湘教版九年级数学上期末试卷

合集下载

湘教版九年级上册数学期末考试试卷含答案详解

湘教版九年级上册数学期末考试试卷含答案详解

湘教版九年级上册数学期末考试试题一、选择题。

(每小题只有一个正确答案)1.一元二次方程x2+5x=6的一次项系数、常数项分别是()A .1,5B .1,-6C .5,-6D .5,62.若反比例函数y=k x (k≠0)的图象经过点P (-1,1),则k 的值是()A .0B .-2C .2D .-13.一元二次方程x2+x+1=0的根的情况为()A .有两个相等的实数根B .没有实根C .只有一个实数D .有两个不相等的实数根4.两个相似多边形的周长比是2:3,其中较小多边形的面积为4cm 2,则较大多边形的面积为()A .9cm 2B .16cm 2C .56cm 2D .24cm 25.sin30°+tan45°-cos60°的值等于()A B .0C .1D .6.在直角三角形ABC 中,已知∠C=90°,∠A=60°,BC 等于()A .30B .10C .2D .7.如图,Rt △ABC ∽Rt △DEF ,∠A=35°,则∠E 的度数为()A .35°B .45°C .55°D .65°8.如图,为测量河两岸相对两电线杆A 、B 间的距离,在距A 点16m 的C 处()AC AB ⊥,测得ACB 52∠= ,则A 、B 之间的距离应为()A .16sin52°mB .16cos52°mC .16tan52°mD .16tan52m9.青蛙是我们人类的朋友,为了了解某池塘里青蛙的数量,先从池塘里捕捞20只青蛙,作上标记后放回池塘,经过一段时间后,再从池塘中捕捞出40只青蛙,其中有标记的青蛙有4只,请你估计一下这个池塘里有多少只青蛙?()A .100只B .150只C .180只D .200只10.如图,△ABC 的顶点A 、B 、C 在边长为1的正方形网格的格点上,BD ⊥AC 于点D .则BD 的长为()A .B .C .D .二、填空题11.若()221ay a x -=+是反比例函数,则a 的取值为______.12.已知关于x 一元二次方程ax 2+bx +c =0有一个根为1,则a +b +c =_____.13.甲同学身高为.5m ,某时刻他影长为1m ,在同一时刻一中老塔影长为20m ,则塔高为____m .14.老师对甲、乙两人的五次数学测验成绩进行统计,得出两人五次测验成绩的平均分均为90分,方差分别是S 甲2=17,S 乙2=15.则成绩比较稳定的是_____(填“甲”、“乙”中的一个).15.已知sinα=35,则tanα=____.16.如图,小雅家(图中点O 处)门前有一条东西走向的公路,经测得有一水塔(图中点A 处)在距她家北偏东60°方向的500米处,那么水塔所在的位置到公路的距离AB 是____米.17.已知锐角A 满足关系式2sin2A-7sinA+3=0,则sinA 的值为_____.18.已知关于x 的一元二次方程x 2+2x-a=0的两个实根为x1,x2,且121123x x +=,则a 的值为.三、解答题19.解下列方程(1)x (x-2)+x-2=0;(2)x2-4x-12=0.20.已知x=-1是一元二次方程x2-mx-2=0的一个根,求m 的值和方程的另一个根.21.某校开展了主题为“梅山文化知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,整理调查数据制成了不完整的表格和扇形统计图(如图).等级非常了解比较了解基本了解不太了解频数50m4020根据以上提供的信息解答下列问题:(1)本次问卷调查共抽取的学生数为人,表中m 的值为;(2)计算等级为“非常了解”的频数在扇形统计图中对应扇形的圆心角的度数,并补全扇形统计图;(3)若该校有学生2000人,请根据调查结果估计这些学生中“不太了解”梅山文化知识的人数约为多少?22.菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠,请说明理由.23.超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速.如图,观测点设在A处,离益阳大道的距离(AC)为30米.这时,一辆小轿车由西向东匀速行驶,测得此车从B处行驶到C处所用的时间为8秒,∠BAC=75°.(1)求B、C两点的距离;(2)请判断此车是否超过了益阳大道60千米/小时的限制速度?(计算时距离精确到1米,参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.732 1.732,60千米/小时≈16.7米/秒)24.在矩形ABCD中,E为CD的中点,H为BE上的一点,连接CH并延长交AB于点G,连接GE并延长交AD的延长线于点F.(1)求证:ECBG=EHBH;(2)若EHBH=3,∠CGF=90°,求ABBC的值.25.如图,已知在平面直角坐标系xOy中,直线y=12x+b经过点B(1,3),且与直线y=﹣2x交于点A,抛物线y=(x﹣m)2+n的顶点在直线y=﹣2x上运动.(1)求点A的坐标.(2)当抛物线经过点A时,求抛物线的解析式.(3)当﹣1<x<1时,始终满足(x﹣m)2+n<12x+b,结合图象,直接写出m的取值范围.参考答案1.C【详解】试题解析:x 2+5x=6,x 2+5x-6=0,一次项系数是5,常数项-6.故选C .考点:一元二次方程的一般形式.2.D .【解析】试题解析:∵反比例函数y=k x (k≠0)的图象经过点P (-1,1),∴1=1k ,解得k=-1.故选D .考点:反比例函数图象上点的坐标特征.3.B 【详解】试题解析:一元二次方程x 2+x+1="0"中,△=1-4×1×1<0,∴原方程无解.故选B .考点:根的判别式.4.A 【详解】∵两个相似多边形的周长比是2:3,∴两个相似多边形的相似比是2:3,∴两个相似多边形的面积比是4:9,∵较小多边形的面积为4cm 2,∴较大多边形的面积为9cm 2,故选A .5.C .【解析】试题解析:原式=12+1-12=1.故选C.考点:特殊角的三角函数值.6.A【详解】试题解析:∵∠C=90°,∠A=60°,∴∠B=90°-60°=30°,∴由勾股定理得:==30.故选A.考点:1.勾股定理;2.含30度角的直角三角形.7.C.【解析】试题解析:∵Rt△ABC∽Rt△DEF,∠A=35°,∴∠D=∠A=35°.∵∠F=90°,∴∠E=55°.故选C.考点:相似三角形的性质.8.C【详解】试题解析:因为AC=16米,∠C=52°,在直角△ABC中tan52°=ABAC,所以AB=16•tan52°米.故选C.考点:解直角三角形的应用.9.D.【解析】试题解析:∵从池塘中捕捞出40只青蛙,其中有标记的青蛙有4只,∴在样本中有标记的所占比例为4 40,∴池塘里青蛙的总数为20÷440=200.故选D.考点:用样本估计总体.10.C【详解】试题解析:如图,由勾股定理得AC=.∵BC×2=AC•BD,即×2×2=×BD∴BD=.故选C.考点:1.勾股定理;2.三角形的面积.11.1【分析】先根据反比例函数的定义列出关于a的不等式和方程,求出a的值即可.【详解】∵此函数是反比例函数,∴210 21a a +≠⎧⎨-=-⎩,解得a=1.故答案为1.【点睛】本题考查的是反比例函数的定义,即形如y=kx(k为常数,k≠0)的函数称为反比例函数.12.0.【详解】试题解析:根据题意,一元二次方程ax2+bx+c="0"有一个根为1,即x=1时,ax2+bx+c=0成立,即a+b+c=0,考点:一元二次方程的解.13.30.【解析】试题解析:∵同一时刻物高与影长成正比例∴1.5:1=塔高:20∴塔高为30m.考点:相似三角形的应用.14.乙.【解析】试题解析:∵S甲2=17,S乙2=15,15<17,∴成绩比较稳定的是乙.考点:方差.15.3 4.【解析】试题解析:如图:设∠A=α,∵sinα=3 5,∴35 BCAB=,设AB=5x,BC=3x,则,∴tanα=34 BCAC=.考点:同角三角函数的关系.16.250.【解析】试题解析:∠AOB=90°-60°=30°,∵∠ABO=90°,OA=500m ,∴AB=12OA=250m .考点:1.含30度角的直角三角形;2.方向角.17.12【解析】试题解析:2sin 2A-7sinA+2=0,把方程左边分解因式得:(sinA-3)=0,2sinA-1=0,sinA-3=0,解得:sinA=12或sinA=3(不合题意舍去)考点:1.解一元二次方程-因式分解法;2.锐角三角函数的定义.18.3.【详解】解:∵关于x 的一元二次方程x 2+2x-a=0的两个实根为x 1,x 2,∴x 1+x 2=-2,x 1x 2=-a ,∴12121211223+-+===-x x x x x x a ∴a=3.19.(1)x 1=2,x 2=-1.(2)x 1=6,x 2=-2.【详解】试题分析:(1)提取公因式,转化为两个一元一次方程,解一元一次方程即可.(2)分解因式转化为两个一元一次方程,解一元一次方程即可.试题解析:(1)x (x-2)+x-2=0,提取公因式,得(x-2)(x+1)=0,解得x1=2,x2=-1.(2)x2-4x-12=0,分解因式得,(x-6)(x+2)=0,解得x1=6,x2=-2.考点:解一元二次方程-因式分解法.20.m的值为1,方程的另一根为x=2.【分析】由于x=-1是方程的一个根,直接把它代入方程即可求出m的值,然后解方程可以求出方程的另一根.【详解】解:∵x=-1是关于x的一元二次方程x2-mx-2=0的一个根,∴(-1)2-m×(-1)-2=0,∴m=1,将m=1代入方程得x2-x-2=0,(x-2)(x+1)=0解得:x=-1或x=2.故m的值为1,方程的另一根为x=2.【点睛】本题考查一元二次方程的解及解一元二次方程,掌握因式分解的解方程技巧是解题关键.21.(1)200,90;(2)90°,补全图形见解析(3)200人.【详解】试题分析:(1)利用基本了解的人数÷基本了解的人数所占百分比即可算出本次问卷调查共抽取的学生数;m=抽查的学生总数×比较了解的学生所占百分比;(2)等级为“非常了解”的频数在扇形统计图中对应扇形的圆心角的度数=360°×所占百分比,再补图即可;(3)利用样本估计总体的方法,用2000人×调查的学生中“不太了解”的学生所占百分比.试题解析:(1)40÷20%=200人,200×45%=90人;(2)50200×100%×360°=90°,1-25%-45%-20%=10%,扇形统计图如图所示:(3)2000×10%=200人.答:这些学生中“不太了解”梅山文化知识的人数约为200人.考点:1.扇形统计图;2.用样本估计总体;3.频数(率)分布表.22.(1)20%.(2)小华选择方案一购买更优惠.【解析】试题分析:(1)设出平均每次下调的百分率,根据从5元下调到3.2元列出一元二次方程求解即可;(2)根据优惠方案分别求得两种方案的费用后比较即可得到结果.试题解析:(1)设平均每次下调的百分率为x.由题意,得5(1-x)2=3.2.解这个方程,得x1=0.2,x2=1.8(不符合题意),符合题目要求的是x1=0.2=20%.答:平均每次下调的百分率是20%.(2)小华选择方案一购买更优惠.理由:方案一所需费用为:3.2×0.9×5000=14400(元),方案二所需费用为:3.2×5000-200×5=15000(元).∵14400<15000,∴小华选择方案一购买更优惠.考点:一元二次方程的应用.23.(1)112米(2)此车没有超过限制速度【解析】解:(1)在Rt△ABC中,∠ACB=90°,∠BAC=75°,AC=30,∴BC=AC•tan∠BAC=30×tan75°≈30×3.732≈112(米)。

