q第28章_图形的相似与位似

合集下载

第28讲 图形的相似与位似(解析版)

第28讲 图形的相似与位似(解析版)

第28讲图形的相似与位似1.比例线段(1)比例线段:已知四条线段a,b,c,d,若ab=cd或a∶b=c∶d,那么a,b,c,d叫做成比例线段,a,d叫做比例外,b,c叫做比例内项;若有ab=bc,则b叫做a,c的比例中项.(2)比例的基本性质及定理①ab=cd⇒ad=bc;②ab=cd⇒a±bb=c±dd;③ab=cd=…=mn(b+d+…+n≠0)⇒a+c+…+mb+d+…+n=ab.4.相似三角形的性质及判定(1)相似三角形的性质相似三角形的对应角相等,对应边成比例,对应高、对应中线、对应角平分线的比都等于相似比,周长比等于相似比,面积比等于相似比的平方.(2)相似三角形的判定①平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截得的三角形与原三角形相似;②两角对应相等,两三角形相似;③两边对应成比例且夹角相等,两三角形相似;④三边对应成比例,两三角形相似;⑤两个直角三角形的斜边和一条直角边对应成比例,两直角三角形相似;⑥直角三角形中被斜边上的高分成的两个三角形都与原三角形相似.5.射影定理如图,△ABC中,∠ACB=90°,CD是斜边AB上的高,则有下列结论.(1)AC2=AD·AB;(2)BC2=BD·AB;(3)CD2=AD·BD;(4)AC2∶BC2=AD∶BD;(5)AB·CD=AC·BC.6.相似三角形的实际应用(1)运用三角形相似的判定条件和性质解决实际问题的方法步骤: ①将实际问题所求线段长放在三角形中; ②根据已知条件找出一对可能相似的三角形; ③证明所找两三角形相似;④根据相似三角形的性质,表示出相应的量;并求解.(2)运用相似三角形的有关概念和性质解决现实生活中的实际问题.如利用光的反射定律求物体的高度,利用影子计算建筑物的高度.同一时刻,物高与影长成正比,即身高影长=建筑物的高度建筑物的影长.7.相似多边形的性质(1)相似多边形对应角相等,对应边成比例.(2)相似多边形周长之比等于相似比,面积之比等于相似比的平方. 8.图形的位似(1)概念:如果两个多边形不仅相似,而且对应顶点的连线相交于一点,这样的图形叫做位似图形.这个点叫做位似中心.(2)性质:位似图形上任意一对对应点到位似中心的距离之比等于位似比.(3)在平面直角坐标系中,如果位似变换是以原点为中心,相似比为k ,那么位似图形对应点的坐标比等于k 或-k.(4)利用位似变换将一个图形放大或缩小,其步骤为:①确定位似中心;②确定原图形中各顶点关于位似中心的对应点;③依次连接各对应点描出新图形考点1: 相似三角形的性质【例题1】(2019湖南常德3分)如图,在等腰三角形△ABC 中,AB =AC ,图中所有三角形均相似,其中最小的三角形面积为1,△ABC 的面积为42,则四边形DBCE 的面积是( )A.20 B.22 C.24 D.26【答案】D利用△AFH∽△ADE得到,所以S△AFH=9x,S△ADE=16x,则16x﹣9x=7,解得x=1,从而得到S△ADE=16,然后计算两个三角形的面积差得到四边形DBCE的面积.【解答】解:如图,根据题意得△AFH∽△ADE,设S△AFH=9x,则S△ADE=16x,∴16x﹣9x=7,解得x=1,∴S△ADE=16,∴四边形DBCE的面积=42﹣16=26.故选:D.归纳:1.在三角形问题中计算线段的长度时,若题中已知两角对应相等或给出的边之间存在比例关系,则考虑证明三角形相似,通过相似三角形对应边成比例列关于所求边的比例式求解.2.判定三角形相似的五种基本思路:(1)若已知平行线,可采用相似三角形的基本定理;(2)若已知一对等角,可再找一对等角或再找该角的两边对应成比例;(3)若已知两边对应成比例,可找夹角相等;(4)若已知一对直角,可考虑再找一对等角或证明斜边、直角边对应成比例;(5)若已知等腰三角形,可找顶角相等,或找一对底角相等,或找底和腰对应成比例.考点2:相似三角形的判定【例题2】在正方形ABCD中,AB=4,点P,Q分别在直线CB与射线DC上(点P不与点C,点B重合),且保持∠APQ=90°,CQ=1,求线段BP的长.解:分三种情况:设BP=x.①当P在线段BC上时,如图1,∵四边形ABCD是正方形,∴∠B=∠C=90°.∴∠BAP+∠APB=90°.∵∠APQ=90°,∴∠APB+∠CPQ=90°.∴∠BAP=∠CPQ,∴△ABP∽△PCQ.∴ABBP=PCCQ,∴4x=4-x1,∴x1=x2=2.∴BP=2;②当P在CB的延长线上时,如图2,同理,得BP=22-2;③当P在BC的延长线上时,如图3,同理,得BP=2+2 2. 归纳:基本图形(1)斜边高图形有以下基本结论:①∠BAD=∠C,∠B=∠DAC;②△ADB∽△CDA∽△CAB.(2)一线三等角有以下基本结论:①∠B=∠C,∠BDE=∠DFC;②△BDE∽△CFD.特殊地:若点D为BC中点,则有△BDE∽△CFD∽△DFE.考点3:相似三角形的综合应用【例题3】(2017·河北模拟)修建某高速公路,需要通过一座山,指挥部决定从E,D两点开挖一个涵洞.工程师从地面选取三个点A,B,C,且A,B,D三点在一条直线上,A,C,E也在同一条直线上,若已知AB=27米,AD=500米,AC=15米,AE=900米,且测得BC=22.5米.(1)求DE的长;(2)现有甲、乙两个工程队都具备打通能力,且质量相当,指挥部派出相关人员分别到这两个工程队了解情况,获得如下信息:信息一:甲工程队打通这个涵洞比乙工程队打通这个涵洞多用25天;信息二:乙工程队每天开挖的米数是甲工程队每天开挖的米数的1.5倍;信息三:甲工程队每天需要收费3 500元,乙工程队每天需要收费4 000元.若仅从费用角度考虑问题,试判断选用甲、乙哪个工程队比较合算.【解析】:(1)连接DE.∵AB=27米,AD=500米,AC=15米,AE=900米,∴ABAE=ACAD=3100.又∵∠A=∠A,∴△ABC∽△AED.∴BCDE=22.5DE=3100,即DE=750米.(2)设甲工程队每天开挖涵洞x 米,则乙工程队每天开挖涵洞1.5x 米,依据题意,得 750x -7501.5x =25,解得x =10. 经检验,x =10是原方程的解. 则1.5x =15.∴甲工程队打通这个涵洞的时间为75010=75(天),甲工程队打通这个涵洞所需的费用为 75×3 500=262 500(元); 乙工程队打通这个涵洞的时间为 7501.5x =75015=50(天), 乙工程队打通这个涵洞所需的费用为 50×4 000=200 000. ∵200 000<262 500, ∴选用乙工程队较合算.一、选择题:1. (2018•玉林)两三角形的相似比是2:3,则其面积之比是( ) A .:B .2:3C .4:9D .8:27【答案】C【解答】解:∵两三角形的相似比是2:3, ∴其面积之比是4:9, 故选:C .2. (2018•临沂)如图.利用标杆BE 测量建筑物的高度.已知标杆BE 高1.2m ,测得AB=1.6m .BC=12.4m .则建筑物CD 的高是( )A .9.3mB .10.5mC .12.4mD .14m【答案】B【解答】解:∵EB∥CD,∴△ABE∽△ACD,∴=,即=,∴CD=10.5(米).故选:B.3. (2019,四川巴中,4分)如图▱ABCD,F为BC中点,延长AD至E,使DE:AD=1:3,连结EF交DC于点G,则S△DEG:S△CFG=()A.2:3 B.3:2 C.9:4 D.4:9【答案】D【解答】解:设DE=x,∵DE:AD=1:3,∴AD=3x,∵四边形ABCD是平行四边形,∴AD∥BC,BC=AD=3x,∵点F是BC的中点,∴CF=BC=x,∵AD∥BC,∴△DEG∽△CFG,∴=()2=()2=,故选:D.4. (2019▪贵州毕节▪3分)如图,在一块斜边长30cm的直角三角形木板(Rt△ACB)上截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若AF:AC=1:3,则这块木板截取正方形CDEF 后,剩余部分的面积为()A.100cm2B.150cm2C.170cm2D.200cm2【答案】A【解答】解:设AF=x,则AC=3x,∵四边形CDEF为正方形,∴EF=CF=2x,EF∥BC,∴△AEF∽△ABC,∴EFBC=AFAC=13,∴BC=6x,在Rt△ABC中,AB2=AC2+BC2,即302=(3x)2+(6x)2,解得,x=25,∴AC=65,BC=125,∴剩余部分的面积=×125×65﹣45×45=100(cm2),故选:A.5. (2018•泸州)如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是()A.B.C.D.【答案】C【解答】解:如图作,FN∥AD,交AB于N,交BE于M.