【精校】湘教版九年级数学下册期中试卷有答案.doc

合集下载

湘教版九年级数学下册期中考试题及答案【完美版】

湘教版九年级数学下册期中考试题及答案【完美版】

湘教版九年级数学下册期中考试题及答案【完美版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-2的倒数是()A.-2 B.12C.12D.22.已知一个布袋里装有2个红球,3个白球和a个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为13,则a等于()A.1B.2C.3D.43.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是()A.4B.5C.6D.74.一次函数y=kx﹣1的图象经过点P,且y的值随x值的增大而增大,则点P 的坐标可以为()A.(﹣5,3)B.(1,﹣3)C.(2,2)D.(5,﹣1)5.已知正多边形的一个外角为36°,则该正多边形的边数为(). A.12 B.10 C.8 D.66.下列性质中,菱形具有而矩形不一定具有的是()A.对角线相等 B.对角线互相平分C.对角线互相垂直 D.邻边互相垂直7.如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是()A.50°B.60°C.80°D.100°8.如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是()A.80°B.120°C.100°D.90°9.如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E 在AD的延长线上,则∠CDE的度数为()A.56°B.62°C.68°D.78°10.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米二、填空题(本大题共6小题,每小题3分,共18分)14=____________.2.分解因式:2=_______.ab a3.已知二次函数y=x2﹣4x+k的图象的顶点在x轴下方,则实数k的取值范围是__________.4.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=2,则CD=__________.5.如图,△ABC 内接于☉O ,∠CAB=30°,∠CBA=45°,CD ⊥AB 于点D ,若☉O 的半径为2,则CD 的长为__________.6.菱形的两条对角线长分别是方程214480x x -+=的两实根,则菱形的面积为__________.三、解答题(本大题共6小题,共72分)1.解分式方程:(1)214111x x x +-=-- (2)1132422x x +=--2.已知关于x 的一元二次方程x 2+(2m+3)x+m 2=0有两根α,β.(1)求m 的取值范围;(2)若111αβ+=-,则m 的值为多少?3.如图,在四边形ABCD 中,AB DC ,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE .(1)求证:四边形ABCD 是菱形;(2)若5AB =2BD =,求OE 的长.41.如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E是线段AB的中点,连接CE并延长交线段AD于点F.(1)求证:四边形BCFD为平行四边形;(2)若AB=6,求平行四边形BCFD的面积.5.某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:(1)九(1)班的学生人数为,并把条形统计图补充完整;(2)扇形统计图中m= ,n= ,表示“足球”的扇形的圆心角是度;(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、C4、C5、B6、C7、D8、B9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、22、a(b+1)(b﹣1).3、k<44156、24三、解答题(本大题共6小题,共72分)1、(1)无解.(2)5x=-2、(1)34m≥-;(2)m的值为3.3、(1)略;(2)2.4、(1)略;(2).5、(1)40,补全统计图见详解.(2)10;20;72.(3)见详解.。