完整版湘教版九年级上册数学期末测试卷

完整版湘教版九年级上册数学期末测试卷

湘教版九年级上册数学期末测试卷一、单选题(共15题,共计45分)1、已知方程x2+bx+c=0有两个相等的实数根,且当x=a与x=a+n时,x2+bx+c=m,则m、n的关系为(A.m= nB.m= nC.m= n 2D.m= n 22、已知关于x的一元二次方程(k﹣1)x2+3x+k2﹣1=0有一根为0,则k=()A.1B.-1C.±1D.03、按100分制60分及格来算,满分是150分的及格分是()A.60分B.72分C.90分D.105分4、反比例函数y=的图象经过点P(a,b),其中a,b是一元二次方程x2+kx+4=0的两根,那么点P的坐标是( )A.(1,4)B.(-1,-4)C.(2,2)D.(-2,-2)5、下列方程中,没有实数根的是()A. B. C. D.6、小红利用一些花布的边角料,裁剪后装饰手工画.下面四个图案是她裁剪出的空心等边三角形、菱形、矩形、正方形,若每个图案花边的宽度都相等,那么每个图案中花边的内外边缘所围成的几何图形不一定相似的是()A. B. C. D.7、已知反比例函数的图象如图,则一元二次方程x2-(2k-1)x+k2-1=0根的情况是()A.有两个不等实根B.有两个相等实根C.没有实根D.无法确定。

8、如图,在4×5的正方形网格中,每个小正方形的边长都是1,ΔABC的顶点都在这些小正方形的顶点上,那么cos ACB值为()A. B. C. D.9、如图,某停车场人口的栏杆,从水平位置AB绕点O旋转到A'B′的位置已知AO=4m,若栏杆的旋转角∠AOA′=50°时,栏杆A端升高的高度是()A. B.4sin50° C. D.4cos50°10、如图,Rt△ABC中,∠ACB=90°,CM为AB边上的中线,AN⊥CM,交BC于点N.若CM=3,AN=4,则tan∠CAN的值为()A. B. C. D.11、如图,直线y=x―4与y轴、x轴分别交于点A、B,点C为双曲线y=上一点,OC∥AB,连接BC交双曲线于点D,点D恰好是BC的中点,则k的值是()A. B.2 C.4 D.12、如图,在平面直角坐标系中,点在反比例函数的图象上.若,则自变量的取值范围是( )A. B. C. 且 D. 或13、如图,由六个边长为1的小正方形组成的网格图中,△ABC的各个顶点都在格点上,则sin∠BAC的值是()A. B. C. D.14、已知x=1是一元二次方程(m-2)x2+4x-m2=0的一个根,则m的值为().A.-1或2B.-1C.2D.015、若关于x的一元二次方程kx2-2x-1=0有两个不相等的实数根,则实数k的取值范围是()A.k>-1B.k<1且k≠0C.k≥-1且k≠0D.k>-1且k≠0二、填空题(共10题,共计30分)16、一元二次方程x2=3x的解是:________ .17、已知A(﹣1,m)与B(2,m﹣3)是反比例函数图象上的两个点.则m的值________.18、如图,⊙O与正方形ABCD的各边分别相切于点E、F、G、H,点P是上的一点,则tan∠EPF的值是________.19、在Rt△ABC中,∠C=90°,若AC=5,tanA=2,则BC=________.20、在平面直角坐标系中,反比例函数y=的图象与经过原点O的直线1交于点A,B(n,﹣2),过点A作AD⊥x轴,垂足为D,已知sin∠AOD=,则k 的值为________.21、如图,四边形OABC是矩形,ADEF是正方形,点A,D在x轴的正半轴,点C在y轴的正半轴上,点F再AB上,点B,E在反比例函数y= 的图象上,OA=2,OC=6,则正方形ADEF的边长为________.22、方程2(x+2)+8=3x(x-1)的一般形式为________,二次项系数是________,一次项系数是________,常数项是________.23、如图,等边中,,点D﹐点E分别是边BC,CA上的动点,且,连接AD、BE交于点F,当点D从点B运动到点C时,则点F的运动路径的长度为________.24、如图,AB与⊙O相切于点B,线段OA与弦BC垂直,垂足为D,AB=BC=2,则∠AOB=________°.25、如图,将△ABC沿着CE翻折,使点A落在点D处,CD与AB交于点F,恰好有CE=CF,若DF=6,AF=14,则tan∠CEF=________.三、解答题(共5题,共计25分)26、计算:.27、如图,扇形OAB的半径为4,圆心角∠AOB=90°,点C是上异于点A、B的一动点,过点C作CD⊥OB于点D,作CE⊥OA于点E,联结DE,过O点作OF⊥DE于点F,点M为线段OD上一动点,联结MF,过点F作NF⊥MF,交OA于点N.(1)当tan MOF=时,求的值;(2)设OM=x,ON=y,当时,求y关于x 的函数解析式,并写出它的定义域;(3)在(2)的条件下,联结CF,当△ECF与△OFN相似时,求OD的长.28、如图,在数学活动课中,小敏为了测量校园内旗杆AB的高度,站在教学楼上的C处测得旗杆低端B的俯角为45°,测得旗杆顶端A的仰角为30°,如旗杆与教学楼的水平距离CD为9m,则旗杆的高度是多少?(结果保留根号)29、我们知道当人们的视线与物体的表面互相垂直且视线恰好落在物体中心位置时的视觉效果最佳,如图是小然站咋地面MN欣赏悬挂在墙壁PM上的油画AD (PM⊥MN)的示意图,设油画AD与墙壁的夹角∠PAD=α,此时小然的眼睛与油画底部A处于同一水平线上,视线恰好落在油画的中心位置E处,且与AD垂直.已知油画的高度AD为100cm.(1)直接写出视角∠ABD(用含α的式子表示)的度数;(2)当小然到墙壁PM的距离AB=250cm时,求油画顶部点D到墙壁PM的距离;(3)当油画底部A处位置不变,油画AD与墙壁的夹角逐渐减小时,小然为了保证欣赏油画的视觉效果最佳,他应该更靠近墙壁PM,还是不动或者远离墙壁PM?30、如图,小明要测量河内小岛B到河边公路AD的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=50米,求小岛B到公路AD的距离.参考答案一、单选题(共15题,共计45分)1、D2、B3、C4、D5、D6、C7、C8、C10、A11、A12、D13、D14、B15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、30、。

湘教版数学九年级上册期末试卷附答案

湘教版数学九年级上册期末试卷附答案

湘教版数学九年级上册期末试卷附答案湘教版数学九年级上册期末试卷一、填空(每小题3分,共24分)1.人们口语中常说的:“太阳从西边出来”是指某一事件不可能发生。

2.已知y1=x^2-4x-3,y2=x+3,当x=-1时,y1与y2的值相等。

3.若a^2/(a+b)=1/5,则b^2/(5a-b)=24.4.符合条件的一组m,n的值可以是m=-2,n=1.5.点C是线段AB的黄金分割点,若AB=5cm,则BC的长是3cm。

6.如图,已知△ABC∽△DBE。

DB=8.AB=6,则S△.7.在△ABC中,∠C=90°。

cosB=3/5.a=23,则b=184/5.8.同时抛两枚质地均匀的骰子,则朝上的点数之积为偶数的概率是11/18.二、选择题(每小题3分,共24分)1.袋子中有同样大小的红、绿小球各一个,随机摸出1个小球后放回,再随机摸出一个,则两次摸到的球中有绿球的概率是1/4.2.在Rt△ABC,∠C=90°。

sinB=3/5,则sinA的值是4/5.3.已知等腰梯形ABCD中,AD∥BC,∠B=60°,AD=2,BC=8,则此梯形的周长为20.4.已知x=3是关于方程3x+2ax-3a=0的一个根,则关于y的方程y-12=a^2的解是9.5.一个小组有若干人,新年互送贺年卡一张,已知全组共送贺年卡72张,则这个小组共有9人。