∵四边形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四边形ANFD是平行四边形,∵∠D=90°,∴四边形ANFD是解析式,∵AE=3DE,设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=a,∴FM=a,∵AE∥FM,∴===,故选:C.二、填空题:6.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD,若B (1,0),则点C的坐标为.【答案】(1,-1)【解答】:连接BC,∵△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,且B(1,0),即OB=1,∴OD=2,即B为OD中点,∵OC=DC,∴CB⊥OD,在Rt△OCD中,CB为斜边上的中线,∴CB=OB=BD=1,则C坐标为(1,-1),故答案为:(1,-1)7. (2019•山东省滨州市•5分)在平面直角坐标系中,△ABO三个顶点的坐标分别为A(﹣2,4),B(﹣4,0),O(0,0).以原点O为位似中心,把这个三角形缩小为原来的,得到△CDO,则点A的对应点C的坐标是(﹣1,2)或(1,﹣2).【答案】(﹣1,2)或(1,﹣2)【解答】解:以原点O为位似中心,把这个三角形缩小为原来的,点A的坐标为(﹣2,4),∴点C的坐标为(﹣2×,4×)或(2×,﹣4×),即(﹣1,2)或(1,﹣2),故答案为:(﹣1,2)或(1,﹣2).8. (2018•江西)如图,在△ABC中,AB=8,BC=4,CA=6,CD∥AB,BD是∠ABC的平分线,BD交AC于点E,则AE的长为.【答案】4【解答】解:∵BD为∠ABC的平分线,∴∠ABD=∠CBD,∵AB∥CD,∴∠D=∠ABD,∴∠D=∠CBD,∴BC=CD,∵BC=4,∴CD=4,∵AB∥CD,∴△ABE∽△CDE,∴=,∴=,∴AE=2CE,∵AC=6=AE+CE,∴AE=4.9. (2018•遵义)如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=5,BC=10,连接AC、BD,以BD 为直径的圆交AC于点E.若DE=3,则AD的长为.【答案】2,【解答】解:如图,在Rt△ABC中,AB=5,BC=10,∴AC=5过点D作DF⊥AC于F,∴∠AFD=∠CBA,∵AD∥BC,∴∠DAF=∠ACB,∴△ADF∽△CAB,∴,∴,设DF=x,则AD=x,在Rt△ABD中,BD==,∵∠DEF=∠DBA,∠DFE=∠DAB=90°,∴△DEF∽△DBA,∴,∴,∴x=2,∴AD=x=2,三、解答题:10. (2018·江西)如图,在△ABC中,AB=8,BC=4,CA=6,CD∥AB,BD是∠ABC的平分线,BD交AC于点E,求AE的长.【解析】:∵BD为∠ABC的平分线,∴∠ABD=∠CBD.∵AB∥CD,∴∠D=∠ABD.∴∠D=∠CBD.∴BC=CD.∵BC=4,∴CD=4.∵AB∥CD,∴△ABE∽△CDE.∴ABCD=AECE.∴84=AECE.∴AE=2CE.∵AC=AE+CE=6,∴AE=4.11. (2019湖北荆门)(10分)如图,为了测量一栋楼的高度OE,小明同学先在操场上A处放一面镜子,向后退到B处,恰好在镜子中看到楼的顶部E;再将镜子放到C处,然后后退到D处,恰好再次在镜子中看到楼的顶部E(O,A,B,C,D在同一条直线上),测得AC=2m,BD=2.1m,如果小明眼睛距地面髙度BF,DG为1.6m,试确定楼的高度OE.【分析】设E关于O的对称点为M,由光的反射定律知,延长GC、FA相交于点M,连接GF并延长交OE于点H,根据GF∥AC得到△MAC∽△MFG,利用相似三角形的对应边的比相等列式计算即可.【解答】解:设E关于O的对称点为M,由光的反射定律知,延长GC、FA相交于点M,连接GF并延长交OE于点H,∵GF∥AC,∴△MAC∽△MFG,∴,,即:,∴,∴OE=32,答:楼的高度OE为32米.12. (2018·福建)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.(1)求∠BDF的大小;(2)求CG的长.【解析】:(1)∵线段AD是由线段AB绕点A按逆时针方向旋转90°得到,∴∠DAB=90°,AD=AB=10.∴∠ABD=45°.∵△EFG是△ABC沿CB方向平移得到,∴AB∥EF.∴∠BDF=∠ABD=45°.(2)由平移的性质,得AE∥CG,AB∥EF,∴∠DEA=∠DFC=∠ABC,∠ADE+∠DAB=180°. ∵∠DAB=90°,∴∠ADE=90°.∵∠ACB=90°,∴∠ADE=∠ACB.∴△ADE∽△ACB.∴ADAC=AEAB.∵AC=8,AB=AD=10,∴AE=12.5,由平移的性质,得CG=AE=12.5.13.△ABC中,AB=AC,D为BC的中点,以D为顶点作∠MDN=∠B.(1)如图1,当射线DN经过点A时,DM交边AC于点E,不添加辅助线,写出图中所有与△ADE相似的三角形;(2)如图2,将∠MDN绕点D沿逆时针方向旋转,DM,DN分别交线段AC,AB于点E,F(点E与点A不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论;(3)在图2中,若AB=AC=10,BC=12,当S△DEF=14S△ABC时,求线段EF的长.【点拨】(1)由题意得AD⊥BD,DE⊥AC,可考虑从两角对应相等的两个三角形相似来探究;(2)依据三角形内角和定理及平角定义,结合等式的性质,得∠BFD=∠CDE,又由∠B=∠C,可得△BDF∽△CED;由相似三角形的性质得BDCE=DFED,进而有CDCE=DFED,从而△CED∽△DEF;(3)首先利用△DEF的面积等于△ABC 的面积的14,求出点D 到AB 的距离,进而利用S △DEF 的值求出EF 即可.【解答】解:(1)图1中与△ADE 相似的有△ABD ,△ACD ,△DCE. (2)△BDF ∽△CED ∽△DEF.证明:∵∠B +∠BDF +∠BFD =180°,∠EDF +∠BDF +∠CDE =180°, 又∵∠EDF =∠B ,∴∠BFD =∠CDE.由AB =AC ,得∠B =∠C ,∴△BDF ∽△CED.∴BD CE =DF ED .∵BD =CD ,∴CD CE =DFED.又∵∠C =∠EDF ,∴△BDF ∽△CED ∽△DEF.(3)连接AD ,过点D 作DG ⊥EF ,DH ⊥BF ,垂足分别为G ,H.∵AB =AC ,D 是BC 的中点,∴AD ⊥BC ,BD =12BC =6.在Rt △ABD 中,AD 2=AB 2-BD 2,∴AD =8. ∴S △ABC =12BC·AD =48.S △DEF =14S △ABC =12.又∵12AD·BD =12AB·DH ,∴DH =4.8.∵△BDF ∽△DEF ,∴∠DFB =∠EFD. ∵DG ⊥EF ,DH ⊥BF ,∴DH =DG =4.8. ∵S △DEF =12EF·DG =12,∴EF =5.14. (2019•湖南常德•10分)在等腰三角形△ABC 中,AB =AC ,作CM ⊥AB 交AB 于点M ,BN ⊥AC 交AC 于点N .(1)在图1中,求证:△BMC ≌△CNB ;(2)在图2中的线段CB 上取一动点P ,过P 作PE ∥AB 交CM 于点E ,作PF ∥AC 交BN 于点F ,求证:PE+PF =BM ;(3)在图3中动点P 在线段CB 的延长线上,类似(2)过P 作PE ∥AB 交CM 的延长线于点E ,作PF ∥AC 交NB 的延长线于点F ,求证:AM•PF+OM•BN =AM•PE .【分析】(1)根据等腰三角形的性质得到∠ABC=∠ACB,利用AAS定理证明;(2)根据全等三角形的性质得到BM=NC,证明△CEP∽△CMB、△BFP∽△BNC,根据相似三角形的性质列出比例式,证明结论;(3)根据△BMC≌△CNB,得到MC=BN,证明△AMC∽△OMB,得到=,根据比例的性质证明即可.【解答】证明:(1)∵AB=AC,∴∠ABC=∠ACB,∵CM⊥AB,BN⊥AC,∴∠BMC=∠CNB=90°,在△BMC和△CNB中,,∴△BMC≌△CNB(AAS);(2)∵△BMC≌△CNB,∴BM=NC,∵PE∥AB,∴△CEP∽△CMB,∴,∵PF∥AC,∴△BFP∽△BNC,∴,∴,∴PE+PF=BM;(3)同(2)的方法得到,PE﹣PF=BM,∵△BMC≌△CNB,∴MC=BN,∵∠ANB=90°,∴∠MAC+∠ABN=90°,∵∠OMB=90°,∴∠MOB+∠ABN=90°,∴∠MAC=∠MOB,又∠AMC=∠OMB=90°,∴△AMC∽△OMB,∴∴AM•MB=OM•MC,∴AM×(PE﹣PF)=OM•BN,∴AM•PF+OM•BN=AM•PE.。