湘教版九年级数学下册期中考试卷【含答案】

湘教版九年级数学下册期中考试卷【含答案】

湘教版九年级数学下册期中考试卷【含答案】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列二次根式中,最简二次根式的是( ) A .15B .0.5C .5D .502.下列说法中正确的是 ( ) A .若0a <,则20a < B .x 是实数,且2x a =,则0a > C .x -有意义时,0x ≤D .0.1的平方根是0.01±3.在实数|﹣3|,﹣2,0,π中,最小的数是( ) A .|﹣3|B .﹣2C .0D .π4.当1<a<2时,代数式|a -2|+|1-a|的值是( ) A .-1B .1C .3D .-35.如果分式||11x x -+的值为0,那么x 的值为( )A .-1B .1C .-1或1D .1或06.若2x y +=-,则222x y xy ++的值为( ) A .2-B .2C .4-D .47.四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定这个四边形是平行四边形的是( )A .AB ∥DC ,AD ∥BC B .AB=DC ,AD=BC C .AO=CO ,BO=DOD .AB ∥DC ,AD=BC8.如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A 在反比例函数y=6x(x >0)的图象上,则经过点B 的反比例函数解析式为( )A .y=﹣6xB .y=﹣4xC .y=﹣2xD .y=2x9.如图,扇形OAB 中,∠AOB=100°,OA=12,C 是OB 的中点,CD ⊥OB 交AB 于点D ,以OC 为半径的CE 交OA 于点E ,则图中阴影部分的面积是( )A .12π+183B .12π+363C .6π+183D .6π+36310.已知0ab <,一次函数y ax b =-与反比例函数ay x=在同一直角坐标系中的图象可能( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1124503_____. 2.分解因式:34x x -=________.3.已知二次函数y=x 2﹣4x+k 的图象的顶点在x 轴下方,则实数k 的取值范围是__________.4.如图,点A 在双曲线1y=x 上,点B 在双曲线3y=x上,且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为__________.5.如图,抛物线y=﹣x 2+2x+3与y 轴交于点C ,点D (0,1),点P 是抛物线上的动点.若△PCD 是以CD 为底的等腰三角形,则点P 的坐标为__________.6.某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意,可列方程组为____________.三、解答题(本大题共6小题,共72分)1.解方程:33122x x x -+=--2.已知关于x 的一元二次方程2(3)0x m x m ---=. (1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.3.如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A ,(0,3)C .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式; (2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ∆为直角三角形的点P 的坐标.4.如图,四边形ABCD 内接于⊙O ,∠BAD=90°,点E 在BC 的延长线上,且∠DEC=∠BAC .(1)求证:DE 是⊙O 的切线;(2)若AC ∥DE ,当AB=8,CE=2时,求AC 的长.5.某学校为了增强学生体质,决定开设以下体育课外活动项目:A :篮球 B :乒乓球C :羽毛球 D :足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)甲乙丙丁甲﹣﹣﹣(乙,甲)(丙,甲)(丁,甲)乙(甲,乙)﹣﹣﹣(丙,乙)(丁,乙)丙(甲,丙)(乙,丙)﹣﹣﹣(丁,丙)丁(甲,丁)(乙,丁)(丙,丁)﹣﹣﹣参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、B4、B5、B6、D7、D8、C9、C 10、A二、填空题(本大题共6小题,每小题3分,共18分)1、2、x (x +2)(x ﹣2).3、k <44、25、(,2)或(1,2).6、454353x y x y +=⎧⎨-=⎩三、解答题(本大题共6小题,共72分)1、4x =2、(1)证明见解析(2)1或23、(1)抛物线的解析式为223y x x =--+,直线的解析式为3yx.(2)2()1,M -;(3)P 的坐标为(1,2)--或(1,4)-或(-或(-.4、(1)略;(2)AC的长为5. 5、解:(1)200.(2)补全图形,如图所示:(3)列表如下:∵所有等可能的结果为12种,其中符合要求的只有2种,∴恰好选中甲、乙两位同学的概率为21P126==.。

湘教版九年级数学下册期中试卷【带答案】

湘教版九年级数学下册期中试卷【带答案】

湘教版九年级数学下册期中试卷【带答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±12.实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简2a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b3.关于x 的一元一次不等式≤﹣2的解集为x ≥4,则m 的值为( )A .14B .7C .﹣2D .24.若一次函数y kx b =+的图象不经过第二象限,则关于x 的方程20x kx b ++=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定5.将二次函数y=x 2﹣2x+3化为y=(x ﹣h )2+k 的形式,结果为( )A .y=(x+1)2+4B .y=(x ﹣1)2+4C .y=(x+1)2+2D .y=(x ﹣1)2+26.关于x 的方程2(1)(2)x x ρ-+=(ρ为常数)根的情况下,下列结论中正确的是( )A .两个正根B .两个负根C .一个正根,一个负根D .无实数根7.如图是二次函数y=ax 2+bx+c (a ,b ,c 是常数,a ≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x <3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤8.用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加()A.4cm B.8cm C.(a+4)cm D.(a+8)cm 9.如图,已知⊙O的直径AE=10cm,∠B=∠EAC,则AC的长为()A.5cm B.52cm C.53cm D.6cm10.如图,能判定EB∥AC的条件是()A.∠C=∠1 B.∠A=∠2C.∠C=∠3 D.∠A=∠1二、填空题(本大题共6小题,每小题3分,共18分)1.计算:27﹣12=__________.2.因式分解:32-+=_________.69a a a3.已知AB//y轴,A点的坐标为(3,2),并且AB=5,则B的坐标为__________.4.如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=EF,则AB的长为__________.5.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=__________度.6.如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是_____________.三、解答题(本大题共6小题,共72分)1.解方程:33122 xx x-+=--2.已知关于x的方程220x ax a++-=.(1)当该方程的一个根为1时,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.3.如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF(1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.4.如图,四边形ABCD内接于⊙O,∠BAD=90°,点E在BC的延长线上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)若AC∥DE,当AB=8,CE=2时,求AC的长.5.共享经济已经进入人们的生活.小沈收集了自己感兴趣的4个共享经济领域的图标,共享出行、共享服务、共享物品、共享知识,制成编号为A、B、C、D 的四张卡片(除字母和内容外,其余完全相同).现将这四张卡片背面朝上,洗匀放好.(1)小沈从中随机抽取一张卡片是“共享服务”的概率是;(2)小沈从中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请你用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率.(这四张卡片分别用它们的编号A、B、C、D表示)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、A5、D6、C7、A8、B9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)12、2(3)a a -3、(3,7)或(3,-3)4、5、360°.6、5三、解答题(本大题共6小题,共72分)1、4x =2、(1)12,32-;(2)证明见解析. 3、(1)略;(2)S 平行四边形ABCD =244、(1)略;(2)AC 的长为5. 5、(1)14;(2)16。

