时要根据题目的角的特点,函数的特点及结构特点选取公式。一般地升幂的同时角减小,降幂的同时角增大。

【典型例题】

例1. ,求的值。

解析:由

又由

由余弦的和角公式,得

点评:已知角的某一三角函数值,求该角的另一三角函数值时,应注意角的终边所在的象限,从而确定三角函数值的符号。

例2. 已知Rt△ACB中,两垂直边AC=b,BC=a,斜边AB=c,周长为定值l,求斜边c 的最小值。

解析:Rt△ACB中∠C=90°,AC=b,BC=a,AB=c

则a=c·sinA,b=c·cosA

即当

时,斜边c最小,最小值为。

点评:(1)应用三角函数解决实际应用题的最值问题,必须先写出函数关系式(三角形式),再求最值。

(2)型如的函数均可化为(θ为确定数值),或化为,再利用三角函数的值域可求最值。

例3. 计算:(1)

解析:(1)解法1:

相关文档
最新文档