《位似》相似(第1课时位似图形的概念及画法)

《位似》相似(第1课时位似图形的概念及画法)

未来学习和探索的建议
深入学习位似图形的相关 性质和理论,加强对位似 图形的理解和掌握。
通过练习和实践,提高绘 制位似图形的技能和能力 ,熟练掌握各种绘制方法 和技巧。
积极寻找和解决实际问题 ,尝试将位似图形的理论 和方法应用到实际问题中 ,提升实践能力和综合素 质。
谢谢您的聆听
THANKS
4. 连接对应点
将新位置上绘制的对应点用直线连接起来,形成位似图形 。
不同类型的位似图形的画法示例
1. 位似三角形
在绘制位似三角形时,可 以通过确定三个顶点的对 应点来绘制位似三角形。 注意保持三角形的形状和
大小比例。
2. 位似矩形
对于位似矩形,需要确定 矩形对角线上的两个端点 的对应点,然后连接对应
应用优势
位似图形在建筑设计、绘图和工程领域等方面有很大的应用优势。通过位似变换,可以方便地将一个图形按照一 定比例进行放大或缩小,从而适应不同的需求和场景。同时,位似图形的性质也使得在计算距离、角度等几何要 素时更加简便和高效。
04
练习题与实例分析
针对位似图形画法的练习题
01
02
03
练习1
已知一个三角形,利用位 似图形的概念,画出与其 相似且位似中心在指定点 的三角形。
《位似》相似(第1课时位似图 形的概念及画法)
汇报人:文小库
2023-11-17
CONTENTS
• 位似图形概念引入 • 位似图形的画法 • 位似图形的性质与特点 • 练习题与实例分析 • 总结与延伸思考
01
位似图形概念引入
定义和基本概念
定义
位似图形是指两个图形对应点连线交于一 点,且对应线段长度的比相同的图形。
点即可绘制位似矩形。