湘教版九年级数学下册期中试卷【及答案】

湘教版九年级数学下册期中试卷【及答案】

湘教版九年级数学下册期中试卷【及答案】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2的倒数是( )A .2B .12C .12-D .-22.已知25523y x x =-+--,则2xy 的值为( )A .15-B .15C .152-D .1523.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是( )A .4B .5C .6D .74.在平面直角坐标中,点M(-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限5.已知a m =3,a n =4,则a m+n 的值为( )A .7B .12C .D . 6.对于二次函数,下列说法正确的是( ) A .当x>0,y 随x 的增大而增大B .当x=2时,y 有最大值-3C .图像的顶点坐标为(-2,-7)D .图像与x 轴有两个交点7.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .18.如图,AB 、是函数12y x=上两点,P 为一动点,作//PB y 轴,//PA x 轴,下列说法正确的是( )①AOP BOP ∆≅∆;②AOP BOP S S ∆∆=;③若OA OB =,则OP 平分AOB ∠;④若4BOP S ∆=,则16ABP S ∆=A .①③B .②③C .②④D .③④9.若关于x 的一元二次方程2210x x kb -++=有两个不相等的实数根,则一次函数y kx b =+的图象可能是:( )A .B .C .D .10.如图,在矩形ABCD 中,点E 在DC 上,将矩形沿AE 折叠,使点D 落在BC 边上的点F 处.若AB =3,BC =5,则tan ∠DAE 的值为( )A.12B.920C.25D.13二、填空题(本大题共6小题,每小题3分,共18分)1.化简:4=____________.2.因式分解:3x3﹣12x=_______.3.若a、b为实数,且b=22117a aa-+-++4,则a+b=__________.4.如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需__________米.5.如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为_________m.6.如图,圆柱形玻璃杯高为12cm、底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为___________cm.三、解答题(本大题共6小题,共72分)1.解方程:12133xx x -+=--2.先化简代数式1﹣1xx-÷2212xx x-+,并从﹣1,0,1,3中选取一个合适的代入求值.3.已知A(﹣4,2)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数y=mx图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△AOB的面积;(3)观察图象,直接写出不等式kx+b﹣mx>0的解集.4.如图,四边形ABCD内接于⊙O,∠BAD=90°,点E在BC的延长线上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)若AC∥DE,当AB=8,CE=2时,求AC的长.5.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、C4、B5、B6、B7、B8、B9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、22、3x(x+2)(x﹣2)3、5或34、2+235、1 36、15.三、解答题(本大题共6小题,共72分)1、1x=2、-11x+,-14.3、(1)反比例函数解析式为y=﹣8x,一次函数的解析式为y=﹣x﹣2;(2)6;(3)x<﹣4或0<x<2.4、(1)略;(2)AC的长为1655.5、(1)600(2)见解析(3)3200(4)。