6.若顺次连结四边形ABCD各边的中点所得到的四边形是正方形,则四边形ABCD一定是矩形。

7.把方程x^2+3x-1=0的左边配方后可得方程(x+3/2)^2=13/4.根据题意,PD=PE,且PF垂直于CD,因此DF=EF。

如图2所示,连接PH并垂直于AD,设PA=2PH=2DF=2EF,PC=2CF。

因此,PC-PA=2(CF-EF),即PC-PA=2CE。

综合题解:1)设x秒后,PB=42厘米,则AP=x,CQ=2x,BP=6-x,BQ=2x。

湘教版九年级上册数学期末考试试卷附答案

湘教版九年级上册数学期末考试试卷附答案

湘教版九年级上册数学期末考试试题一、选择题。

(每小题只有一个正确答案)1.将方程2368x x =-+化为一元二次方程的一般形式后,二次项系数、一次项系数、常数项分别为()A .3、6、8B .3、-6、-8C .3、-6、8D .3、6、-82.已知反比例函数k y x =的图象过点()2,3-则该反比例函数的图象位于()A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限3.关于x 的一元二次方程3x 2﹣6x+m=0有两个不相等的实数根,则m 的取值范围是A .m <3B .m≤3C .m >3D .m≥34.若()()()1233,,2,,1,A y B y C y --三点都在函数1y x=-的图象上,则123y y y ,,的大小关系是()A .123y y y <<B .123y y y >>C .132 y y y <<D .无法确定5.目前我国建立了比较完善的经济困难学生资助体系.某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元,设每半年发放的资助金额的平均增长率为x ,则下面列出的方程中正确的是()A .438(1+x )2=389B .389(1+x )2=438C .(1+2x )2=438D .438(1+2x )2=3896.为了了解我市某学校“书香校园”的建设情况,检查组在该校随机抽取40名学生,调查了解他们一周阅读课外书籍的时间,并将调查结果绘制成如图所示的频数分布直方图(每小组的时间包含最小值,不包含最大值),根据图中信息估计该校学生一周课外阅读时间不少于4小时的人数占全校人数的百分数约等于()A .50%B .55%C .60%D .65%7.如图,若P 为△A BC 的边AB 上一点(AB>AC ),则下列条件不一定能保证△ACP ∽△ABC的有()A .∠ACP=∠B B .∠APC=∠ACBC .AC AP AB AC =D .PC AC BC AB =8.如图,正方形网格中, ABC 如图放置,其中点A 、B 、C 均在格点上,则()A .tanB=32B .cosB=23C .sinB=13D .9.如图,在矩形ABCD 中,点E 是边BC 的中点,AE ⊥BD ,垂足为F ,则tan ∠BDE 的值是()A .4B .14C .13D .310.如图,△ABC 中,D 、E 两点分别在BC 、AD 上,且AD 为∠BAC 的角平分线.若∠ABE=∠C ,AE:ED=2:1,则△BDE 与△ABC 的面积比为何?()A .1:6B .1:9C .2:13D .2:15二、填空题11.随机从甲、乙两块试验田中各抽取100株麦苗测试高度,计算平均数和方差的结果为13x =甲,13x =乙,2 3.6s =甲,2 4.2s =乙,则小麦长势比较整齐的是______.12.已知1x ,2x 是关于x 的一元二次方程2210x x k ++-=的两个实数根,且22121213x x x x +-=,则k 的值为____.13.如图,在△ABC 中,∠A =30°,∠B =45°,AC =AB 的长为_______.14.如图所示,AB ⊥BD ,CD ⊥BD ,连接AC 交BD 于O .若AB =3,BO =4,BD =12,则OC 的长是________.15.如图,小明周末晚上陪父母在锦江绿道上散步,他由灯下A 处前进4米到达B 处时,测得影子BC 长为1米,已知小明身高1.6米,他若继续往前走4米到达D 处,此时影子DE 长为______米.三、解答题16.解一元二次方程:(1)241210x -=(2)4)25()(x x --=17.计算:(1)2cos306045︒-︒+︒(2)()101202023tan 303π-⎛⎫---+︒⎪⎝⎭18.钓鱼岛位于我国东海,是我国自古以来的固有领土,有“花鸟岛”之美称.如图,我国的一艘海监船在钓鱼岛A 附近沿正东方向航行,船在B 点时测得钓鱼岛A 在船的北偏东60°方向,船以50海里/时的速度继续航行2小时后到达C 点,此时钓鱼岛A 在船的北偏东30°方向.请问海监船继续航行多少海里与钓鱼岛A 的距离最近?19.如图,等腰三角形ABC 中,AB=AC ,D 为CB 延长线上一点,E 为BC 延长线上点,且满足AB 2=DB·CE.(1)求证:△ADB ∽△EAC ;(2)若∠BAC=40°,求∠DAE 的度数.20.某校为了解九年级男同学的中考体育考试准备情况,随机抽取部分男同学进行了1000米跑步测试.按照成绩分为优秀、良好、合格与不合格四个等级,学校绘制了如下不完整的统计图.(1)根据给出的信息,补全两幅统计图;(2)该校九年级有600名男生,请估计成绩未达到良好有多少名?21.已知:如图所示,在ABC 中,90B ∠=︒,5AB cm =,7BC cm =,点P 从点A 开始沿AB 边向点B 以1/cm s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2/cm s 的速度移动.当P 、Q 两点中有一点到达终点,则同时停止运动.(1)如果P ,Q 分别从A ,B 同时出发,那么几秒后,PBQ △的面积等于24cm(2)如果P ,Q 分别从A ,B 同时出发,那么几秒后,PQ 的长度等于?(3)PQB △的面积能否等于27cm 请说明理由.22.如图,一次函数y =kx +b 的图像与反比例函数y =m x的图像相交于A (1,2),B (n ,-1)两点.(1)求一次函数和反比例函数的表达式.(2)直线AB 交x 轴于点C ,点P 是x 轴上的点,若△ABP 的面积是6,求点P 的坐标.23.如图,已知二次函数222(1)2(0)y x m x m m m =-+++>的图像与x 轴相交于点A 、B (点A 在点B 的左侧),与y 轴相交于点C ,连接AC BC 、.(1)线段AB =______;(2)若AC 平分OCB ∠,求m 的值;(3)该函数图像的对称轴上是否存在点P ,使得PAC △为等边三角形?若存在,求出m 的值;若不存在,说明理由.24.如图1在矩形ABCD 中,点E 是CD 边上的动点(点E 不与点C ,D 重合),连接AE ,过点A 作AF AE ⊥交CB 延长线于点F ,连接EF ,点G 为EF 的中点,且点G 在线段AB 的左侧,连接BG .(1)求证:ADE ∽ABF ;(2)若20AB =,10AD =,设DE x =,点G 到直线BC 的距离为y .①求y 与x 的函数关系式;②当85EC BG =时,求x 的值;(3)如图2,若AB BC =,设四边形ABCD 的面积为S ,四边形BCEG 的面积为1S ,当114S S =时,求DC :DE 的值.参考答案1.D【分析】先将该方程化为一般形式,即可得出结论.【详解】解:先将该方程化为一般形式:23+680x x -=.从而确定二次项系数为3,一次项系数为6,常数项为-8,故选择:D .【考点】本题考查的是一元二次方程的项和系数,掌握一元二次方程的一般形式是解决此题的关键.2.C【分析】先根据点的坐标求出k 值,再利用反比例函数图象的性质即可求解.【详解】解:∵反比例函数k y x=(k≠0)的图象经过点P (2,-3),∴k=2×(-3)=-6<0,∴该反比例函数经过第二、四象限.故选:C .【点睛】本题考查了反比例函数的性质.反比例函数k y x=(k≠0)的图象k >0时位于第一、三象限,在每个象限内,y 随x 的增大而减小;k <0时位于第二、四象限,在每个象限内,y 随x 的增大而增大.3.A【分析】一元二次方程ax 2+bx+c=0(a≠0)的根的判别式△=b 2﹣4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.【详解】解:根据题意得△=(﹣6)2﹣4×3×m >0,解得m <3.故选A .4.A【分析】根据反比例函数图象上点的坐标特征求出y 1、y 2、y 3的值,比较后即可得出结论.【详解】解:∵点A (3,y 1),B (-2,y 2),C (-1,y 3)在反比例函数1y x=-的图象上,∴y 1=13-,y 2=12,y 3=1,又∵13-<12<1,∴y 1<y 2<y 3.故选择:A .【点睛】本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y 1、y 2、y 3的值是解题的关键.5.B【分析】先用含x 的代数式表示去年下半年发放给每个经济困难学生的钱数,再表示出今年上半年发放的钱数,令其等于438即可列出方程.【详解】解:设每半年发放的资助金额的平均增长率为x ,则去年下半年发放给每个经济困难学生389(1+x )元,今年上半年发放给每个经济困难学生()23891x +元,由题意,得:()23891438x +=,故选:B .【点睛】本题考查求平均变化率的方法,若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为()21a x b ±=.6.C【详解】先求出m 的值,再用一周课外阅读时间不少于4小时的人数除以抽取的学生数即可:∵m=40﹣5﹣11﹣4=20,∴该校学生一周课外阅读时间不少于4小时的人数占全校人数的百分数是:20+440×100%=60%.故选C .7.D【解析】试题分析:本题中隐含着一个条件,即∠A=∠A,选项A和B可以利用有两个角相等的两个三角形相似得到判定;C选项可以利用两组对应边分别成比例,且夹角相等来判定两个三角形相似;D选项无法进行判定.考点:三角形相似的判定.8.C【分析】在Rt△ABC中,AC=2,BC=3,由勾股定理得:AB=利用锐角三角函数定义求出tanB,cosB,SinB即可选出答案.【详解】解:如图在Rt△ABC中,AC=2,BC=3,由勾股定理得:∴tanB=AC2= BC3,∴cosB=BCAB∴SinB=ACAB13.故选:C.【点睛】本题考查网格中锐角三角函数问题,掌握三角函数的定义,熟记锐角三角函数的定义是解题关键.9.A【分析】证明△BEF∽△DAF,得出EF=12AF,EF=13AE,由矩形的对称性得:AE=DE,得出13EF DE=,设EF=x,则DE=3x,由勾股定理求出DF=再由三角函数定义即可得出答案.【详解】∵四边形ABCD 是矩形,∴AD=BC ,AD ∥BC ,∵点E 是边BC 的中点,∴BE=12BC=12AD ,∴△BEF ∽△DAF ,∴12EF BE AF AD ==,∴EF=12AF ,∴EF=13AE ,∵点E 是边BC 的中点,∴由矩形的对称性得:AE=DE ,∴EF=13DE ,设EF=x ,则DE=3x ,∴x ,∴tan ∠BDE=EF DF =.故选A .【点睛】本题考查了相似三角形的判定和性质,矩形的性质,三角函数等知识;熟练掌握矩形的性质,证明三角形相似是解决问题的关键.10.D【分析】根据已知条件先求得S △ABE :S △BED =2:1,再根据三角形相似求得S △ACD =94S △ABE =92S △BED ,根据S △ABC =S △ABE +S △ACD +S △BED 即可求得答案.【详解】解:∵AE :ED =2:1,∴S △ABE :S △BED =2:1,AE :AD =2:3,∵∠ABE =∠C ,∠BAE =∠CAD ,∴△ABE ∽△ACD ,∴S △ABE :S △ACD =4:9,∴S △ACD =94S △ABE ,∵S △ABE =2S △BED ,∴S △ACD =94S △ABE =92S △BED ,∵S △ABC =S △ABE +S △ACD +S △BED =2S △BED +92S △BED +S △BED =152S △BED ,∴S △BDE :S △ABC =2:15,故选D .【点睛】本题考查了相似三角形的判定和性质,利用不同底等高的三角形面积的之间的关系进行等量代换是解决本题的关键.11.甲【分析】根据方差的意义判断即可.方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.【详解】解:∵13x =甲,13x =乙,由方差的意义2 3.6s =甲,2 4.2s =乙,∵3.6 4.2<,∴2s <甲2s 乙,∴甲块试验田的方差小,故甲试验田小麦长势比较整齐.故答案为:甲.【点睛】本题考查了方差的意义,解题的关键是熟练掌握方差的意义:它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.12.-2【分析】根据根与系数的关系即可求解.∵x 1+x 2=-2,x 1.x 2=k-1,22212121212()3x x x x x x x x +-=+-⋅=4-3(k-1)=13,K=-2.故答案为:-2.【点睛】此题主要考查一元二次方程根与系数的关系,解题的关键是熟知根与系数的关系及应用.13.3+3【详解】过C 作CD ⊥AB 于D ,∴∠ADC =∠BDC =90°.∵∠B =45°,∴∠BCD =∠B =45°,∴CD =BD .∵∠A =30°,23AC =,∴3CD =,∴3BD CD ==.由勾股定理得:223AD AC CD =-=,∴33AB AD BD =+=+.故答案是:3+314.10由CD⊥BD,AB⊥BD,与∠DOC=∠BOA,可证△DOC∽△BOA,由性质OC CD OD==OA AB OB,在Rt△AOB中,由勾股定理AO=5,可求OC=6【详解】解:∵CD⊥BD,AB⊥BD,∴∠D=∠B=90º∵∠DOC=∠BOA∴△DOC∽△BOA∴OC CD OD== OA AB OB∵AB=3,BO=4,BD=12,∴OD=BD-BO=12-4=8在Rt△AOB中由勾股定理∴OC8= 54∴OC=10故答案为:10【点睛】本题考查勾股定理与相似三角形的判定与性质,掌握勾股定理与相似三角形的判定与性质是解题关键15.2【分析】依据△CBF∽△CAP,即可得到AP=8,再依据△EDG∽△EAP,即可得到DE长.【详解】如图,由FB ∥AP 可得,△CBF ∽△CAP ,∴CB BF CA AP=,即1 1.614AP +,解得AP=8,由GD ∥AP 可得,△EDG ∽△EAP ,∴ED GD EA PA ,即 1.6448ED ED ++=,解得ED=2,故答案为2.【点睛】此题考查了中心投影的特点和规律以及相似三角形性质的运用.解题的关键是利用中心投影的特点可知在这两组相似三角形中有一组公共边,利用其作为相等关系求出所需要的线段,再求公共边的长度.16.(1)121111,22x x ==-;(2)1236,36x x ==【分析】(1)利用直接开平方法求解即可;(2)利用公式法求解即可.【详解】解:(1)∵241210x -=,∴24121x =,∴21214x =,∴12111122x x ==-;(2)∵4)25()(x x --=,∴2630x x -+=,∴2-466=3622b b ac x a ±-±==±∴1233x x ==.【点睛】本题考查了一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.17.(1)2;(2)0【分析】(1)先把函数值代入,在进行二次根式的乘方,再乘法,最后计算加减即可;(2)先把函数值代入同时计算零次幂负指数去绝对值,再进行二次根式的乘除法,最后合并同类项即可.【详解】解:(1)2cos306045︒︒+︒,2122⎛+ ⎝⎭,=222-+,=2;(2)()101202023tan 303π-⎛⎫---+︒ ⎪⎝⎭,=13233-+⨯,=132-+,=0.【点睛】本题考查特殊三角函数值化简求值问题,掌握特殊的三角函数值及零次幂,负指数,绝对值化简,二次根式混合运算法则是解题关键.18.50海里【分析】过点A 作AD ⊥BC 于D ,根据题意得∠ABC=30°,∠ACD=60°,∠BAC =30°,可证CA=CB ,由CB=50×2=100(海里),可求CA=100(海里),在直角△ADC 中,CD=AC0cos60=100×12=50(海里)即可.【详解】解:过点A作AD⊥BC于D,根据题意得∠ABC=90°-60°=30°,∴∠ACD=90°-30°=60°,∴∠BAC=∠ACD-∠ABC=30°,∴CA=CB,∵CB=50×2=100(海里),∴CA=100(海里),在直角△ADC中,∠ACD=60°,∴CD=AC cos60 =100×12=50(海里).答:船继续航行50海里与钓鱼岛A的距离最近.【点睛】本题考查特殊角三角函数在解直角三角形中的应用,等腰三角形的判定与性质,掌握三角函数的定义,关键是作出正确的图形.19.(1)见解析;(2)(2)∠DAE=110︒【解析】试题分析:(1)根据AB=AC,求得∠ABD=∠ACE,再利用AB2=DB•CE,即可得出对应边成比例,然后即可证明.(2)由△ADB∽△EAC,得出∠BAD=∠E,∠D=∠CAE,则∠DAE=∠BAD+∠BAC+∠CAE=∠D+∠BAD+∠BAC,很容易得出答案.试题解析:证明:(1)∵AB=AC,∴∠ABC=∠ACB,∴∠ABD=∠ACE,∵AB2=DB•CE∴AB DB CE AB=,∵AB=AC,∴AB DB CE AC=∴△ADB∽△EAC.(2)∵△ADB∽△EAC,∴∠BAD=∠E,∠D=∠CAE,∵∠DAE=∠BAD+∠BAC+∠CAE,∴∠DAE=∠D+∠BAD+∠BAC,∵∠BAC=40°,AB=AC,∴∠ABC=70°,∴∠D+∠BAD=70°,∴∠DAE=∠D+∠BAD+∠BAC=70°+40°=110°.20.(1)见解析;(2)180名【分析】()1由条形图与扇形图知良好的人数与百分比可求抽取的学生数:1640%40(÷=人);可求抽取的学生中合格的人数10,可求合格所占百分比:25%,优秀人数百分比:124030%÷=,即可补全条形图与扇形图;()2求出成绩未达到良好的男生所占比例为:30%,用部分估计总体60030%180(⨯=名)即可.【详解】解:()1由条形图与扇形图知良好的人数16人,百分比为40%则抽取的学生数:1640%40(÷=人);抽取的学生中合格的人数:401216210---=,合格所占百分比:104025%÷=,优秀人数所占百分比:124030%÷=,如图所示:;()2成绩未达到良好的男生所占比例为:25%5%30%+=,所以600名九年级男生中有60030%180(⨯=名),九年级有600名男生成绩未达到良好有180名.【点睛】本题考查条形统计图、扇形统计图、解题的关键是明确题意,利用数形结合的思想解答问题.21.(1)1秒;(2)3秒;(3)不能,理由见解析【分析】(1)设P 、Q 分别从A 、B 两点出发,x 秒后,AP=xcm ,PB=(5-x )cm ,BQ=2xcm ,则△PBQ 的面积等于12×2x (5-x ),令该式等于4,列出方程求出符合题意的解;(2)利用勾股定理列出方程求解即可;(3)看△PBQ 的面积能否等于7cm 2,只需令12×2t (5-t )=7,化简该方程后,判断该方程的24b ac -与0的关系,大于或等于0则可以,否则不可以.【详解】解:(1)设经过x 秒以后,PBQ △面积为24(0 3.5)cm x <≤,此时=AP xcm ,()5BP x cm =-,2=BQ xcm ,由142BP BQ ⋅=,得()15242x x -⨯=,整理得:2540x x -+=,解得:1x =或4(x =舍),答:1秒后PBQ △的面积等于24cm ;(2)设经过t 秒后,PQ 的长度等于210cm由222PQ BP BQ =+,即2240(5)(2)t t =-+,解得:t=3或-1(舍),∴3秒后,PQ 的长度为;(3)假设经过t 秒后,PBQ △的面积等于27cm ,即72BQ BP ⨯=,()2572t t -⨯=,整理得:2570t t -+=,由于24252830b ac -=-=-<,则原方程没有实数根,∴PQB △的面积不能等于27cm .【点睛】本题主要考查一元二次方程的应用,关键在于理解清楚题意,找出等量关系列出方程求解,判断某个三角形的面积是否等于一个值,只需根据题意列出方程,判断该方程是否有解,若有解则存在,否则不存在.22.(1)y =x +1,2y x =;(2)(-5,0)或(3,0)【分析】(1)根据反比例函数的图象过点A (1,2),可以求得反比例函数的解析式,然后即可得到点B 的坐标,再根据一次函数y =kx +b 的图象过点A 和点B ,然后即可得到一次函数的解析式;(2)根据一次函数的解析式可以得到一次函数与x 轴的交点,然后根据△ABP 的面积是6,即可求得点P 的坐标.【详解】解:(1)∵反比例函数m y x =的图象过点A (1,2),B (n ,-1),∴21m =,解得m =2,即反比例函数的解析式为2y x =,∴21n-=,解得n =-2,∴点B (-2,-1),∵一次函数y =kx +b 的图象过点A (1,2),B (-2,-1),∴221k b k b +=⎧⎨-+=-⎩,解得11k b =⎧⎨=⎩,即一次函数的解析式为y =x +1;(2)设点P 的坐标为(p ,0),∵一次函数y =x +1,∴当y =0时,x =-1,∵△ABP 的面积是6,点A (1,2),B (-2,-1),∴()()12162p --⨯--⎡⎤⎣⎦=,解得p =-5或p =3,即点P 的坐标为(-5,0)或(3,0).【点睛】本题考查反比例函数与一次函数的交点问题、三角形的面积,解答本题的关键是明确题意,利用数形结合的思想解答.23.(1)2;(2(3【分析】(1)设1(A x ,0),2(B x ,0),12()x x <,根据题意可得1x ,2x 为方程222(1)20(0)x m x m m m -+++=>的根,解出1x ,2x ,进而得出212AB x x =-=.(2)过点A 作AD BC ⊥,垂足为点D ,根据角平分线的性质可得AD OA m ==,推测出sin OC AD OBC BC AB∠==,进而解得2(2)BC m =+,在Rt BOC 中利用勾股定理可得,m =(3)连接PB ,P 为对称轴上的点,所以PA PB =,又PAC ∆为等边三角形推出PA PC =,进而可得点A ,B ,C 在以P 为圆心,PA 为半径的圆P 上,推出1302OBC APC ∠=∠=︒,进而可得tan OC OBC OB ∠==m .【详解】解:(1)设1(A x ,0),2(B x ,0),12()x x <,1x ,2x 为方程222(1)20(0)x m x m m m -+++=>的根,即1x ,2x 为方程()[(2)]0(0)x m x m m --+=>的根,所以1x m =,2x m 2=+所以212AB x x =-=.(2)过点A 作AD BC ⊥,垂足为点D ,若AC 平分OCB ∠,则有AD OA m ==,因为sin OC ADOBC BC AB ∠==,即222m m mBC +=,所以2(2)BC m =+,在Rt BOC 中,因为222OC OB BC +=,所以2222(2)(2)[2(2)]m m m m +++=+,即2222(2)(2)4(2)m m m m +++=+,0m >,所以2(2)0m +≠,所以214m +=,解得m =(3)存在点P 满足题意,连接PB ,则有PA PB =,因为PAC ∆为等边三角形,所以PA PC =,所以PA PB PC ==,所以点A ,B ,C 在以P 为圆心,PA 为半径的圆P 上,所以11603022OBC APC ∠=∠=⨯︒=︒,所以tan 3OCOBC OB ∠==,因为0m >,所以20m +≠,所以3m =.【点睛】本题考查二次函数的图象和性质,角平分线,等边三角形的判定,解题的关键是掌握相关知识的,利用数形结合的思想来解答,属于中档题.24.(1)证明见解析;(2)①110(020)2y x x =-+<<;②10011;(3【分析】(1)根据两角对应相等的两个三角形相似即可证明;(2)①作GH ⊥BF 于H .利用三角形的中位线定理,推出EC=2y ,再根据DE+EC=20,即可解决问题;②由85EC BG =,可以假设EC=8k ,BG=5k ,利用相似三角形的性质构建方程求出k 即可解决问题;(3)连接BE ,先证△ADE ≌△ABF ,设DE=a ,CD=BC=b ,则==BF DE a ,根据112EBG ECB BFE EBC S S S S S =+=+△△△△及14S S =,构建一元二次方程,即可解决问题.【详解】证明:(1)AE AF ⊥ ,90EAF ∴∠=︒,四边形ABCD 是矩形,90BAD ABC ABF D ∴∠=∠=∠=∠=︒,EAF BAD ∴∠=∠,FAB DAE ∴∠=∠,90ABF D ∠=∠=︒ ,ADE ∴V ∽ABF ;(2)①如图1中,作GH BF ⊥于H ,90GHF C ∠=∠=︒ ,//GH EC ∴,FG GE = ,FH HC ∴=,22EC GH y ∴==,20DE EC CD AB +=== ,220x y ∴+=,110(020)2y x x ∴=-+<<.②∵85ECBG =,∴假设8EC k =,5BG k =,∵2EC GH =,∴4GH k =,∴3BH k ==,∴310FH CH k ==+,∴610FB k =+∵1102y x =-+,∴208x k =-,∵ADE ∽ABF ,AD ABDE BF ∴=,即102020-8610k k =+,解得:1511k =,∴10011x =;(3)如图2中,连接BE ,∵ABCD 为矩形且AB=BC ,∴四边形ABCD 为正方形,∴AB=AD ,∠ABF=∠ADE=90°,又∵AF ⊥AE ,∴∠FAB+∠BAE=∠BAE+∠EAD=90°,∴∠FAB=∠EAD ,∴△ADE ≌△ABF ,设DE a =,CD BC b ==,∴==BF DE a ,∴112EBG ECB BFE EBCS S S S S =+=+△△△△()()221111142244a b a b a b a ab=-+-=--∵2S b =,14S S =,∴2222b b a ab =--,即220b ab a --=,∴210b b a a ⎛⎫⎛⎫--= ⎪ ⎝⎭⎝⎭,∴12b a +=或12b a -=(舍去),∴DC DE 【点睛】本题属于相似形综合题,考查了相似三角形的判定和性质,正方形的性质,三角形的中位线定理,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题.。