《图形的位似》图形的相似PPT 图文

《图形的位似》图形的相似PPT  图文

旧的东西其实极好。学生时代喜欢写信 ,只是 今天书 信似乎 早已被 人遗忘 ,那些 旧的记 忆,被 尘埃轻 轻覆盖 ,曾经 的笔端 洇湿了 笔锋, 告慰着 那时的 心绪。 现在读 来,仿 佛嗅到 时光深 处的香 气,一 朵墨色 小花晕 染了眼 角,眉 梢,是 飞扬的 青春, 无知年 少的轻 狂,这 份带不 走的青 涩,美 丽而忧 伤。
课堂小结
一、定义及性质: 二、位似图形的件确定对应点,并描出对应点 4.顺次连结各对应点,所成的图形就是
所求的图形 三、位似变换与坐标的关系:
在平面直角坐标系中,如果位似变换 是以原点为位似中心,相似比为k, 那么位似图形对应点的坐标的比等于k或-k
-12
-10
B
-8
A
-6
A′
B′ C-4
y
D 6你还有其他办法 4D吗′ ?试试看.
2
-2Co′
C′
2
4B′ 6 8 10 12 x
-2
D′ A′
-4
四边形A′B′C′ D′就是要求的四边 形ABCD的位似图形
-6
1.如图表示△AOB和把它缩小后 得到的△COD,求它们的相似比。
y
6A
4
2C
o -12 -10 -8 -6 -4 -2
小心翼翼珍藏着,和母亲在一起的美好 时光。 母亲身 体一直 不好, 最后的 几年光 景几乎 是在医 院渡过 ,然而 和母亲 在一起 的毎一 刻都是 温暖美 好的。 四年前 ,母亲 还是离 开了这 个世界 ,离开 了我。 生命就 是如此 脆弱, 逝去和 別离, 陈旧的 情绪某 年某月 的那一 刻如水 泻闸。 水在流 ,云在 走,聚 散终有 时,不 贪恋一 生,有 你的这 一程就 是幸运 。那是 地久天 长的在 我的血 液中渗 透,永 远在我 的心中 ,在我 的生命 里。

图形的位似—知识讲解

图形的位似—知识讲解

图形的位似--知识讲解【学习目标】1、了解位似多边形的概念,知道位似变换是特殊的相似变换,能利用位似的方法,将一个图形放大或缩小;2、能在同一坐标系中,感受图形放缩前后点的坐标的变化. 【要点梳理】要点一、位似多边形1.位似多边形定义:如果两个相似多边形任意一组对应顶点所在的直线都经过同一个点O,且每组对应点与点O 点的距离之比都等于一个定值k,例如,如下图,OA′=k·OA(k≠0),那么这样的两个多边形叫做位似多边形,点O叫做位似中心.要点诠释:位似图形与相似图形的区别:位似图形是一种特殊的相似图形,而相似图形未必能构成位似图形.2.位似图形的性质:(1)位似图形的对应点相交于同一点,此点就是位似中心;(2) 位似图形的对应点到位似中心的距离之比等于相似比;(3)位似图形中不经过位似中心的对应线段平行.3.平移、轴对称、旋转和位似四种变换的异同:图形经过平移、旋转或轴对称的变换后,虽然对应位置改变了,但大小和形状没有改变,即两个图形是全等的;而位似变换之后图形是放大或缩小的,是相似的.4.作位似图形的步骤第一步:在原图上找若干个关键点,并任取一点作为位似中心;第二步:作位似中心与各关键点连线;第三步:在连线上取关键点的对应点,使之满足放缩比例;第四步:顺次连接各对应点.要点诠释:位似中心可以取在多边形外、多边形内,或多边形的一边上、或顶点,下面是位似中心不同的画法.要点二、坐标系中的位似图形在平面直角坐标系中,将一个多边形每个顶点的横坐标、纵坐标都乘同一个数k(k≠0),所对应的图形与原图形位似,位似中心是坐标原点,它们的相似比为|k|.要点诠释:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标等于原来点的坐标乘以(或除以)k或-k.【典型例题】类型一、位似多边形1.下列每组的两个图形不是位似图形的是().A. B. C. D.【思路点拨】根据位似图形的概念对各选项逐一判断,即可得出答案.【答案】D【解析】解:对应顶点的连线相交于一点的两个相似多边形叫位似图形.据此可得A 、B 、C 三个图形中的两个图形都是位似图形; 而D 的对应顶点的连线不能相交于一点,故不是位似图形. 故选D .【总结升华】位似与相似既有联系又有区别,相似仅要求两个图形形状完全相同;而位似是在相似的基础上要求对应点的连线相交于一点.举一反三【变式】在小孔成像问题中, 根据如图4所示,若O 到AB 的距离是18cm ,O 到CD 的距离是6cm ,则像CD 的长是物AB 长的 ( ).A. 3倍B.21C.31 D.不知AB 的长度,无法判断【答案】C2. 利用位似图形的方法把五边形ABCDE 放大1.5倍.A B DE【答案与解析】即是要画一个五边形A ′B ′C ′D ′E ′,要与五边形ABCDE 相似且相似比为1.5.画法是:1.在平面上任取一点O.2.以O 为端点作射线OA 、OB 、OC 、OD 、OE.3.在射线OA 、OB 、OC 、OD 、OE 上分别取点A ′、B ′、C ′、D ′、E ′,使OA ′:OA = OB ′:OB =OC ′:OC =OD ′:OD =OE ′:OE =1.5.4.连结A ′B ′、B ′C ′、C ′D ′、D ′E ′、E ′A ′.这样:A ′B ′AB =B ′C ′BC =C ′D ′CD =D ′E ′DE =A ′E ′AE=1.5. 则五边形A ′B ′C ′D ′E ′为所求. 另外一种情况,所画五边形跟原五边形分别在位似中心的两侧.【总结升华】由本题可知,利用位似的方法,可以把一个多边形放大或缩小.举一反三【变式】在已知三角形内求作内接正方形.A 1B 1C 1D 1E 1【答案与解析】作法:(1)在AB 上任取一点G ′,作G ′D ′⊥BC;(2)以G ′D ′为边,在△ABC 内作一正方形D ′E ′F ′G ′;(3)连接BF ′,延长交AC 于F ;(4)作FG∥CB,交AB 于G ,从F 、G 分别作BC 的垂线FE , GD; ∴四边形DEFG 即为所求.类型二、坐标系中的位似图形B C3.(优质试题•漳州)如图,在10×10的正方形网格中,点A,B,C,D均在格点上,以点A为位似中心画四边形AB′C′D′,使它与四边形ABCD位似,且相似比为2.(1)在图中画出四边形AB′C′D′;(2)填空:△AC′D′是三角形.【思路点拨】(1)延长AB到B′,使AB′=2AB,得到B的对应点B′,同样得到C、D的对应点C′,D′,再顺次连接即可;(2)利用勾股定理求出AC′2=42+82=80,AD′2=62+22=40,C′D′2=62+22=40,那么AD′=C′D′,AD′2+C′D′2=AC′2,即可判定△AC′D′是等腰直角三角形.【答案与解析】解:(1)如图所示:(2)∵AC′2=42+82=16+64=80,AD′2=62+22=36+4=40,C′D′2=62+22=36+4=40,∴AD′=C′D′,AD′2+C′D′2=AC′2,∴△AC′D′是等腰直角三角形.故答案为:等腰直角.【总结升华】本题考查了作图﹣位似变换.画位似图形的一般步骤为:①确定位似中心,②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.同时考查了勾股定理及其逆定理等知识.熟练掌握网格结构以及位似变换的定义是解题的关键.4.(优质试题春•威海期末)如图△ABC的顶点坐标分别为A (1,1),B(2,3),C(3,0).(1)以点O为位似中心画△DEF,使它与△ABC位似,且相似比为2.(2)在(1)的条件下,若M(a,b)为△ABC边上的任意一点,则△DEF的边上与点M对应的点M′的坐标为.【思路点拨】(1)把点A、B、C的横、纵坐标都乘以2可得到对应点D、E、F 的坐标,再描点可得△DEF;把点A、B、C的横、纵坐标都乘以﹣2可得到对应点D′、E′、F′的坐标,然后描点可得△D′E′F′;(2)利用以原点为位似中心的位似变换的对应点的坐标特征求解.【答案与解析】解:(1)如图,△DEF和△D′E′F′为所作;(2)点M对应的点M′的坐标为(2a,2b)或(﹣2a,﹣2b).故答案为(2a,2b)或(﹣2a,﹣2b).【总结升华】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.举一反三:【变式】如图,将△AOB中各顶点的纵坐标,横坐标分别乘-1,•得到的图形与原图形相比有什么变化?作出所得的图形,这个过程可以看作是一个什么图形变换?【答案】解:图形的形状和大小都没有变化;可以看作是△AOB绕O•点按逆时针方向旋转180°得到的.。