湘教版九年级数学下册期中考试题及答案【完整版】

湘教版九年级数学下册期中考试题及答案【完整版】

湘教版九年级数学下册期中考试题及答案【完整版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.估计7+1的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4B .4C .﹣2D .2 3.等式33=11x x x x --++成立的x 的取值范围在数轴上可表示为( ) A .B .C .D . 4.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm )的平均数与方差为:x 甲=x 丙=13,x 乙=x 丁=15:s 甲2=s 丁2=3.6,s 乙2=s 丙2=6.3.则麦苗又高又整齐的是( )A .甲B .乙C .丙D .丁 5.若长度分别为,3,5a 的三条线段能组成一个三角形,则a 的值可以是( )A .1B .2C .3D .86.已知1x =是一元二次方程22(2)40m x x m -+-=的一个根,则m 的值为( )A .-1或2B .-1C .2D .07.如图,函数y=2x 和y=ax+4的图象相交于A(m ,3),则不等式2x ax+4<的解集为( )A.3x2>B.x3>C.3x2<D.x3<8.正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y=x+k 的图象大致是()A. B.C. D.9.如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是()A.24B.14C.13D.2310.如图,点A,B在双曲线y=3x(x>0)上,点C在双曲线y=1x(x>0)上,若AC∥y轴,BC∥x轴,且AC=BC,则AB等于()A2B.2C.4 D.2二、填空题(本大题共6小题,每小题3分,共18分)1.27的立方根是____________.2.分解因式:2x +xy =_______.3.已知二次函数y =x 2,当x >0时,y 随x 的增大而_____(填“增大”或“减小”).4.如图,AB ∥CD ,点P 为CD 上一点,∠EBA 、∠EPC 的角平分线于点F ,已知∠F =40°,则∠E =__________度.5.现有四张正面分别标有数字﹣1,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背而面朝上洗均匀,随机抽取一张,记下数字后放回..,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为m ,n ,则点P (m ,n )在第二象限的概率为__________.6.如图,在ABC ∆中,AB AC =,点A 在反比例函数k y x=(0k >,0x >)的图象上,点B ,C 在x 轴上,15OC OB =,延长AC 交y 轴于点D ,连接BD ,若BCD ∆的面积等于1,则k 的值为_________.三、解答题(本大题共6小题,共72分)1.解方程:24221933x x x x =+---+2.先化简,再求值:2221111x x x x x ++⎛⎫-÷ ⎪--⎝⎭,其中2x =.3.如图,在平面直角坐标系中,抛物线y=ax 2+2x+c 与x 轴交于A (﹣1,0)B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.4.如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点F为BC的中点,连接EF和AD.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为2,∠EAC=60°,求AD的长.5.为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:(1)求n的值;(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B4、D5、C6、B7、C8、A9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、-3.2、()x x+y.3、增大.4、805、3 166、3三、解答题(本大题共6小题,共72分)1、x=12、11x+,13.3、(1)抛物线解析式为y=﹣x2+2x+3;直线AC的解析式为y=3x+3;(2)点M 的坐标为(0,3);(3)符合条件的点P的坐标为(73,209)或(103,﹣139),4、(1)略;(2)AD=.5、(1)50;(2)240;(3)1 2 .。