湘教版九年级上期末测数学试卷及答案

湘教版九年级上期末测数学试卷及答案

九年级数学期末试卷(时间:120分钟;总分:120分)一.选择题(每小题3分,共30分)1.方程x 2=x 的解是 ( )A.x=0B.x=1C.x=±1D.x=1,x=0 2、如果反比例函数xky =的图像经过点(-3,-4),那么函数的图像应在( ) A 、 第一、三象限 B 、 第一、二象限 C 、 第二、四象限 D 、 第三、四象限3.一斜坡长10m ,它的高为6m ,将重物从斜坡起点推到坡上4m 处停下,则停下地点的高度为 ( ) A .2 m B .2.4 m C .3 m D .4 m4.方程x 2-2x-3=0变为(x+a)2=b 的形式,正确的是 ( ) A. (x+1)2=4 B (x-1)2=4 C. (x+1)2=3 D.(x-1)2=35.如图,若将四根木条钉成的矩形木框变为平行四边形ABCD ,并使其面积为矩形面积的一半,则这个平行四边形的一个最小内角的值等于 ( )A.30ºB. 45ºC.600D.9006.用13m 的铁丝网围成一个长边靠墙面积为20m 2的长方形,求这个长方形的长和宽,设平行于墙的一边为x m ,可得方程 ( ) A .(13)20x x -= B .20)13(2=-x xC .113202x x ⎛⎫-= ⎪⎝⎭D .20)213(2=-x x7.用放大镜将图形放大,应该属于 ( )A.平移变换B. 位似变换C. 旋转变换D. 相似变换8.在ABC 中,∠C=900a,b,c 分别是∠A,∠B ,∠C 的对边.则 ( ) A.b =c.sinA B. b=a.tanA C.a=c.cosB D.c =a.sinA9.关于x 的一元二次方程kx 2+2x -1=0有两个不相等的实数根,则k 的取值范围是 ( ) A. k>-1 B. k>1 C. k ≠0D. k>-1且k ≠0X10.小强和小明去测量一座古塔的高度,他们在离古塔60m 的A 处,用测角仪器测得塔顶B 的仰角为30°,已知测角仪器高为1.5m ,则古塔的高为( ) A. 1.5)m B. 1.5)m C .31.5mD .28.5m二、填空题(每小题4分,共40分)1.一元二次方程(x+3)(x-3) = 2x 化为一般形式,二次项系数为: , 一次项系数为: ,常数项为:2. 反比例函数()0>=k xky 在第一象限内的图象如图,点M 是图像上一点,MP 垂直x 轴于点P ,如果△MOP 的面积为1, 那么k 的值是 ;3.已知:y=x 2-6x+8,当y=0时,x= 4.若△ABC ∽△A ′B ′C ′,且43=''B A AB ,△ABC 的周长为12cm ,则△A ′B ′C ′的周长为 ;5. 已知y -2与x 成反比例,当x =3时,y =1,则y 与x 间的函数关系式为 ;6.梯形的中位线长为12cm ,一条对角线把中位线分成1:3两部分,则梯形较长的底边为 cm.7. 若25a b =,则a ba b+-=_________. 8.如图:D,E 分别在AC ,AB 上,且DE 与BC 不平行, 请填上一个适当的条件: 可得△ADE ∽△ABC9.C 点为线段AB 上的黄金分割点(AC >BC ),若AB=10cm ,则AC=10.等腰三角形的边长是方程0862=+-x x 的解,则这个三角形的周长是______。