图形的相似与位似复习课件

图形的相似与位似复习课件
3.若△A1B1C1∽△A2B2C2,对应高之比为 n:m,则面积之比为 ; x y z yz 如果 ; 则 4、 4 5 7 x 5若x:4=y:5=z:6,且3x+2y+z=56,则x为( )
A 8 B 10 C 12 D 16
2.下列命题正确的是(
D

A.有一角相等且有两边对应成比例的两个三角形相似。 B. △ABC的三边长为3,4,5. △A’B’C’的三边为 a+3,a+4,a+5.则△ABC∽ △A’B’C’。 C.若两个三角形相似,且有一对边相等,则它们的相 似比为1. D.都有一内角为100°的两个等腰三角形相似。
P
.
B
= AP AB
点B把线段AC分成两部分,如果 PB AP 那么称线段AC被点B 黄金分割, 点P为线段AB 的 黄金分割点,
AP与AB的比值约为0.618,这个比值称 为 黄金比.
思考:如何应用二次方程的知识求出黄金比的数值?
1.若 a:3=b:7, 则(a+3b):2b=

2.若a=2,b=6,c=4,且a,b,c,d成比 例,则d= ;
∴x=2或x=12
∴x=2或x=12或x=5.6时,以C、D、P为顶点的三 角形与以P、B、A为顶点的三角形相似
巩固提高: 在∆ABC中,AB=8cm,BC=16cm,点P从点A 开始沿AB边向B点以2cm/秒的速度移动,点Q从点B开始 沿BC向点C以4cm/秒的速度移动,如果P、Q分别从A、 B同时出发,经几秒钟∆BPQ与∆BAC相似?
这个点叫做位似中心.
这时的相似比又称为位似比. 性质:位似图形上任意一对对应点到位似中心的 距离之比等于位似比
1.任取一点O; 2.以点O为端点作射线OA、OB、OC、…; 3.分别在射线OA、OB、OC、 …上取点A’、 B’、C’、 … ,使:

九年级数学下册图形的相似27.3位似位似图形的概念及性质省公开课一等奖百校联赛赛课微课获奖PPT课件

九年级数学下册图形的相似27.3位似位似图形的概念及性质省公开课一等奖百校联赛赛课微课获奖PPT课件
B C
对应点连线
△ABC 和 △DEF 是位似图形
F
第5页
提醒 位似必须满足两个条: 1、相同 2、对应点连线交于同一点
第6页
丨依据定义判断
在如图所表示四个图形为两个圆或相同正多边形,其中位似图形个
数为( )C A.1个 B.2个 C.3个 D.4个
第7页
丨依据位似中心不一样位置划分
图形在位似中心两侧
图形在位似中心同侧
第8页
丨依据位似中心不一样位置划分
位似中心在图形内部
位似中心在图形顶点
第9页
如图,正方形A1A2B1C1,A2A3B2C2,…AnAn+1BnCn,如图位置依次摆放,已知点C1,C2,C3… ,Cn在直线y=x上,点A1坐标为(1,0).(1)写出正方形A1A2B1C1,A2A3B2C2, …Anan+1BnCn,位似中心坐标;(2)正方形A4A5B4C4四个顶点坐标
故A4(8,0),A5(16,0),B4(16,8),C4(8,8).
第10页
有些人说位似图形都是相同图形,你认为这句话对吗?还有些人说相 同图形都是位似图形,这句话你认为对吗?
第11页
位似图形概念及性质
第1页
第2页
丨这是一个什么关系呢?
D
A E
B O
C
F
AB ∥DE,AC ∥DF,BC ∥EF, △ABC ∽ △DEF
第3页
位似定义 图形不但相同,而且对应点连线交于同一点,叫位似 图形,交点叫位似中心 注意:对应点连线,指是连接对应顶点直线
第4页
丨相关内容
O
位似中心
D
A E
解:(1)如图所表示:正方形A1A2B1C1,A2A3B2C2,A3A4B3C3,…,

《图形的相似与位似》课件


相似三角形的判定
1
AAA判定法
了解使用三个角度来判定相似三角形。
2
AA判定法
学习使用两个角度和一个对应边的判定法。
3
SAS判定法
探索使用两个边和一个夹角的判定法。
相似图形的应用
测量高塔、树木等高度
了解如何使用相似图形来测量 高耸物体的高度。
测量山峰高度距离
学习如何使用相似图形来测量 遥远山峰的高度和距离。
确定电线杆的高度
探索使用相似图形来确定电线 杆及其他物体的高度。
位似图形
Hale Waihona Puke 1 什么是位似图形?2 位似变换的性质
了解位似图形的定义和特点。
探索位似变换中保持形状和角度不变的性质。
位似变换的分类
平移
学习平移变换在位似图形中 的应用。
旋转
了解旋转变换如何影响位似 图形。
翻转
探索翻转变换对位似图形的 作用。
位似变换的应用
1
计算机图形学中的应用
2
学习位似变换在计算机图形学中的广
泛应用。
3
地图和航空摄影中的应用
了解位似变换在地图和航空摄影中的 重要性。
工程模型中的应用
探索位似变换在工程模型设计中的实 际应用。
总结
相似图形与位似图形的异同
总结相似图形和位似图形之间的相似之处和 差异。
相似图形和位似图形在现实生活中 的应用
《图形的相似与位似》 PPT课件
探索图形的相似与位似,理解它们的性质和应用。学习如何判定相似三角形 和位似图形变换的分类,以及它们在现实生活中的重要性。
相似图形与比例
相似图形是什么?
了解相似图形的定义和特点。
相似图形之间的比例关系

第28讲 图形的相似与位似(原卷版)