湘教版九年级数学下册期中测试卷及答案【完整版】

湘教版九年级数学下册期中测试卷及答案【完整版】

湘教版九年级数学下册期中测试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.估计101+的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.若关于x 的不等式组324x a x a <+⎧⎨>-⎩无解,则a 的取值范围是( ) A .a ≤﹣3 B .a <﹣3 C .a >3 D .a ≥33.关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( )A .9B .8C .5D .44.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为( )A .2.147×102B .0.2147×103C .2.147×1010D .0.2147×10115.如图,数轴上两点A,B 表示的数互为相反数,则点B 表示的( )A .-6B .6C .0D .无法确定6.定义运算:21m n mn mn =--☆.例如2:42424217=⨯-⨯-=☆.则方程10x =☆的根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .只有一个实数根7.如图,直线y=kx+b (k ≠0)经过点A (﹣2,4),则不等式kx+b >4的解集为( )A .x >﹣2B .x <﹣2C .x >4D .x <48.如图,∠ACD 是△ABC 的外角,CE 平分∠ACD ,若∠A=60°,∠B=40°,则∠ECD 等于( )A .40°B .45°C .50°D .55°9.如图,一把直尺,60︒的直角三角板和光盘如图摆放,A 为60︒角与直尺交点,3AB =,则光盘的直径是( )A .3B .33C .6D .6310.如图,有一块直角三角形纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cm二、填空题(本大题共6小题,每小题3分,共18分)181____________.2.分解因式:2ab a -=_______.3.若2a b +=,3ab =-,则代数式32232a b a b ab ++的值为__________.4.如图,已知菱形ABCD 的周长为16,面积为83E 为AB 的中点,若P 为对角线BD 上一动点,则EP +AP 的最小值为__________.5.如图,M 、N 是正方形ABCD 的边CD 上的两个动点,满足AM BN =,连接AC 交BN 于点E ,连接DE 交AM 于点F ,连接CF ,若正方形的边长为6,则线段CF 的最小值是__________.6.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同.从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是__________.三、解答题(本大题共6小题,共72分)1.解分式方程:3213x x x --=-2.已知关于x 的一元二次方程(3)(2)(1)x x p p --=+.(1)试证明:无论p 取何值此方程总有两个实数根;(2)若原方程的两根1x ,2x 满足222121231x x x x p +-=+,求p 的值.3.如图,△ABC 中,AB =AC =1,∠BAC =45°,△AEF 是由△ABC 绕点A 按顺时针方向旋转得到的,连接BE ,CF 相交于点D,(1)求证:BE =CF ;(2)当四边形ACDE 为菱形时,求BD 的长.4.如图,在ABC 中,点D E 、分别在边BC AC 、上,连接AD DE 、,且B ADE C ∠=∠=∠.(1)证明:BDA CED △∽△;(2)若45,2B BC ∠=︒=,当点D 在BC 上运动时(点D 不与B C 、重合),且ADE 是等腰三角形,求此时BD 的长.5.某校为了解学生对中国民族乐器的喜爱情况,随机抽取了本校的部分学生进行调查(每名学生选择并且只能选择一种喜爱乐器),现将收集到的数据绘制如下的两幅不完整的统计图.(1)这次共抽取 学生进行调查,扇形统计图中的x = .(2)请补全统计图;(3)在扇形统计图中“扬琴”所对扇形的圆心角是 度;(4)若该校有3000名学生,请你估计该校喜爱“二胡”的学生约有 名.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、C4、C5、B6、A7、A8、C9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、32、a(b+1)(b﹣1).3、-124、5、36、4 9三、解答题(本大题共6小题,共72分)1、95 x=2、(1)证明见解析;(2)-2.3、(1)略(2-14、(1)理由见详解;(2)2BD=1,理由见详解.5、(1)200,15%;(2)统计图如图所示见解析;(3)36;(4)900.。

湘教版九年级数学下册期中考试卷(及参考答案)

湘教版九年级数学下册期中考试卷(及参考答案)

湘教版九年级数学下册期中考试卷(及参考答案)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.比较2的大小,正确的是( )A.2<<B.2<<C2<<D2<<2.下列说法中正确的是 ( )A .若0a <B .x 是实数,且2x a =,则0a > C有意义时,0x ≤D .0.1的平方根是0.01± 3.下列计算正确的是( )A .a 2+a 3=a 5 B.1= C .(x 2)3=x 5 D .m 5÷m 3=m 2 4.若不等式组11324x x x m+⎧<-⎪⎨⎪<⎩无解,则m 的取值范围为( ) A .2m ≤ B .2m < C .2m ≥ D .2m >5.若点1(),6A x -,2(),2B x -,32(),C x 在反比例函数12y x=的图像上,则1x ,2x ,3x 的大小关系是( ) A .123x x x << B .213x x x << C .231x x x << D .321x x x <<6.不等式组26,x x x m -+<-⎧⎨>⎩的解集是4x >,那么m 的取值范围( ) A .4m ≤ B .4m ≥ C .4m < D .4m =7.如图,将一张含有30角的三角形纸片的两个顶点叠放在矩形的两条对边上,若244∠=,则1∠的大小为( )A .14B .16C .90α-D .44α- 8.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22k y (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4- 9.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是( ).A .45°B .60°C .75°D .85°10.如图,在平面直角坐标系中,矩形ABCD 的顶点A ,C 分别在x 轴,y 轴的正半轴上,点D (-2,3),AD =5,若反比例函数k y x=(k >0,x >0)的图象经过点B ,则k 的值为( )A .163B .8C .10D .323二、填空题(本大题共6小题,每小题3分,共18分)1.计算(6-18)×13+26的结果是_____________. 2.因式分解:(x+2)x ﹣x ﹣2=_______.3.正五边形的内角和等于__________度.4.如图,△ABC 中,CD ⊥AB 于D ,E 是AC 的中点.若AD=6,DE=5,则CD 的长等于__________.5.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O )20米的A 处,则小明的影子AM 长为__________米.6.如图,菱形ABCD 顶点A 在例函数y =3x (x >0)的图象上,函数 y =k x(k >3,x >0)的图象关于直线AC 对称,且经过点B 、D 两点,若AB =2,∠DAB =30°,则k 的值为______.三、解答题(本大题共6小题,共72分)1.解分式方程:2311x x x x +=--2.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.3.如图,在四边形ABCD 中,∠ABC=90°,AC=AD ,M ,N 分别为AC ,CD 的中点,连接BM ,MN ,BN .(1)求证:BM=MN ;(2)∠BAD=60°,AC 平分∠BAD ,AC=2,求BN 的长.4.在▱ABCD 中,∠BAD 的平分线交直线BC 于点E ,交直线DC 于点F(1)在图1中证明CE=CF ;(2)若∠ABC=90°,G 是EF 的中点(如图2),直接写出∠BDG 的度数;(3)若∠ABC=120°,FG ∥CE ,FG=CE ,分别连接DB 、DG (如图3),求∠BDG 的度数.5.为了树立文明乡风,推进社会主义新农村建设,某村决定组建村民文体团队,现围绕“你最喜欢的文体活动项目(每人仅限一项)”,在全村范围内随机抽取部分村民进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)这次参与调查的村民人数为人;(2)请将条形统计图补充完整;(3)求扇形统计图中“划龙舟”所在扇形的圆心角的度数;(4)若在“广场舞、腰鼓、花鼓戏、划龙舟”这四个项目中任选两项组队参加端午节庆典活动,请用列表或画树状图的方法,求恰好选中“花鼓戏、划龙舟”这两个项目的概率.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、D4、A5、B6、A7、A8、A9、C10、D二、填空题(本大题共6小题,每小题3分,共18分)12、(x+2)(x﹣1)3、5404、8.5、56、三、解答题(本大题共6小题,共72分)1、x=32、(1)证明见解析(2)1或23、(1)略;(24、(1)略;(2)45°;(3)略.5、(1)120;(2)答案见解析;(3)90°;(4)16.。

