图形的相似与位似 教师版

合集下载

北师大版九年级上册数学《图形的位似》图形的相似研讨说课复习课件

北师大版九年级上册数学《图形的位似》图形的相似研讨说课复习课件

3. 位似多边形上任意一对对应点到位似中心的距离之 比都等于相似比.位似多边形对应角相等,对应边成比例, 周长的比等于相似比,面积的比等于相似比的平方.
4. 作位似多边形的方法:(1)根据“对应点到位似中心的 距离之比等于相似比”作出各顶点关于位似中心的对应点;(2) 用线段顺次连接各对应点.
第四章 图形的相似
解:如图所示:
【归纳总结】画位似图形的一般步骤为:①确定位似中 心;②分别连接并延长位似中心和能代表原图的关键点;③ 根据相似比,确定能代表所作的位似图形的关键点,顺次连 接上述各点,得到放大或缩小的图形.
知识点 2 位似图形的应用 例2 已知矩形 ABCD 与矩形 AB′C′D′是位似图形,A 为 位似中心.已知矩形 ABCD 的周长为 24,BB′=4,DD′=2, 求 AB 与 AD 的长.
例1 如图,在平面直角坐标系中,每个小方格都是边长
为 1 个单位长度的正方形,已知△ AOB 与△ A1OB1 位似,位
似中心为原点 O,且相似比为 3∶2,点 A,B 都在格点上,
则点 B1 的坐标为
-2,-23

【思路点拨】把点 B 的横、纵坐标分别乘-23得到点 B1 的坐标.
知识点 2 在直角坐标系中画位似图形 例2 (教材 P117 例 2)在平面直角坐标系中,四边形 OABC 的顶点坐标分别是 O(0,0),A(6,0),B(3,6),C(- 3,3).以原点 O 为位似中心画一个四边形,使它与四边形 OABC 位似,且相似比是 2∶3.
画法二:将四边形 OABC 各顶点的坐标都乘-23,得 O(0, 0),A″(-4,0),B″(-2,-4),C″(2,-2);在平面直角坐 标系中描出点 A″,B″,C″,用线段顺次连接点 O,A″,B″, C″,O,则四边形 OA″B″C″也是符合要求的四边形.

北师大版数学九年级上册《位似图形》教案

北师大版数学九年级上册《位似图形》教案

北师大版数学九年级上册《位似图形》教案一. 教材分析北师大版数学九年级上册《位似图形》是学生在学习了相似图形的基础上,进一步研究位似图形的性质和应用。

本节课的内容包括位似图形的定义、位似比、位似变换等,通过这些内容的学习,使学生能够理解位似图形的概念,掌握位似变换的方法,并能够运用位似图形的性质解决实际问题。

二. 学情分析学生在学习本节课之前,已经学习了相似图形的性质,对图形的相似性有一定的认识。

但是,对于位似图形的概念和性质,以及位似变换的方法,可能还比较陌生。

因此,在教学过程中,需要通过具体的实例和活动,帮助学生理解和掌握位似图形的性质和应用。

三. 教学目标1.理解位似图形的概念,掌握位似比的概念和计算方法。

2.掌握位似变换的方法,能够运用位似图形的性质解决实际问题。

3.培养学生的空间想象能力,提高学生的数学思维能力。

四. 教学重难点1.位似图形的概念和性质。

2.位似比的概念和计算方法。

3.位似变换的方法和应用。

五. 教学方法采用问题驱动法、实例教学法、小组合作学习法等教学方法,通过具体的实例和活动,引导学生探究位似图形的性质和应用,激发学生的学习兴趣,培养学生的空间想象能力和数学思维能力。