湘教版九年级上册数学期末测试卷(完整版)

湘教版九年级上册数学期末测试卷(完整版)

湘教版九年级上册数学期末测试卷一、单选题(共15题,共计45分)1、已知函数是二次函数,则m的值为()A.-2B.±2C.D.2、如图,在△ABC中,已知MN∥BC,DN∥MC.以下四个结论:① ;② ;③ ;④ . 其中正确结论的个数为( )A.1B.2C.3D.43、方程x(x﹣1)=5(x﹣1)的解是()A.1B.5C.1或5D.无解4、在中,,则边的长为()A. B. C. D.5、已知关于x的一元二次方程(m-1)x2+x+m2+2m-3=0的一个根为0,则m的值为( )A.1B.1和-3C.-3D.不等于1的任何数6、如图,在△ABC中,,分别交AB,AC于点D,E.若AD=1,DB=3,则的面积与的面积的比等于()A. B. C. D.7、如图,在平行四边形中,,,那么的值等于()A. B. C. D.8、如图,点A是反比例函数交反比例函数的图象于点B,以AB为边作平行四边形ABCD,其中C,D在x轴上,则平行四边形ABCD的面积为()A.2B.3C.4D.59、如图,△ABC的中线BE、CF交于点O,直线AD∥BC,与CF的延长线交于点D,则S△AEF :S△AFD为()A.1:2B.3:2C.2:3D.3:410、如图,在四边形ABCD中,∠ABC=∠BCD=90°,,把沿着AC翻折得到,若,则线段DE的长度()A. B. C. D.11、如图,AD∥BE∥CF,直线l1、l2与这三条平行线分别交于点A、B、C和点D、E、F,若AB=2,AC=6,DE=1.5,则DF的长为()A.7.5B.6C.4.5D.312、如图,点A为反比例函数图象上一点,过A作AB⊥x轴于点B,连接OA,则△ABO的面积为()A.4B.﹣2C.2D.无法确定13、方程(x+1)(x-2)=x+1的解是()A.2B.3C.-1,2D.-1,314、如图,已知O是坐标原点,△OBC与△ODE是以0点为位似中心的位似图形,且△OBC与△ODE的相似比为1:2,如果△OBC内部一点M的坐标为(x,y),则M在△ODE中的对应点M′的坐标为()A.(﹣x,﹣y)&nbsp;B.(﹣2x,﹣2y)C.(﹣2x,2y)D.(2x,﹣2y)15、如图,若点M是x轴正半轴上的任意一点,过点M作PQ∥y轴,分别交函数(x>0)和(x>0)的图象于点P和Q,连接OP、OQ,则下列结论正确的是()A.∠POQ不可能等于90°B.C.这两个函数的图象一定关于x轴对称D.△POQ的面积是二、填空题(共10题,共计30分)16、已知实数a,b,c满足a+b+c=10,且,则的值是________17、如图,L1是反比例函数y= 在第一象限内的图像,且过点A(2,1),L2与L1关于x轴对称,那么图像L2的函数解析式为________(x>0).18、如图是百度地图的一部分(比例尺1:4000000).按图可估测杭州在嘉兴的南偏西________度方向上,杭州到嘉兴的图上距离约2cm,则杭州到嘉兴的实际距离约为________.19、已知x=﹣1是关于x的方程2x2+ax﹣a2=0的一个根,则a=________.20、若,则=________.21、△ABC与△DEF相似,其面积比为1:4,则它们的相似比为________.22、如图,小明在某天15:00时测量某树的影长时,日照的光线与地面的夹角∠ACB=60°,当他在17:00时测量该树的影长时,日照的光线与地面的夹角∠ADB=30°,若两次测得的影长之差CD长为m,则树的高度为________m.23、一块矩形菜地的面积是120平方米,如果它的长减少2米,那么菜地就变成了正方形,则原矩形的长是________ 米.24、如图,E为平行四边形ABCD的边AD延长线上-一点,且D为AE的黄金分割点,BE交DC于点F,若AB= +1,且AD>DE,则CF的长为________ 。

湘教版九年级数学上册期末考试及答案【完整版】

湘教版九年级数学上册期末考试及答案【完整版】

湘教版九年级数学上册期末考试及答案【完整版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣15的绝对值是( ) A .﹣15 B .15C .﹣5D .5 2.已知a 、b 、c 是△ABC 的三条边长,化简|a +b -c|-|c -a -b|的结果为( )A .2a +2b -2cB .2a +2bC .2cD .0 3.已知α、β是方程x 2﹣2x ﹣4=0的两个实数根,则α3+8β+6的值为( )A .﹣1B .2C .22D .304.在平面直角坐标中,点M(-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限5.已知平行四边形ABCD ,AC 、BD 是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是( )A .∠BAC=∠DCAB .∠BAC=∠DAC C .∠BAC=∠ABD D .∠BAC=∠ADB6.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x 个队参赛,根据题意,可列方程为( )A .()11362x x -=B .()11362x x += C .()136x x -=D .()136x x +=7.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A.4 B.3 C.2 D.18.填在下面各正方形中四个数之间都有相同的规律,根据这种规律m的值为()A.180 B.182 C.184 D.1869.如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E 在AD的延长线上,则∠CDE的度数为()A.56°B.62°C.68°D.78°10.如图,能判定EB∥AC的条件是()A.∠C=∠1 B.∠A=∠2C.∠C=∠3 D.∠A=∠1二、填空题(本大题共6小题,每小题3分,共18分)1.计算:2131|32|2218-⎛⎫--+=⎪⎝⎭____________.2.分解因式:x3﹣4xy2=_______.3.以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是__________.4.如图,已知△ABC的两边AB=5,AC=8,BO、CO分别平分∠ABC、∠ACB,过点O 作DE ∥BC ,则△ADE 的周长等于__________.5.如图,直线l 为y=3x ,过点A 1(1,0)作A 1B 1⊥x 轴,与直线l 交于点B 1,以原点O 为圆心,OB 1长为半径画圆弧交x 轴于点A 2;再作A 2B 2⊥x 轴,交直线l 于点B 2,以原点O 为圆心,OB 2长为半径画圆弧交x 轴于点A 3;……,按此作法进行下去,则点A n 的坐标为__________.6.如图,已知Rt △ABC 中,∠B=90°,∠A=60°,AC=23+4,点M 、N 分别在线段AC 、AB 上,将△ANM 沿直线MN 折叠,使点A 的对应点D 恰好落在线段BC 上,当△DCM 为直角三角形时,折痕MN 的长为__________.三、解答题(本大题共6小题,共72分)1.(1)计算:()201713302-⎛⎫--+︒ ⎪⎝⎭ (2)解方程:214111x x x ++=--2.先化简,再求值:24211326x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中21x =.3.如图所示抛物线2y ax bx c =++过点()1,0A -,点()0,3C ,且OB OC =(1)求抛物线的解析式及其对称轴;(2)点,D E 在直线1x =上的两个动点,且1DE =,点D 在点E 的上方,求四边形ACDE 的周长的最小值;(3)点P 为抛物线上一点,连接CP ,直线CP 把四边形CBPA 的面积分为3∶5两部分,求点P 的坐标.4.如图,正方形ABCD 中,M 为BC 上一点,F 是AM 的中点,EF ⊥AM ,垂足为F ,交AD 的延长线于点E ,交DC 于点N .(1)求证:△ABM ∽△EFA ;(2)若AB=12,BM=5,求DE 的长.5.我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;平均数(分)中位数(分)众数(分)初中部85高中部85 100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.平均数(分)中位数(分)众数(分)初中部85 85 85高中部85 80 1006.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、D4、B5、C6、A7、B8、C9、C10、D二、填空题(本大题共6小题,每小题3分,共18分)1、2+2、x (x+2y )(x ﹣2y )3、30°或150°.4、135、2n ﹣1,06 三、解答题(本大题共6小题,共72分)1、(1)﹣2;(2)无解.2.3、(1)2y x 2x 3=-++,对称轴为直线1x =;(2)四边形ACDE 的周长最小1;(3)12(4,5),(8,45)P P --4、(1)略;(2)4.95、(1)(2)初中部成绩好些(3)初中代表队选手成绩较为稳定6、(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.。