湘教版九年级数学下册期中试卷及答案【完美版】

湘教版九年级数学下册期中试卷及答案【完美版】

湘教版九年级数学下册期中试卷及答案【完美版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-2的倒数是( )A .-2B .12-C .12D .22.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-3.在实数|﹣3|,﹣2,0,π中,最小的数是( )A .|﹣3|B .﹣2C .0D .π4.用配方法解方程2680x x --=时,配方结果正确的是( )A .2(3)17x -=B .2(3)14x -=C .2(6)44x -=D .2(3)1x -=5.若长度分别为,3,5a 的三条线段能组成一个三角形,则a 的值可以是( )A .1B .2C .3D .86.关于x 的方程2(1)(2)x x ρ-+=(ρ为常数)根的情况下,下列结论中正确的是( )A .两个正根B .两个负根C .一个正根,一个负根D .无实数根7.如图,等边三角形ABC 中,AD ⊥BC ,垂足为D ,点E 在线段AD 上,∠EBC=45°,则∠ACE 等于( )A .15°B .30°C .45°D .60°8.如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC ∆∆≌的是( )A .CB CD = B .BAC DAC ∠=∠C .BCA DCA ∠=∠D .90B D ∠=∠=︒9.如图,已知⊙O 的直径AE =10cm ,∠B =∠EAC ,则AC 的长为( )A .5cmB .52cmC .53cmD .6cm10.如图,抛物线y =ax 2+bx +c(a ≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac <b 2;②方程ax 2+bx +c =0的两个根是x 1=-1,x 2=3;③3a +c >0;④当y >0时,x 的取值范围是-1≤x <3;⑤当x <0时,y 随x 增大而增大.其中结论正确的个数是( )A .4个B .3个C .2个D .1个二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是__________.2.分解因式:x 3﹣4xy 2=_______.3.若二次根式x2-有意义,则x的取值范围是__________.4.如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加__________m.5.如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是__________.6.如图,已知正方形ABCD的边长为5,点E、F分别在AD、DC上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为__________.三、解答题(本大题共6小题,共72分)1.解分式方程:33122xx x -+=--2.先化简,再求值:24211326x xx x-+⎛⎫-÷⎪++⎝⎭,其中21x=.3.已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.4.如图,AD是△ABC的外接圆⊙O的直径,点P在BC延长线上,且满足∠PAC=∠B.(1)求证:PA是⊙O的切线;(2)弦CE⊥AD交AB于点F,若AF•AB=12 ,求AC的长.5.我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、A5、C6、C7、A8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±4.2、x(x+2y)(x﹣2y)3、x24、-45、x=26三、解答题(本大题共6小题,共72分)1、x=12.3、(1)略;(2)略.4、(1)略;(2).5、(1)(2)初中部成绩好些(3)初中代表队选手成绩较为稳定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