第28讲图形的相似与位似1.比例线段(1)比例线段:已知四条线段a,b,c,d,若ab=cd或a∶b=c∶d,那么a,b,c,d叫做成比例线段,a,d叫做比例外,b,c叫做比例内项;若有ab=bc,则b叫做a,c的比例中项.(2)比例的基本性质及定理①ab=cd⇒ad=bc;②ab=cd⇒a±bb=c±dd;③ab=cd=…=mn(b+d+…+n≠0)⇒a+c+…+mb+d+…+n=ab.4.相似三角形的性质及判定(1)相似三角形的性质相似三角形的对应角相等,对应边成比例,对应高、对应中线、对应角平分线的比都等于相似比,周长比等于相似比,面积比等于相似比的平方.(2)相似三角形的判定①平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截得的三角形与原三角形相似;②两角对应相等,两三角形相似;③两边对应成比例且夹角相等,两三角形相似;④三边对应成比例,两三角形相似;⑤两个直角三角形的斜边和一条直角边对应成比例,两直角三角形相似;⑥直角三角形中被斜边上的高分成的两个三角形都与原三角形相似.5.射影定理如图,△ABC中,∠ACB=90°,CD是斜边AB上的高,则有下列结论.(1)AC2=AD·AB;(2)BC2=BD·AB;(3)CD2=AD·BD;(4)AC2∶BC2=AD∶BD;(5)AB·CD=AC·BC.6.相似三角形的实际应用(1)运用三角形相似的判定条件和性质解决实际问题的方法步骤: ①将实际问题所求线段长放在三角形中; ②根据已知条件找出一对可能相似的三角形; ③证明所找两三角形相似;④根据相似三角形的性质,表示出相应的量;并求解.(2)运用相似三角形的有关概念和性质解决现实生活中的实际问题.如利用光的反射定律求物体的高度,利用影子计算建筑物的高度.同一时刻,物高与影长成正比,即身高影长=建筑物的高度建筑物的影长.7.相似多边形的性质(1)相似多边形对应角相等,对应边成比例.(2)相似多边形周长之比等于相似比,面积之比等于相似比的平方. 8.图形的位似(1)概念:如果两个多边形不仅相似,而且对应顶点的连线相交于一点,这样的图形叫做位似图形.这个点叫做位似中心.(2)性质:位似图形上任意一对对应点到位似中心的距离之比等于位似比.(3)在平面直角坐标系中,如果位似变换是以原点为中心,相似比为k ,那么位似图形对应点的坐标比等于k 或-k.(4)利用位似变换将一个图形放大或缩小,其步骤为:①确定位似中心;②确定原图形中各顶点关于位似中心的对应点;③依次连接各对应点描出新图形考点1: 相似三角形的性质【例题1】(2019湖南常德3分)如图,在等腰三角形△ABC 中,AB =AC ,图中所有三角形均相似,其中最小的三角形面积为1,△ABC 的面积为42,则四边形DBCE 的面积是( )A .20B .22C .24D .26考点2:相似三角形的判定【例题2】在正方形ABCD中,AB=4,点P,Q分别在直线CB与射线DC上(点P不与点C,点B重合),且保持∠APQ=90°,CQ=1,求线段BP的长.考点3:相似三角形的综合应用【例题3】(2017·河北模拟)修建某高速公路,需要通过一座山,指挥部决定从E,D两点开挖一个涵洞.工程师从地面选取三个点A,B,C,且A,B,D三点在一条直线上,A,C,E也在同一条直线上,若已知AB=27米,AD=500米,AC=15米,AE=900米,且测得BC=22.5米.(1)求DE的长;(2)现有甲、乙两个工程队都具备打通能力,且质量相当,指挥部派出相关人员分别到这两个工程队了解情况,获得如下信息:信息一:甲工程队打通这个涵洞比乙工程队打通这个涵洞多用25天;信息二:乙工程队每天开挖的米数是甲工程队每天开挖的米数的1.5倍;信息三:甲工程队每天需要收费3 500元,乙工程队每天需要收费4 000元.若仅从费用角度考虑问题,试判断选用甲、乙哪个工程队比较合算.一、选择题:1. (2018•玉林)两三角形的相似比是2:3,则其面积之比是()A.:B.2:3 C.4:9 D.8:272. (2018•临沂)如图.利用标杆BE测量建筑物的高度.已知标杆BE高1.2m,测得AB=1.6m.BC=12.4m.则建筑物CD的高是()A.9.3m B.10.5m C.12.4m D.14m3. (2019,四川巴中,4分)如图▱ABCD,F为BC中点,延长AD至E,使DE:AD=1:3,连结EF交DC于点G,则S△DEG:S△CFG=()A.2:3 B.3:2 C.9:4 D.4:94. (2019▪贵州毕节▪3分)如图,在一块斜边长30cm的直角三角形木板(Rt△ACB)上截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若AF:AC=1:3,则这块木板截取正方形CDEF 后,剩余部分的面积为()A.100cm2B.150cm2C.170cm2D.200cm25. (2018•泸州)如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是()A.B.C.D.二、填空题:6.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD,若B (1,0),则点C的坐标为.7. (2019•山东省滨州市•5分)在平面直角坐标系中,△ABO三个顶点的坐标分别为A(﹣2,4),B(﹣4,0),O(0,0).以原点O为位似中心,把这个三角形缩小为原来的,得到△CDO,则点A的对应点C的坐标是.8. (2018•江西)如图,在△ABC中,AB=8,BC=4,CA=6,CD∥AB,BD是∠ABC的平分线,BD交AC于点E,则AE的长为.9. (2018•遵义)如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=5,BC=10,连接AC、BD,以BD 为直径的圆交AC于点E.若DE=3,则AD的长为.三、解答题:10. (2018·江西)如图,在△ABC中,AB=8,BC=4,CA=6,CD∥AB,BD是∠ABC的平分线,BD交AC于点E,求AE的长.11. (2019湖北荆门)(10分)如图,为了测量一栋楼的高度OE,小明同学先在操场上A处放一面镜子,向后退到B处,恰好在镜子中看到楼的顶部E;再将镜子放到C处,然后后退到D处,恰好再次在镜子中看到楼的顶部E(O,A,B,C,D在同一条直线上),测得AC=2m,BD=2.1m,如果小明眼睛距地面髙度BF,DG为1.6m,试确定楼的高度OE.12. (2018·福建)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.(1)求∠BDF的大小;(2)求CG的长.13.△ABC中,AB=AC,D为BC的中点,以D为顶点作∠MDN=∠B.(1)如图1,当射线DN经过点A时,DM交边AC于点E,不添加辅助线,写出图中所有与△ADE相似的三角形;(2)如图2,将∠MDN绕点D沿逆时针方向旋转,DM,DN分别交线段AC,AB于点E,F(点E与点A不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论;(3)在图2中,若AB=AC=10,BC=12,当S△DEF=14S△ABC时,求线段EF的长.14. (2019•湖南常德•10分)在等腰三角形△ABC中,AB=AC,作CM⊥AB交AB于点M,BN⊥AC交AC 于点N.(1)在图1中,求证:△BMC≌△CNB;(2)在图2中的线段CB上取一动点P,过P作PE∥AB交CM于点E,作PF∥AC交BN于点F,求证:PE+PF =BM;(3)在图3中动点P在线段CB的延长线上,类似(2)过P作PE∥AB交CM的延长线于点E,作PF∥AC交NB的延长线于点F,求证:AM•PF+OM•BN=AM•PE.。