湘教版九年级上册数学期末考试试题有答案

湘教版九年级上册数学期末考试试题有答案

湘教版九年级上册数学期末考试试卷一、选择题。

(每小题只有一个正确答案)1.如果∠A 是锐角,且sin A =12,那么∠A 的度数是( )A .90°B .60°C .45°D .30°2.若(2)10m m x mx ++-=是关于x 的一元二次方程,则 A .m =±2B .m =2C .m =-2D .m ≠ ±23.若ABC DEF ∽,且AB :DE 1:3=,则ABC DEF S :S (? = )A .1:3B .1:9C .D .1:1.54.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表数据,从中选择一名成绩好且发挥稳定的参加比赛,应该选择( ) A .甲B .乙C .丙D .丁5.关于反比例函数y=2x,下列说法中错误的是( ) A .它的图象是双曲线 B .它的图象在第一、三象限 C .y 的值随x 的值增大而减小D .若点(a ,b )在它的图象上,则点(b ,a )也在它的图象上 6.对于二次函数22(1)2y x =-+的图象,下列说法正确的是 A .开口向下;B .对称轴是直线x =-1;C .顶点坐标是(-1,2);D .与x 轴没有交点.7.如图,在▱ABCD 中,E 是AB 的中点,EC 交BD 于点F ,那么EF 与CF 的比是( )A .1:2B .1:3C .2:1D .3:18.如图,四边形OABC 是矩形,四边形ADEF 是正方形,点A 、D 在x 轴的负半轴上,点C 在y 轴的正半轴上,点F 在AB 上,点B 、E 在反比例函数ky x=(k 为常数,k ≠0)的图象上,正方形ADEF的面积为16,且BF=2AF,则k值为A.-8 B.-12 C.-24 D.-369.若二次函数22y x x m=-+的图像与x轴有两个交点,则实数m的取值范围是()A.m1≥B.1m C.1m D.1m<二、填空题10.方程2x x=的根是____________.11.已知反比例函数y=2mx-,当x>0时,y随x增大而减小,则m的取值范围是_____.12.若3m=2n,那么m:n=_____.13.如图,要使△ABC与△DBA相似,则只需添加一个适当的条件是_____(填一个即可)14.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y钱,根据题意可列出方程组____.15.已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m =0的解为_____.三、解答题16.计算:201921(1)()022sin6---︒+17.如图,在△ABC 中,D ,E 分别是边AB ,AC 上的点,连接DE ,且∠ADE =∠ACB . (1)求证:△ADE ∽△ACB ;(2)如果E 是AC 的中点,AD =8,AB =10,求AE 的长.18.某校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中只选一类最喜爱的电视节目,以下是根据调查结果绘制的不完整统计表,根据表中信息,回答下列问题: (1)本次共调查了______名学生;(2)若将各类电视节目喜爱的人数所占比例绘制成扇形统计图,则“喜爱体育”对应扇形的圆心角度数是_________度;(3)该校共有1500名学生,根据调查结果估计该校“喜爱体育”节目的学生人数.19.已知关于x 的方程2610x x k -++=有两个实数根x 1,x 2. (1)求实数k 的取值范围; (2)若方程的两个实数根x 1,x 2满足121112x x +=-,求k 的值.20.如图,小明今年国庆节到青城山游玩,乘坐缆车,当登山缆车的吊箱经过点A 到达点B时,它经过了200m ,缆车行驶的路线与水平夹角∠α=16°,当缆车继续由点B 到达点D 时,它又走过了200m ,缆车由点B 到点D 的行驶路线与水平面夹角∠β=42°,求缆车从点A 到点D 垂直上升的距离.(结果保留整数)(参考数据:sin16°≈0.27,cos16°≈0.77,sin42°≈0.66,cos42°≈0.74)21.如图,在足够大的空地上有一段长为20米的旧墙MN ,某人利用旧墙和木栏围成一个矩形菜园ABCD ,其中AD ≤MN ,已知矩形菜园的一边靠墙,另三边一共用了80米木栏.若所围成的矩形菜园的面积为350平方米,求所利用旧墙AD 的长.22.在平面直角坐标系中,一次函数y ax b =+(a≠0)的图象与反比例函数(0)ky k x=≠的图象交于第二、第四象限内的A 、B 两点,与y 轴交于点C ,过点A 作AH ⊥y 轴,垂足为点H ,OH=3,tan ∠AOH=43,点B 的坐标为(m ,-2).(1)求该反比例函数和一次函数的解析式; (2)求△AHO 的周长.23.已知二次函数y =﹣x 2+bx +c 的图象经过点A (﹣1,0),C (0,3).(1)求二次函数的解析式; (2)在图中,画出二次函数的图象;(3)根据图象,直接写出当y ≤0时,x 的取值范围.24.在平面直角坐标系中,抛物线22y mx x n =-+与x 轴的两个交点分别是(3,0)A -、(1,0)B ,C 为顶点.(1)求m 、n 的值和顶点C 的坐标;(2)在y 轴上是否存在点D ,使得ACD ∆是以AC 为斜边的直角三角形?若存在,求出点D 的坐标;若不存在,请说明理由.25.定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.(1)如图1,已知Rt△ABC在正方形网格中,请你只用无刻度的直尺在网格中找到一点D,使四边形ABCD是以AC为“相似对角线”的四边形(保留画图痕迹,找出3个即可);(2)如图2,在四边形ABCD中,∠ABC=80°,∠ADC=140°,对角线BD平分∠ABC.求证:BD是四边形ABCD的“相似对角线”;(3)如图3,已知FH是四边形EFCH的“相似对角线”,∠EFH=∠HFG=30°,连接EG,若△EFG的面积为FH的长.参考答案1.D【分析】利用特殊角的三角函数值解答即可.【详解】A∠是锐角,且1 sin2A=,∴A∠的度数是30.故选D.【点睛】此题考查特殊角的三角函数值,关键是利用特殊角的三角函数值解答.【分析】根据一元二次方程的定义,令系数不为0,指数为2即可解答. 【详解】∵方程(2)10m m x mx ++-=是关于x 的一元二次方程, ∴|m|=2,m +2≠0, 解得m =2. 故选:B . 【点睛】本题考查了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax 2+bx +c =0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点. 3.B 【解析】∵△ABC ∽△DEF ,且AB :DE=1:3, ∴S △ABC :S △DEF =1:9. 故选B . 4.A 【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加. 【详解】∵x 甲=x 丙>x 乙=x 丁,∴从甲和丙中选择一人参加比赛,∵2S 甲=2S 乙<2S 丙<2S 丁,∴选择甲参赛, 故选A . 【点睛】此题主要考查了平均数和方差的应用,解题关键是明确平均数越高,成绩越高,方差越小,成绩越稳定.5.C 【分析】根据反比例函数y=2x的图象上点的坐标特征,以及该函数的图象的性质进行分析、解答.【详解】A.反比例函数2yx的图像是双曲线,正确;B.k=2>0,图象位于一、三象限,正确;C.在每一象限内,y的值随x的增大而减小,错误;D.∵ab=ba,∴若点(a,b)在它的图像上,则点(b,a)也在它的图像上,故正确.故选C.【点睛】本题主要考查反比例函数的性质.注意:反比例函数的增减性只指在同一象限内.6.D【分析】由抛物线解析式可直接得出抛物线的开口方向、对称轴、顶点坐标,可判断A、B、C,令y =0利用判别式可判断D,则可求得答案.【详解】∵y=2(x−1)2+2,∴抛物线开口向上,对称轴为x=1,顶点坐标为(1,2),故A、B、C均不正确,令y=0可得2(x−1)2+2=0,可知该方程无实数根,故抛物线与x轴没有交点,故D正确;故选:D.【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x−h)2+k中,对称轴为x=h,顶点坐标为(h,k).7.A【分析】根据平行四边形的性质可以证明△BEF∽△DCF,然后利用相似三角形的性质即可求出答案.【详解】解:由平行四边形的性质可知:AB∥CD,∴△BEF∽△DCF,∵点E是AB的中点,∴12 BE BEAB CD==∴12 EF BECF CD==,故选A.【点睛】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于基础题型.8.C【分析】先由正方形ADEF的面积为16,得出边长为4,BF=2AF=8,AB=AF+BF=4+8=12.再设B点坐标为(t,12),则E点坐标(t−4,4),根据点B、E在反比例函数kyx=的图象上,利用根据反比例函数图象上点的坐标特征得k=12t=4(t−4),即可求出k=−24.【详解】∵正方形ADEF的面积为16,∴正方形ADEF的边长为4,∴BF=2AF=8,AB=AF+BF=4+8=12.设B点坐标为(t,12),则E点坐标(t−4,4),∵点B、E在反比例函数kyx=的图象上,∴k=12t=4(t−4),解得t=-2,k=−24.故选C.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数kyx=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.9.D【解析】【分析】由抛物线与x 轴有两个交点可得出△=b 2-4ac >0,进而可得出关于m 的一元一次不等式,解之即可得出m 的取值范围. 【详解】∵抛物线y=x 2-2x+m 与x 轴有两个交点, ∴△=b 2-4ac=(-2)2-4×1×m >0,即4-4m >0, 解得:m <1. 故选D . 【点睛】本题考查了抛物线与x 轴的交点,牢记“当△=b 2-4ac >0时,抛物线与x 轴有2个交点”是解题的关键. 10.0和1 【分析】观察本题形式,用因式分解法比较简单,在移项提取x 后,左边将变成两个式子相乘为0的情况,让每个式子分别为0,即可求出x . 【详解】移项得:20x x -=, 即()10x x -=, 解得:1201x x ==,. 故答案为:0和1 . 【点睛】本题考查了因式分解法解一元二次方程,因式分解法是解一元二次方程的一种简便方法,要会灵活运用.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法. 11.m >2. 【解析】分析:根据反比例函数y =2m x-,当x >0时,y 随x 增大而减小,可得出m ﹣2>0,解之即可得出m 的取值范围. 详解:∵反比例函数y =2m x-,当x >0时,y 随x 增大而减小,∴m ﹣2>0,解得:m >2.故答案为m>2.点睛:本题考查了反比例函数的性质,根据反比例函数的性质找出m﹣2>0是解题的关键.12.2:3【分析】根据比例的定义即可求解.【详解】∵3m=2n∴23 mn=即m:n=2:3故填:2:3.【点睛】此题主要考查比例的性质,解题的关键是熟知比例的定义. 13.∠C=∠BAD(答案不唯一)【详解】试题分析:∵∠B=∠B(公共角),∴可添加:∠C=∠BAD.此时可利用两角法证明△ABC与△DBA相似.故答案可为:∠C=∠BAD.考点:相似三角形的判定.14.83 74 x yx y-=⎧⎨-=-⎩.【分析】设合伙人数为x人,物价为y钱,根据“每人出8钱,会多3钱;每人出7钱,又会差4钱”,即可得出关于x,y的二元一次方程组,此题得解.【详解】设合伙人数为x人,物价为y钱,依题意,得:8374x yx y-=⎧⎨-=-⎩.故答案为8374x yx y-=⎧⎨-=-⎩.【点睛】本题考查了由实际问题抽象出二元一次方程组以及数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.15.x 1=﹣1或x 2=3.【分析】由二次函数y =﹣x 2+2x +m 的部分图象可以得到抛物线的对称轴和抛物线与x 轴的一个交点坐标,然后可以求出另一个交点坐标,再利用抛物线与x 轴交点的横坐标与相应的一元二次方程的根的关系即可得到关于x 的一元二次方程﹣x 2+2x +m =0的解.【详解】解:依题意得二次函数y =﹣x 2+2x +m 的对称轴为x =1,与x 轴的一个交点为(3,0), ∴抛物线与x 轴的另一个交点横坐标为1﹣(3﹣1)=﹣1,∴交点坐标为(﹣1,0)∴当x =﹣1或x =3时,函数值y =0,即﹣x 2+2x +m =0,∴关于x 的一元二次方程﹣x 2+2x +m =0的解为x 1=﹣1或x 2=3.故答案为x 1=﹣1或x 2=3.【点睛】本题考查了关于二次函数与一元二次方程,在解题过程中,充分利用二次函数图象,根据图象提取有用条件来解答,这样可以降低题的难度,从而提高解题效率.16.1-【分析】根据实数的性质即可化简求解.【详解】201921(1)()022sin6---︒+=1-【点睛】此题主要考查实数的运算,解题的关键是熟知实数的性质.17.