期中测试(时间:90分钟 满分:120分)题号 一二三总分 合分人 复分人 得分一、选择题(每小题3分,共24分)1.抛物线y =x 2-3x +2与y 轴交点的坐标是( )A .(0,2)B .(1,0)C .(0,-3)D .(0,0) 2.已知点A 在半径为r 的⊙O 内,点A 与点O 的距离为6,则r 的取值范围是( ) A .r >6 B .r ≥6 C .r <6 D .r ≤63.(遂宁中考)如图,在半径为5 cm 的⊙O 中,弦AB =6 cm ,OC ⊥AB 于点C ,则OC =( ) A .3 cm B .4 cm C .5 cm D .6 cm4.(株洲中考)如图,圆O 是△ABC 的外接圆,∠A =68°,则∠OBC 的大小是( ) A .22° B .26° C .32° D .68°5.二次函数y =ax 2+bx +c(a≠0)图象上部分点的坐标满足下表:x … -3 -2 -1 0 1 … y … -3 -2 -3 -6 -11 …则该函数图象的顶点坐标为( )A .(-3,-3)B .(-2,-2)C .(-1,-3)D .(0,-6)6.二次函数y =ax 2+bx +c(a≠0)的图象如图所示,则下列结论中正确的是( )A .c>-1B .b>0C .2a +b≠0D .9a +c>3b7.如图,已知点A ,B ,C 三点在半径为3的⊙O 上,AC =4,则sinB =( ) A.13 B.34 C.45 D.238.已知抛物线y =a(x -3)2+254(a≠0)过点C(0,4),顶点为M ,与x 轴交于A ,B 两点.如图所示以AB 为直径作圆,记作⊙D,下列结论:①抛物线的对称轴是直线x =3;②点C 在⊙D 外;③直线CM 与⊙D 相切.其中正确的有( )A .0个B .1个C .2个D .3个二、填空题(每小题4分,共32分)9.如图,已知BD 是⊙O 的直径,点A ,C 在⊙O 上,AB ︵=BC ︵,∠AOB =60°,则∠COD 的度数是____________度.10.已知抛物线y =x 2-3x +m 与x 轴只有一个公共点,则m =____________.11.已知Rt △ABC 的两直角边的长分别为6 cm 和8 cm ,则它的外接圆的半径为____________cm.12.(上海中考)如果将抛物线y =x 2+2x -1向上平移,使它经过点A(0,3),那么所得新抛物线的表达式是______________.13.若二次函数y =2x 2-3的图象上有两个点A(1,m),B(2,n),则m____________n(填“<”“=”或“>”).14.(长沙中考)如图,AB 是⊙O 的直径,点C 是⊙O 上的一点,若BC =6,AB =10,OD ⊥BC 于点D ,则OD 的长为____________.15.(自贡中考)如图,已知AB 是⊙O 的一条直径,延长AB 至C 点,使AC =3BC ,CD 与⊙O 相切于D 点.若CD =3,则劣弧AD 的长为____________.16.(温州中考)某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1 m 宽的门.已知计划中的材料可建墙体(不包括门)总长为27 m ,则能建成的饲养室面积最大为____________m 2.三、解答题(共64分)17.(6分)已知二次函数y =x 2+4x.用配方法把该函数化为y =a(x -h)2+k(其中a ,h ,k 都是常数,且a ≠0)的形式,并指出函数图象的对称轴和顶点坐标.18.(7分)如图所示,已知△ABC 内接于⊙O,AB =AC ,∠BOC =120°,延长BO 交⊙O 于D 点. (1)试求∠BAD 的度数;(2)求证:△ABC 为等边三角形.19.(9分)如图,一次函数y 1=kx +1与二次函数y 2=ax 2+bx -2(a≠0)交于A ,B 两点,且A(1,0),抛物线的对称轴是直线x =-32.(1)求k 和a ,b 的值;(2)根据图象求不等式kx +1>ax 2+bx -2的解集.20.(9分)(无锡中考)如图,已知AB 为⊙O 的直径,点C ,D 在⊙O 上,且BC =6 cm ,AC =8 cm ,∠ABD =45°. (1)求BD 的长;(2)求图中阴影部分的面积.21.(9分)(邵阳中考)为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款成本为40元的可控温杯,并投放市场进行试销售,经过调查发现该产品每天的销售量y(件)与销售单价x(元)满足一次函数关系:y =-10x +1 200.