第28课 图形的相似与位似


相似比:相似三角形的对应边的比,叫做两个相似三角形的 相似比 .
5.相似三角形的判定: (1)平行于三角形一边的直线和其他两边(或两边的延长线)相交, 所截得的三角形与原三角形相似; (2)两角对应相等; (3)两边对应成比例且夹角相等; (4)三边对应成比例; (5)直角三角形中,斜边和一条直角边对应成比例; (6)直角三角形中被斜边上的高分成的两个三角形都与原三角 形相似. 6.相似三角形性质:对应角相等,对应边成比例,对应高、对应 中线、对应角平分线的比都等于相似比,周长比等于相似比, 面积比等于相似比的平方.
2.运用相似三角形的判定解决其他问题
相似三角形的判定方法可用来判定两个三角形相似,也可以 间接地说明角相等或线段成比例,还可为计算线段及角的大小
创造条件,在解决问题时,应从问题结论所需条件入手,灵活
转化.有时需把解题中涉及的线段转化到适当的三角形中去考 虑,有时要找“中间比”来替换,使问题得以间接解决.
7.直角三角形相似的判定及成比例的线段:
如果一个直角三角形的斜边和一条直角边与另一个直角三角形 成比例,那么这两个直角三角形相似.
射影定理:如图,△ABC中,∠ACB=90°,CD是斜边AB上
的高,则有下列结论. (1)AC2=AD·AB;
(2)BC2=BD·AB;
(3)CD2=AD·BD; (4)AC2∶BC2=AD∶BD;
b 5 ab 2.(2012 四川凉山)已知 ,则 的值是【 D ab a 13 3 4 2 9 A. 3 B. 2 C. 4 D. 9

3. (2012 潍坊)已知矩形 ABCD 中,AB=1,在 BC 上取一点 E, 沿 AE 将Δ ABE 向上折叠,使 B 点落在 AD 上的 F 点,若四边形 EFDC 与矩形 ABCD 相似,则 AD=( B ). A.

人教版-数学-九年级下册-位似和相似的关系

位似和相似的关系知识要点两个多边形不仅相似,而且对应顶点的连线相交于一点,像这样的相似图形叫做位似图形,这个交点叫做位似中心,这时的相似比又称为位似比.位似图形上任意一对对应点到位似中心的距离之比等于位似比.利用位似的方法,可以把一个多边形放大或缩小,在作位似变换时,可以把位似中心取在多边形的外部、内部、多边形的边或顶点上.考题赏析如图8,图中的小方格都是边长为1的正方形,△ABC 与△A ′B ′C ′是关于点O 为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点O ;(2)求出△ABC 与△A ′B ′C ′的位似比;(3)以点O 为位似中心,再画一个△A 1B 1C 1,使它与△ABC 的位似比等于1∶1.5. 分析:(1)要画出△ABC 与△A ′B ′C ′的位似中心O ,只要连接其对应点找到其交点即为所求;(2)由13AB =,52A B ''=得,AB ∶A ′B ′=1∶2;(3)要以点O 为位似中心,再画一个△A 1B 1C 1,使它与△ABC 的位似比等于1∶1.5,就是说OA 1∶OA =OB 1∶OB =OC 1∶OC =1∶1.5,从而分别确定了A 1、B 1、C 1,顺次连接A 1B 1、B 1C 1、C 1A 1即得.解:(1)分别连接A ′A 、B ′B 、C ′C ,并分别延长交于点O ,点O 即为所求,如图8;(2)因为小方格都是边长为1的正方形,所以由勾股定理,得13AB =,52A B ''=,所以AB ∶A ′B ′=1∶2,即位似比为1∶2;(3)分别在OA 、OB 、OC 上取A 1、B 1、C 1,使OA 1∶OA =OB 1∶OB =OC 1∶OC =1∶1.5,再顺次连接A 1B 1、B 1C 1、C 1A 1,则△A 1B 1C 1即为所求的三角形,如图8.说明:位似图形也是图形之间的一种变换,它的性质在我们的日常生活中有着广泛的应用.专题训练(三)1.如图9,正方形网格中有一条简笔画“鱼”,请你以点O 为位似中心放大,使新图形与原图形的对应线段的比是2∶1(不要求写作法).2.如图10,用画位似图形的方法,画已知三角形的相似三角形,使相似比为2∶3,并且(1)以点O1为位似中心;(2)以点O2为位似中心;(3)以点O3为位似中心;(4)以点B为位似中心.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(最新最全)2012年全国各地中考数学解析汇编(按章节考点整理)第二十八章 图形的相似与位似28.1 图形的相似15.(2012北京,15,5)已知023a b =≠,求代数式()225224a b a b a b -⋅--的值.【解析】【答案】设a=2k,b=3k ,原式=525210641(2)(2)(2)22682a b a b k k k a b a b a b a b k k k ----====+-++ 【点评】本题考查了见比设份的解题方法,以及分式中的因式分解,约分等。

28.2 线段的比、黄金分割与比例的性质(2011山东省潍坊市,题号8,分值3)8、已知矩形ABCD 中,AB=1,在BC 上取一点E ,沿AE 将△ABE 向上折叠,使B 点落在AD 上的F 点,若四边形EFDC 与矩形ABCD 相似,则AD=( )A .215- B .215+ C .3 D .2考点:多边形的相似、一元二次方程的解法解答:根据已知得四边形ABEF 为正方形。

因为四边形EFDC 与矩形ABCD 相似所以DF:EF=AB:BC 即 (AD-1):1=1:AD 整理得:012=--AD AD ,解得251±=AD由于AD 为正,得到AD=215+,本题正确答案是B.点评:本题综合考察了一元二次方程和多边形的相似,综合性强。

28.3 相似三角形的判定(2012山东省聊城,11,3分)如图,△ABC 中,点D 、E 分别是AB 、AC 的中点,下列结论不正确的是( )A.BC=2DEB. △ADE ∽△ABCC.AC ABAE AD = D. AD E ABC S S ∆∆=3 解析:根据三角形中位线定义与性质可知,BC=2DE ;因DE//BC ,所以△ADE ∽△ABC ,AD :AB=AE :AC ,即AD :AE=AB :AC ,ADE ABC S S ∆∆=4.所以选项D 错误.答案:D点评:三角形的中位线平行且等于第三边的一半.有三角形中位线,可以得出线段倍分关系、比例关系、三角形相似、三角形面积之间关系等.(2012四川省资阳市,10,3分)如图,在△ABC 中,∠C =90°,将△ABC 沿直线MN 翻折后,顶点C 恰好落在AB 边上的点D 处,已知MN ∥AB ,MC =6,NC=MABN 的面积是 A.B. C.D.【解析】由MC =6,NC=C =90°得S △CMN=CMN ≌△DMN 得对应高相等;由MN ∥AB 得△CMN ∽△CAB 且相似比为1:2,故两者的面积比为1:4,从而得S △CMN :S 四边形MABN=1:3,故选C. 【答案】C【点评】本题综合考查了直角三角形的面积算法、翻折的性质、由平行得相似的三角形相似的判定方法、相似图形的面积比等于相似比的平方等一些类知识点.知识点丰富;考查了学生综合运用知识来解决问题的能力.难度较大.(2012湖北随州,14,4分)如图,点D,E 分别在AB 、AC 上,且∠ABC=∠AED 。