(1)证明见解析;(2)【解析】【分析】(1)根据相似三角形的判定即可求出证.(2)由于点E是AC的中点,设AE=x,根据相似三角形的性质可知AD AEAC AB=,从而列出方程解出x的值.【详解】解:(1)∵∠ADE=∠ACB,∠A=∠A,∴△ADE∽△ACB;(2)由(1)可知::△ADE∽△ACB,∴AD AEAC AB=,∵点E是AC的中点,设AE=x,∴AC=2AE=2x,∵AD=8,AB=10,∴8210xx=,解得:x=,∴AE=.【点睛】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于中等题型.18.(1)50;(2)72°;(3)300【分析】(1)利用喜欢新闻类节目的人数除以其频率即可得到调查的总人数;(2)求出喜欢看体育的人数,再求出其频率即可得到对应扇形的圆心角度数(3)利用1500乘以喜欢看体育的的频率即可求解.【详解】解:(1)本次共调查数为4÷0.08=50(人)故填:50;(2)喜欢看戏曲的人数为50×0.06=3人, ∴喜欢看体育的人数为50-4-15-18-3=10人,∴“喜爱体育”对应扇形的圆心角度数是10÷50×360°=72°故填:72°(3)该校共有1500名学生,根据调查结果估计该校“喜爱体育”节目的学生人数为 1500×10÷50=300人【点睛】此题主要考查统计调查的应用,解题的关键是根据题意求出调查的总人数.19.(1)k≤8;(2)k =-13.【分析】(1)由根的情况,根据根的判别式,可得到关于k 的不等式,则可求得k 的取值范围; (2)由根与系数的关系可用k 表示出两根之和、两根之积,由条件可得到关于k 的方程,则可求得k 的值.【详解】(1)∵关于x 的方程2610x x k -++=有两个实数根,∴△≥0,即(-6)2−4(k+1)≥0,解得k≤8;(2)由根与系数的关系可得x 1+x 2=6,x 1x 2=k+1, 由121112x x +=- 可得:2(x 1+x 2)=−x 1x 2,∴2×6=−(k+1),∴k =-13,【点睛】本题主要考查根的判别式及根与系数的关系,熟练掌握根的个数与根的判别式的关系是解题的关键.20.缆车垂直上升了186 m .【分析】在Rt ABC 中,sin 200sin1654BC AB α=⋅=⨯︒≈米,在Rt BDF 中,sin 200sin42132DF BD β=⋅=⨯︒≈,即可求出缆车从点A 到点D 垂直上升的距离.【详解】解:在Rt ABC中,斜边AB=200米,∠α=16°,BC ABα=⋅=⨯︒≈(m),sin200sin1654在Rt BDF中,斜边BD=200米,∠β=42°,=⋅=⨯︒≈,DF BDβsin200sin42132因此缆车垂直上升的距离应该是BC+DF=186(米).答:缆车垂直上升了186米.【点睛】本题考查了解直角三角形的应用-坡度坡角问题,锐角三角函数的定义,结合图形理解题意是解决问题的关键.21.10m【分析】设AB=x米,则BC=(80-2x)米,根据矩形的面积公式得出关于x的一元二次方程,解之即可得出x的值,故可求出AD的长.【详解】解:设AB=xm,则BC=(80-2x)m,根据题意得x(80-2x)=350,解得x1=5,x2=35,当x=5时,80-2x=70>20,不合题意舍去;当x=35时,80-2x=10,答:AD的长为10m.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.22.(1)一次函数为112y x=-+,反比例函数为12yx=-;(2)△AHO的周长为12【详解】分析:(1)根据正切函数可得AH=4,根据反比例函数的特点k=xy为定值,列出方程,求出k的值,便可求出反比例函数的解析式;根据k的值求出B两点的坐标,用待定系数法便可求出一次函数的解析式.(2)由(1)知AH的长,根据勾股定理,可得AO的长,根据三角形的周长,可得答案.详解:(1)∵tan∠AOH=AH OH=43∴AH=43OH=4∴A(-4,3),代入kyx=,得k=-4×3=-12∴反比例函数为12 yx =-∴12 2m -=-∴m=6∴B(6,-2)∴43 62a ba b-+=⎧⎨+=-⎩∴a=12-,b=1∴一次函数为112y x=-+(2)5OA==△AHO的周长为:3+4+5=12点睛:此题考查的是反比例函数图象上点的坐标特点及用待定系数法求一次函数及反比例函数的解析式.23.(1)y=﹣x2+2x+3;(2)该函数图象如图所示;见解析(3)x的取值范围x≤﹣1或x≥3.【分析】(1)用待定系数法将A(﹣1,0),C(0,3)坐标代入y=﹣x2+bx+c,求出b和c即可. (2)利用五点绘图法分别求出两交点,顶点,以及与y轴的交点和其关于对称轴的对称点,从而绘图即可.(3)根据A,B,C 三点画出函数图像,观察函数图像即可求出x 的取值范围.【详解】解:(1)∵二次函数y =﹣x 2+bx+c 的图象经过点A (﹣1,0),C (0,3),∴103b c c --+=⎧⎨=⎩,得23b c =⎧⎨=⎩, 即该函数的解析式为y =﹣x 2+2x+3;(2)∵y =﹣x 2+2x+3=﹣(x ﹣1)2+4,∴该函数的顶点坐标是(1,4),开口向上,过点(﹣1,0),(3,0),(0,3),(2,3), 该函数图象如右图所示;(3)由图象可得,当y≤0时,x 的取值范围x≤﹣1或x≥3.【点睛】本题考查二次函数综合问题,结合待定系数法求二次函数解析式以及二次函数性质和二次函数图像的性质进行分析.24.(1)1m =-,3n =,(-1,4);(2)在y 轴上存在点D (0,3)或D (0,1),使△ACD 是以AC 为斜边的直角三角形【分析】(1)把A(-3,0),B(1,0)代入22y mx x n =-+解方程组即可得到结论;(2)过C 作CE ⊥y 轴于E ,根据函数的解析式求得C(-1,4),得到CE=1,OE=4,设()0D a ,,得到4OD a DE a ==-,,根据相似三角形的性质即可得到结论.【详解】(1)把A(−3,0)、B(1,0)分别代入22y mx x n =-+,96020m n m n ++=⎧⎨-+=⎩,解得:1m =-,3n =,则该抛物线的解析式为:223y x x =--+,∵2223(1)4y x x m =--+=-++,所以顶点C 的坐标为(1-,4);故答案为:1m =-,3n =,顶点C 的坐标为(1-,4);(2)如图1,过点C 作CE ⊥y 轴于点E ,假设在y 轴上存在满足条件的点D ,设D (0,c ),则OD c =,∵()()3014A C --,,,,∴1CE =,3OA =,4OE =,4ED c =-,由∠CDA =90︒得∠1+∠2=90︒,又∵∠2+∠3=90︒,∴∠3=∠1,又∵∠CED =∠DOA =90︒,∴△CED ∽△DOA , ∴CEDOED OA =, 则143cc =-,变形得2430c c -+=,解得11c =,23c =.综合上述:在y轴上存在点D(0,3)或D(0,1),使△ACD是以AC为斜边的直角三角形.【点睛】本题考查了二次函数综合题,待定系数法求函数的解析式,相似三角形的判定和性质,正确的理解题意是解题的关键.25.(1)见解析;(2)证明见解析;(3)【详解】【分析】(1)先求出AB,BC,AC,再分情况求出CD或AD,即可画出图形;(2)先判断出∠A+∠ADB=140°=∠ADC,即可得出结论;(3)先判断出△FEH∽△FHG,得出FH2=FE•FG,再判断出,继而求出FG•FE=8,即可得出结论.【详解】(1)由图1知,∠ABC=90°,AC=5,∵四边形ABCD是以AC为“相似对角线”的四边形,当∠ACD=90°时,△ACD∽△ABC或△ACD∽△CBA,∴12AC ABCD BC==或2AC BCCD AB==,∴CD=10或CD=2.5同理:当∠CAD=90°时,AD=2.5或AD=10,(2)∵∠ABC=80°,BD平分∠ABC,∴∠ABD=∠DBC=40°,∴∠A+∠ADB=140°∵∠ADC=140°,∴∠BDC+∠ADB=140°,∴∠A=∠BDC,∴△ABD∽△BDC,∴BD是四边形ABCD的“相似对角线”;(3)如图3,∵FH是四边形EFGH的“相似对角线”,∴△EFH与△HFG相似,∵∠EFH=∠HFG,∴△FEH∽△FHG,∴FE FH FH FG,∴FH2=FE•FG,过点E作EQ⊥FG于Q,∴,∵12FG×∴12∴FG•FE=8,∴FH2=FE•FG=8,∴【点睛】本题考查了相似三角形的综合题,涉及到新概念、相似三角形的判定与性质等,正确理解新概念,熟练应用相似三角形的相关知识是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湘教版2019九年级数学上期末试卷湘教版2019九年级数学上期末试卷一、选择题1.已知非零实数a,b,c,d满足= ,则下面关系中成立的是()A. B. C.ac=bd D.2.方程2(2x+1)(x﹣3)=0的两根分别为()A. 和3B.﹣和3C. 和﹣3D.﹣和﹣33.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1且k≠0B.k&ge;﹣1 且k≠0C.k>1D.k<1且k≠04.如果A和B是一个直角三角形的两个锐角,那么()A.sinA=cosBB.sinA=sinBC.cosA=cosBD.sinB=cosB5.下面结论中正确的是()A. B. C. D.6.已知一组正数a,b,c,d的平均数为2,则a+2,b+2,c+2,d+2的平均数为()A.2B.3C.4D.67.某中学为了解九年级学生数学学习情况,在一次考试中,从全校500名学生中随机抽取了100名学生的数学成绩进行统计分析,统计结果这100名学生的数学平均分为91分,由此推测全校九年级学生的数学平均分()A.等于91分B.大于91分C.小于91分D.约为91分8.已知点A(m,1)和B(n,3)在反比例函数y= (k>0)的图象上,则()A.mnC.m=nD.m、n大小关系无法确定二、填空题9.若关于x的一元二次方程x2+x+m=0有两个相等的实数根,则m=.10.若1和﹣3是关于x的方程ax2+bc+c=0的两个实根,则方程左边可以因式分解为:.11.方程x2+x﹣1=0的根是.12.如图,AB∥CD∥EF,若= ,则=.13.已知= = ,则=.14.已知m,n是方程2x2﹣3x+1=0的两根,则+ =.15.线段AB=6cm,C为线段AB上一点(AC>BC),当BC= cm时,点C为AB的黄金分割点.16.α为锐角,则sin2α+cos2α=.三、解答题(共64分)17.(6分)计算:|tan60°﹣2|·( +4).18.(6分)作图:如图所示,O为△ABC外一点,以O为位似中心,将△ABC缩小为原图的.(只作图,不写作法和步骤)19.(8分)如图所示,△ABC为直角三角形,&ang;A=30°,(1)求cosA﹣cosB+ sin45°;(2)若AB=4,求△ABC的面积.20.(8分)已知关于x的方程x2﹣(m+2)x+(2m﹣1)=0(1)求证:方程总有两个不相等的实数根;(2)若此方程的一个根是1,求出方程的另一个根.21.(8分)如图,直线y=kx+2与双曲线y= 都经过点A(2,4),直线y=kx+2与x轴、y轴分别交于点B、C两点.(1)求直线与双曲线的函数关系式;(2)求△AOB的面积.22.(8分)公园里有一座假山,在B点测得山顶H的仰角为45°,在A点测得山顶H的仰角是30°,已知AB=10m,求假山的高度CH.23.(10分)如图,E是正方形ABCD的CD边上的一点,BF&perp;AE于F,(1)求证:△ADE∽△BFA;(2)若正方形ABCD的边长为2,E为CD的中点,求△BFA的面积.24.(10分)如图,A(﹣4,)、B(﹣1,2)是反比例函数y= 与一次函数y=kx+b的图象在第二象限内的两个交点,AM&perp;x轴于M,BN&perp;y轴于N,(1)求一次函数的解析式及a的值;(2)P是线段AB上一点,连接PM、PN,若△PAM和△PBN的面积相等,求△OPM的面积.湘教版2019九年级数学上期末试卷答案一、选择题1.已知非零实数a,b,c,d满足= ,则下面关系中成立的是()A. B. C.ac=bd D.【考点】比例线段.【分析】依题意比例式直接求解即可.【解答】解:因为非零实数a,b,c,d满足= ,所以肯定,或ad=bc;故选B【点评】此题考查比例线段问题,能够根据比例正确进行解答是解题关键.2.方程2(2x+1)(x﹣3)=0的两根分别为()A. 和3B.﹣和3C. 和﹣3D.﹣和﹣3【考点】解一元二次方程-因式分解法.【分析】根据已知方程得出两个一元一次方程,求出方程的解即可.【解答】解:2(2x+1)(x﹣3)=0,2x+1=0,x﹣3=0,x1=﹣,x2=3,故选B.【点评】本题考查了解一元二次方程的应用,能把一元二次方程转化成一元一次方程是解此题的关键.3.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1且k≠0B.k&ge;﹣1 且k≠0C.k>1D.k<1且k≠0【考点】根的判别式.【分析】根据根的判别式得出k≠0且(﹣2)2﹣4k·(﹣1)>0,求出即可.【解答】解:∵关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴k≠0且(﹣2)2﹣4k·(﹣1)>0,解得:k>﹣1且k≠0,故选A.