(1)求出利润S(元)与销售单价x(元)之间的关系式(利润=销售额-成本); (2)当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?22.(11分)如图,在Rt △ABC 中,∠ACB =90°,以AC 为直径作⊙O 交AB 于D 点,连接CD. (1)求证:∠A=∠BCD;(2)若M 为线段BC 上一点,试问当点M 在什么位置时,直线DM 与⊙O 相切?并说明理由.23.(13分)如图,抛物线的顶点为A(2,1),且经过原点O ,与x 轴的另一个交点为B. (1)求抛物线的解析式;(2)在抛物线上求点M ,使△MOB 的面积是△AOB 面积的3倍;(3)在x 轴下方的抛物线上是否存在点N ,使△OBN 与△OAB 相似?若存在,求出点N 坐标;若不存在,说明理由.参考答案1.A 2.A 3.B 4.A 5.B 6.D 7.D 8.C 9.12010.94 11.5 12.y =x 2+2x +3 13.< 14.4 15.23π 16.7517.∵y=x 2+4x =(x 2+4x +4)-4=(x +2)2-4,∴对称轴为直线x =-2.顶点坐标为(-2,-4). 18.(1)∵BD 是⊙O 的直径,∴∠BAD =90°(直径所对的圆周角是直角).(2)证明:∵∠BOC=120°,∴∠BAC =12∠BOC=60°.又∵AB=AC ,∴△ABC 是等边三角形.19.(1)把A(1,0)代入一次函数解析式,得k +1=0,解得k =-1.根据题意得⎩⎪⎨⎪⎧-b 2a=-32,a +b -2=0,解得⎩⎪⎨⎪⎧a =12,b =32.(2)解方程组⎩⎪⎨⎪⎧y =-x +1,y =12x 2+32x -2,得⎩⎪⎨⎪⎧x =1,y =0或⎩⎪⎨⎪⎧x =-6,y =7.则B 的坐标是(-6,7).根据图象可得不等式kx +1>ax 2+bx -2的解集是-6<x <1.20.(1)连接OD.∵AB 为⊙O 的直径,∴∠ACB=90°.∵BC =6 cm ,AC =8 cm ,∴AB =10 cm.∴OB=5 cm.∵OD =OB ,∴∠ODB =∠ABD=45°.∴∠BOD =90°.∴BD =OB 2+OD 2=52(cm).(2)S 阴影=S 扇形ODB -S △OBD =90360π·52-12×5×5=25π-504(cm 2).21.(1)S =y(x -40)=(-10x +1 200)(x -40)=-10x 2+1 600x -48 000.(2)S =-10x 2+1 600x -48 000=-10(x -80)2+16 000,则当销售单价定为80元时,工厂每天获得的利润最大,最大利润是16 000元.22.(1)证明:∵AC 为⊙O 的直径,∴∠ADC =90°.∴∠A =90°-∠ACD.又∠ACB=90°,∴∠BCD =90°-∠ACD.∴∠A=∠BCD.(2)点M 为线段BC 的中点时,直线DM 与⊙O 相切.理由如下:连接OD ,作DM⊥OD,交BC 于点M ,则DM 为⊙O 的切线.∵∠ACB=90°,∴∠B =90°-∠A,BC 为⊙O 的切线.由切线长定理,得DM =CM.∴∠MDC =∠BCD.由(1)可知:∠A =∠BCD ,CD ⊥AB.∴∠BDM =90°-∠MDC =90°-∠BCD.∴∠B=∠BDM.∴DM=BM.∴CM=BM ,即点M 为线段BC 的中点.23.(1)设抛物线的解析式为y =a(x -2)2+1.∵抛物线经过原点(0,0),代入得a =-14.∴y=-14(x -2)2+1.(2)设点M(a ,b),S △AOB =12×4×1=2.则S △MOB =6,∴点M 必在x 轴下方.∴12×4×|b|=6.∴b=-3.将y =-3代入y =-14(x -2)2+1中,得x =-2或6.∴点M 的坐标为(-2,-3)或(6,-3).(3)存在.∵△OBN 相似于△OAB,相似比OA∶OB=5∶4,∴S △AOB ∶S △OBN =5∶16.而S △AOB =2.∴S △OBN =325.设点N(m ,n),点N 在x 轴下方.S △OBN =12×4×|n|=325.n =-165.将其代入抛物线解析式,求得横坐标为2±25105,∴存在点N ,使△OBN 与△OAB 相似,点N 的坐标为(2±25105,-165).。

相关文档
最新文档