若DE=4,AE=5,BC=8,则AB 的长为______________。

10解析::∵∠ABC=∠AED ,∠BAC=∠EAD ∴△AED ∽△ABC ,∴AE DEAB CB =,DE=10 答案:10点评:本题主要考查了三角形相似的判定和性质。

利用两三角形的相似比,通过已知边长度求解某边长度,是常用的一种计算线段长度的方法。

(第10题图)NMD A CB28.4 相似三角形的性质(2012重庆,12,4分)已知△ABC ∽△DEF ,△ABC 的周长为3,△DEF 的周长为1,则△ABC 与△DEF 的面积之比为_______解析:相似三角形的周长比等于相似比,相似三角形的面积比等于相似比的平方,故可求出答案。

答案:9:1点评:本题考查相似三角形的基本性质。

(2012浙江省衢州,15,4分)如图,□ABCD 中,E 是CD 的延长线上一点,BE 与AD 交于点F ,CD=2DE.若△DEF 的面积为a ,则□ABCD 中的面积为 .(用a 的代数式表示)【解析】根据四边形ABCD 是平行四边形,利用已知得出△DEF ∽△CEB ,△DEF ∽△ABF ,进而利用相似三角形的性质分别得出△CEB 、△ABF 的面积为4a 、9a ,然后推出四边形BCDF 的面积为8a 即可. 【答案】12a【点评】此题主要考查相似三角形的判定、性质和平行四边形的性质等知识点的理解和掌握,解答此题的关键是熟练掌握相似三角形的判定定理和性质定理.(2012山东省荷泽市,16(1),6)(1)如图,∠DAB=∠CAE ,请你再补充一个条件____________,使得△ABC ∽△ADE ,并说明理由.【解析】从已知条件中可得出一组角对应相等,要判定两个三角形相似,可以增加另外一组对应相等或者是这两角的两边对应成比.【答案】D B AED C ∠=∠∠=∠或 -----------------------------------------------------2分理由:两角对应相等,两三角形相似------------------------------------------------------6分【点评】判断两个三角形相似的条件中两角对应相等两三角形相似比较常用,在选择方法一定要根据题目中或图形中所给提供的条件进行添加.(湖南株洲市6,20题)((本题满分6分)如图,在矩形ABCD 中,AB=6,BC=8,沿直线MN 对折,使A 、C 重合,直线MN 交AC 于O. (1)、求证:△COM ∽△CBA ; (2)、求线段OM 的长度.【解析】要证明△COM ∽△CBA 就是要找出∠COM=∠B 即可,求线段的长就是利用第(1)问中的相似建立比例式,构造出OM 的方程求解. 【解】(1)证明: A 与C 关于直线MN 对称 ∴AC ⊥MN ∴∠COM=90°在矩形ABCD 中,∠B=90°∴∠COM=∠B----------------------------------------1分 又 ∠ACB=∠ACB------------------------------------2分 ∴△COM ∽△CBA ---------------------------------3分 (2) 在Rt △CBA 中,AB=6,BC=8∴AC=10----------------------------------------- -----4分 ∴OC=5△COM ∽△CBA----------------------------------------5分∴OC OM=BC AB∴OM=154----------------------------------------------6分【点评】求证两个三角形相似的方法主要是两角对应相等,两三角形相似、两边对应成比例及夹角相等,两三角形相似及三边对应成比例,两三角形相似,求线段的长的方法,主要是利用三角形相似及直角三角形的勾股定理.(2012湖南娄底,25,10分)如图13,在△ABC 中,AB =AC ,∠B =30︒,BC =8,D 在边BC 上,E 在线段DC 上,DE =4,△DEF 是等边三角形,边DF 交边AB 于点M ,边EF 交边AC 于点N. (1)求证:△BMD ∽△CNE ;(2)当BD 为何值时,以M 为圆心,以MF 为半径的圆与BC 相切?(3)设BD =x ,五边形ANEDM 的面积为y ,求y 与x 之间的函数解析式(要求写出自变量x 的取值范围);当x 为何值时,y 有最大值?并求y 的最大值.【解析】(1)由AB=AC ,∠B=30°,根据等边对等角,可求得∠C=∠B=30°,又由△DEF 是等边三角形,根据等边三角形的性质,易求得∠MDB=∠NEC=120°,∠BMD=∠B=∠C=∠CNE=30°,即可判定:△BMD ∽△CNE ;(2)首先过点M 作MH ⊥BC ,设BD=x ,由以M 为圆心,以MF 为半径的圆与BC 相切,可得MH=MF=4-x ,由(1)可得MD=BD ,然后在Rt △DMH 中,利用正弦函数,即可求得答案; (3)首先求得△ABC 的面积,继而求得△BDM 的面积,然后由相似三角形的性质,可求得△BCNB D EC NAF M的面积,再利用二次函数的最值问题,即可求得答案. 【答案】(1)证明:∵AB=AC ,∴∠B=∠C=30°.∵△DEF 是等边三角形,∴∠FDE=∠FED=60°,∴∠MDB=∠NEC=120°,∴∠BMD=∠B=∠C=∠CNE=30°,∴△BMD ∽△CNE ;(2)过点M 作MH ⊥BC ,∵以M 为圆心,以MF 为半径的圆与BC 相切,∴MH=MF ,设BD=x ,∵△DEF 是等边三角形,∴∠FDE=60°,∵∠B=30°,∴∠BMD=∠FDE-∠B=60°-30°=30°=∠B ,∴DM=BD=x ,∴MH=MF=DF-MD=4-x ,在Rt △DMH中,sin ∠MDH=sin60°=MH MD =4-xx=,解得:x=16-BD=16-M 为圆心,以MF 为半径的圆与BC 相切;(3)过点M作MH ⊥BC 于H ,过点A 作AK ⊥BC 于K ,∵AB=AC ,∴BK=12BC=12×8=4。

∵∠B=30°,∴AK=BK •tan ∠B=4×=,∴S △ABC=12BC •AK=12×8×=,由(2)得:MD=BD=x ,∴MH=MD •sin ∠MDH= x ,∴S △BDM=12•x •x=2.∵△DEF 是等边三角形且DE=4,BC=8,∴EC=BC-BD-DE=8-x-4=4-x ,∵△BMD ∽△CNE ,∴S △BDM :S △CEN=2()BD CE =22(4)x x -,∴S △CEN=2)x -,∴y=S △ABC-S △CEN-S △BDM=2-2)x -= 2+=22)x -+(0≤x ≤4),当x=2时,y 有最大值,最大值为3.【点评】此题考查了相似三角形的判定与性质、等腰三角形的性质、等边三角形的性质、二次函数的性质以及三角函数等知识.此题综合性较强,注意数形结合思想与方程思想的应用.(2012重庆,12,4分)已知△ABC ∽△DEF ,△ABC 的周长为3,△DEF 的周长为1,则△ABC 与△DEF 的面积之比为_______解析:相似三角形的周长比等于相似比,相似三角形的面积比等于相似比的平方,故可求出答案。

相关文档
最新文档