【点评】本题考查了根的判别式的应用,能根据已知得出k≠0且(﹣2)2﹣4k·(﹣1)>0是解此题的关键.4.如果A和B是一个直角三角形的两个锐角,那么()A.sinA=cosBB.sinA=sinBC.cosA=cosBD.sinB=cosB【考点】互余两角三角函数的关系.【分析】根据一个角的正弦等于它余角的余弦,可得答案.【解答】解:由A和B是一个直角三角形的两个锐角,得sinA=cosB,故选:A.【点评】本题考查了互余两角三角函数关系,熟记一个角的正弦等于它余角的余弦是解题关键.5.下面结论中正确的是()A. B. C. D.【考点】特殊角的三角函数值.【分析】根据特殊角三角函数值,可得答案.【解答】解:A、sin60°= ,故A错误;B、tan60°= ,故B正确;C、sin45°= ,故C错误;D、cos30°= ,故D错误;故选:B.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.6.已知一组正数a,b,c,d的平均数为2,则a+2,b+2,c+2,d+2的平均数为()A.2B.3C.4D.6【考点】算术平均数.【分析】先根据a,b,c,d的平均数为2可得a+b+c+d=8,再代入可得答案.【解答】解:∵ =2,即a+b+c+d=8,则=4,故选:C.【点评】本题主要考查算术平均数的计算,熟练掌握对于n个数x1,x2,…,xn,则x&macr;= (x1+x2+…+xn)就叫做这n个数的算术平均数是解题的关键.7.某中学为了解九年级学生数学学习情况,在一次考试中,从全校500名学生中随机抽取了100名学生的数学成绩进行统计分析,统计结果这100名学生的数学平均分为91分,由此推测全校九年级学生的数学平均分()A.等于91分B.大于91分C.小于91分D.约为91分【考点】加权平均数.【分析】根据样本估计总体的方法进行选择即可.【解答】解:∵这100名学生的数学平均分为91分,∴全校九年级500名学生的数学平均分约为91分,故选D.【点评】本题考查了加权平均数以及用样本估计总体,掌握方法是解题的关键.8.已知点A(m,1)和B(n,3)在反比例函数y= (k>0)的图象上,则()A.mnC.m=nD.m、n大小关系无法确定【考点】反比例函数图象上点的坐标特征.【分析】由反比例函数的比例系数为正,那么图象过第一,三象限,根据反比例函数的增减性可得m和n的大小关系.【解答】解:∵点A(m,1)和B(n,3)在反比例函数y= (k>0)的图象上,1<3,∴m>n.故选:B.【点评】此题考查了反比例函数图象上点的坐标特征,解决本题的关键是根据反比例函数的比例系数得到函数图象所在的象限,用到的知识点为:k>0,图象的两个分支分布在第一,三象限,在每一个象限内,y随x的增大而减小.二、填空题9.若关于x的一元二次方程x2+x+m=0有两个相等的实数根,则m=.【考点】根的判别式.【分析】根据判别式的意义得到△=12﹣4m=0,然后解一元一次方程即可.【解答】解:根据题意得△=12﹣4m=0,解得m= .故答案为.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.10.若1和﹣3是关于x的方程ax2+bc+c=0的两个实根,则方程左边可以因式分解为:a(x+3)(x﹣1).【考点】解一元二次方程-因式分解法.【分析】利用因式分解法解方程的方法,利用1和﹣3是关于x的方程ax2+bc+c=0的两个实根可判断方程左边含有(x+3)(x﹣1)两因式.【解答】解:∵1和﹣3是关于x的方程ax2+bc+c=0的两个实根,∴a(x+3)(x﹣1)=0,即ax2+bc+c=a(x+3)(x﹣1).答案为a(x+3)(x﹣1).【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).11.方程x2+x﹣1=0的根是.【考点】解一元二次方程-公式法.【分析】此题考查了公式法解一元二次方程,解题时要注意将方程化为一般形式.【解答】解:∵a=1,b=1,c=﹣1∴b2﹣4ac=5>0∴x=﹣.【点评】解此题的关键是熟练应用求根公式,要注意将方程化为一般形式,确定a、b、c的值.12.如图,AB∥CD∥EF,若= ,则=.【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理,得到比例式BD:DF=AC:CE,把已知数据代入计算即可得到= ,进而得出= .【解答】解:∵AB∥CD∥EF,∴BD:DF=AC:CE,∴= ,∴= ,故答案为:.【点评】本题考查平行线分线段成比例定理,灵活运用定理、找准对应关系得到相关的比例式是解题的关键.13.已知= = ,则=.【考点】比例的性质.【分析】根据等比的性质,可得答案.【解答】解:设= = =a,x=3a,y=4a,z=5a.故答案为:.【点评】本题考查了比例的性质,利用等式的性质得出x=3a,y=4a,z=5a是解题关键.14.已知m,n是方程2x2﹣3x+1=0的两根,则+ =3.【考点】根与系数的关系.【分析】根据根与系数的关系可得出m+n= 、mn= ,将+ 统分后代入数据即可得出结论.【解答】解:∵m,n是方程2x2﹣3x+1=0的两根,∴m+n= ,mn= ,∴+ = = =3.故答案为:3.【点评】本题考查了根与系数的关系,熟练掌握“x1+x2=﹣,x1x2= ”是解题的关键.15.线段AB=6cm,C为线段AB上一点(AC>BC),当BC= (9﹣3 )cm时,点C为AB的黄金分割点.【考点】黄金分割.【分析】根据黄金分割点的定义,知AC为较长线段;则AC= AB,代入数据即可得出AC的值,然后计算AB﹣AC即可得到BC.【解答】解:∵C为线段AB的黄金分割点(AC>BC),∴AC= AB= ×6=3 ﹣3(cm),∴BC=AB﹣AC=6﹣(3 ﹣3)=9﹣3 (cm).故答案为(9﹣3 ).【点评】本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中AC= AB&asymp;0.618AB,并且线段AB的黄金分割点有两个.16.α为锐角,则sin2α+cos2α=1.【考点】同角三角函数的关系.【分析】根据锐角三角函数的概念以及勾股定理即可求解.【解答】1解:设直角△ABC中,&ang;C=90°,&ang;A=α,α的对边是a,邻边是b,斜边是c.则有a2+b2=c2,sinα= ,cosα= ,所以sin2α+cos2α= = =1.故答案为:1.【点评】此题综合运用了锐角三角函数的概念和勾股定理.要熟记这一结论:sin2α+cos2α=1,由一个角的正弦或余弦可以求得这个角的余弦或正弦.三、解答题(共64分)17.计算:|tan60°﹣2|·( +4).【考点】实数的运算;特殊角的三角函数值.【分析】直接利用特殊角的三角函数值代入,再结合绝对值的性质求出答案.【解答】解:|tan60°﹣2|·( +4)= ·=2×(2﹣)·=2×(2﹣)(2+ )=2.【点评】此题主要考查了实数运算以及特殊角的三角函数值,正确化简各式是解题关键.18.作图:如图所示,O为△ABC外一点,以O为位似中心,将△ABC缩小为原图的.(只作图,不写作法和步骤) 【考点】作图-位似变换.【分析】分别连接OA、OB、OC,再取它们的中点D、E、F,则△DEF满足条件.【解答】解:如图,△DEF为所作.【点评】本题考查了作图﹣位似变换:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;接着根据位似比,确定能代表所作的位似图形的关键点;然后顺次连接上述各点,得到放大或缩小的图形.19.如图所示,△ABC为直角三角形,&ang;A=30°,(1)求cosA﹣cosB+ sin45°;(2)若AB=4,求△ABC的面积.【考点】解直角三角形.【分析】将特殊角的三角函数值代入求解即可.【解答】解:(1)因为△ABC为直角三角形,&ang;A=30°,所以B=60°,=1(2)若AB=4,则所以【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.20.已知关于x的方程x2﹣(m+2)x+(2m﹣1)=0(1)求证:方程总有两个不相等的实数根;(2)若此方程的一个根是1,求出方程的另一个根.【考点】根与系数的关系;根的判别式.【分析】(1)要证明方程有两个不相等的实数根,即证明△>0即可.△=[﹣(m+2)]2﹣4(2m﹣1)=m2﹣4m+8=(m﹣2)2+4,因为(m﹣2)2&ge;0,可以得到△>0;(2)将x=1代入方程x2﹣(m+2)x+(2m﹣1)=0,求出m的值,进而得出方程的解.【解答】(1)证明:∵△=[﹣(m+2)]2﹣4(2m﹣1)=m2﹣4m+8=(m﹣2)2+4,而(m﹣2)2&ge;0,∴△>0.∴方程总有两个不相等的实数根;(2)解:∵方程的一个根是1,∴12﹣(m+2)+2m﹣1=0,解得:m=2,∴原方程为:x2﹣4x+3=0,解得:x1=1,x2=3.故方程的另一个根是3.【点评】此题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:(1)△>0&hArr;方程有两个不相等的实数根;(2)△=0&hArr;方程有两个相等的实数根;(3)△<0&hArr;方程没有实数根.同时考查了一元二次方程的解的定义.21.如图,直线y=kx+2与双曲线y= 都经过点A(2,4),直线y=kx+2与x轴、y轴分别交于点B、C两点.(1)求直线与双曲线的函数关系式;(2)求△AOB的面积.【考点】反比例函数与一次函数的交点问题.【分析】(1)将点A的坐标分别代入直线y=kx+2与双曲线y= 的解析式求出k和m的值即可;(2)当y=0时,求出x的值,求出B的坐标,就可以求出OB的值,作AE&perp;x轴于点E,由A的坐标就可以求出AE的值,由三角形的面积公式就可以求出结论.【解答】解:(1)∵线y=kx+2与双曲线y= 都经过点A(2,4),∴4=2k+2,4= ,∴k=1,m=8,∴直线的解析式为y=x+2,双曲线的函数关系式为y= ;(2)当y=0时,0=x+2,x=﹣2,∴B(﹣2,0),∴OB=2.作AE&perp;x轴于点E,∵A(2,4),∴AE=4.∴△AOB的面积为:×2×4=4.【点评】本题考查了运用待定系数法求一次函数,反比例函数的解析式的运用,三角形的面积公式的运用,解答时求出的解析式是关键.22.公园里有一座假山,在B点测得山顶H的仰角为45°,在A点测得山顶H的仰角是30°,已知AB=10m,求假山的高度CH.【考点】解直角三角形的应用-仰角俯角问题.【分析】设CH=xm,根据仰角的定义得到&ang;HBC=45°,&ang;HAC=30°,再根据等腰三角形的性质得BC=CH=x,根据含30度的直角三角形三边的关系得AC= x,即10+x= x,解出x即可.【解答】解:如图,设CH=xm,由题意得&ang;HBC=45°,&ang;HAC=30°.在Rt△HBC中,BC=CH=x,在Rt△AHC中,AC= CH= x,∵AB+BC=AC,∴10+x= x,解得x=5( +1).所以假山的高度CH为(5 +5)米.【点评】本题考查了解直角三角形的应用:向上看,视线与水平线的夹角叫仰角.也考查了等腰直角三角形和含30度的直角三角形三边的关系.23.(10分)(2019秋·君山区期末)如图,E是正方形ABCD 的CD边上的一点,BF&perp;AE于F,(1)求证:△ADE∽△BFA;(2)若正方形ABCD的边长为2,E为CD的中点,求△BFA的面积.【考点】相似三角形的判定与性质;正方形的性质.【分析】(1)根据两角相等的两个三角形相似,即可证明△ADE∽△BFA;(2)利用三角形的面积比等于相似比的平方,即可解答.【解答】(1)证明:∵BF&perp;AE于点F,四边形ABCD 为正方形,∴△ADE和△BFA均为直角三角形,∵DC∥AB,∴&ang;DEA=&ang;FAB,∴△ADE∽△BFA;(2)解:∵AD=2,E为CD的中点,∴DE=1,∴AE= = ,∴,∵△ADE∽△BFA,∴=( )2= ,∵S△ADE= ×1×2=1,∴S△BFA= S△ADE= .【点评】本题主要考查三角形相似的性质与判定,熟记相似三角形的判定是解决第(1)小题的关键;第(2)小题中,利用相似三角形的面积比是相似比的平方是解决此题的关键.24.(10分)(2019秋·君山区期末)如图,A(﹣4,)、B(﹣1,2)是反比例函数y= 与一次函数y=kx+b的图象在第二象限内的两个交点,AM&perp;x轴于M,BN&perp;y轴于N,(1)求一次函数的解析式及a的值;(2)P是线段AB上一点,连接PM、PN,若△PAM和△PBN的面积相等,求△OPM的面积.【考点】反比例函数与一次函数的交点问题.【分析】(1)把A、B两点坐标代入y=kx+b可得到k、b 的方程,解方程求出k、b即可得到一次函数解析式;然后把A点坐标代入y= 可得到a的值;(2)先确定M(﹣4,0),N(0,2),利用一次函数图象上点的坐标特征,设P(x,x+ )(﹣4【解答】解:(1)把A(﹣4,)代入y= 得a=﹣4× =﹣2,所以反比例函数解析式为y=﹣;把A(﹣4,)、B(﹣1,2)代入y=kx+b得,解得,所以一次函数解析式为y= x+ ;(2)∵AM&perp;x轴于M,BN&perp;y轴于N,∴M(﹣4,0),N(0,2),设P(x,x+ )(﹣4∵△PAM和△PBN的面积相等,∴· ·(x+4)= ·1·(2﹣x﹣),解得x=﹣。

相关文档
最新文档