六. 教学准备1.准备相关的教学实例和图片。

2.准备教学课件和板书设计。

3.准备练习题和作业。

七. 教学过程1.导入(5分钟)通过展示一些相关的实例和图片,引导学生回顾相似图形的性质,为新课的学习做好铺垫。

2.呈现(15分钟)介绍位似图形的定义和性质,通过具体的实例和活动,引导学生探究位似比的概念和计算方法,以及位似变换的方法。

3.操练(15分钟)通过一些练习题,帮助学生巩固位似图形的性质和应用,提高学生的解题能力。

4.巩固(10分钟)通过一些综合性的练习题,帮助学生巩固位似图形的性质和应用,提高学生的综合运用能力。

5.拓展(10分钟)通过一些拓展性的问题和活动,激发学生的学习兴趣,提高学生的数学思维能力。

2023九年级数学下册第二十七章相似27.3位似第1课时位似图形的概念及画法教案(新版)新人教版

2023九年级数学下册第二十七章相似27.3位似第1课时位似图形的概念及画法教案(新版)新人教版
-学生可以尝试利用计算机软件(如几何画板、Mathematica等)进行位似图形的绘制和变换,感受图形变换的动态过程,增强空间观念和数学应用能力。
课后拓展
1.拓展内容:
-阅读材料:《数学的故事》中关于几何变换的起源和发展,了解位似变换在数学史上的地位。
-视频资源:寻找与位似图形相关的教学视频,如介绍位似变换的基本概念、性质和应用实例。
-学生通过观察生活中的位似图形,将所学知识应用到实际中,提高解决问题的能力。
-鼓励学生针对位似图形的特定性质或应用进行深入研究,撰写研究报告,培养探究精神。
-教师提供必要的指导和帮助,如推荐阅读材料、解答学生在自主学习中遇到的疑问等。
-教师组织学生开展课后讨论活动,让学生分享自己的学习心得和研究成果,促进交流与合作。
三、实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与位似图形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用几何画板绘制位似图形,演示位似的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
四、学生小组讨论(用时10分钟)
2.位似比的概念及其计算方法;
3.位似图形的画法,包括位似中心、位似向量、位似图形的作图方法;
4.应用位似变换解决实际问题。
本节课将结合新人教版教材,以生活实例为导入,让学生在实际操作中体会位似图形的特点,培养他们的观察能力和空间想象能力,从而提高解决几何问题的能力。
核心素养目标
本节课旨在培养学生的以下数学核心素养:
2023九年级数学下册第二十七章相似27.3位似第1课时位似图形的概念及画法教案(新版)新人教版
学校
授课教师

新人教版九年级数学下册《二十七章 相似 27.3 位似 位似图形概念》教案_19

新人教版九年级数学下册《二十七章 相似 27.3 位似 位似图形概念》教案_19

人教版九年级上册数学27.3《图形的位似》教学设计
一、教学目标
1、知识目标:
(1)了解图形的位似概念,及其和相似图形的区别,会判断简单的位似图形和位似中心。

(2)理解位似图形的性质,掌握位似图形的画法。

2、能力目标:
(1)能利用位似将一个图形放大或缩小,解决一些简单的实际问题。

(2)培养学生综合分析问题、解决问题的能力,进一步提高学生利用图形的变换解决问题的能力和小组合作、探究学习的能力,促进良好的数学思维习惯和应用意识的形成。

(3)发展学生的合情推理能力和初步的逻辑推理能力。

3、情感目标:
(1)通过较多的社会背景素材的展现,使学生亲身经历位似图形的概念形成过程和位似图形、位似变换的性质的探索过程,感受数学学习内容的现实性、应用性、挑战性。

(2)进一步体验合作互助、解决难题的情感,感受数学创造的乐趣,增进学好数学的信心。

二、教学重点和难点
教学重点:图形的位似概念、位似图形的性质及利用位似把一个图形放大或缩小。

教学难点:图形的位似概念、位似图形的性质及利用位似把一个图形放大或缩小。

三、教学过程
三、合作交流
1.学生观察位似图形,归纳概念
观察两个四边形都有哪些特征,试归纳。

(2)等边三角形ABC
4. 哪些图形是位似图形并指出位似。

4.8.1图形的位似(教师)

4.8.1图形的位似(教师)

九年级数学导学案课题: 4.8.1图形的位似学习目标 1.理解位似多边形的定义及相关性质。

2.理解相似多边形与位似多边形的联系与区别。

3.初步了解能利用图形的位似将一个图形放大或缩小的理论依据。

.学习重点 1.理解位似多边形的定义及相关性质。

2.能利用图形的位似将一个图形放大或缩小。

学习过程一、自主学习1. 什么的相似多边形?2. 相似三角形的判定定理有哪些?二、合作探究1、以下五幅图片是形状相同的图形,取图中相对应的两点A、B,它们的连线经过镜头中心P吗?换其他的对应点试一试,还有类似规律吗?2、如图两个相似五边形,设直线AA′与BB′相交于点O,那么CC′,DD′,EE′是否也都经过O?知识点:(1)如果两个相似多边形每组对应点A、A′所在的直线都经过同一个点O,且OA′=k·OA(k≠0),那么这样的两个多边形叫做,点O叫做。

(2)位似多边形上任意一对对应点到位似中的班级:姓名:日期:次数:距离之比k等于(3)、课本P113图4-37也是五边形。

三、互动展示(学生在独立思考的基础上小组交流,并选代表展示)1、已知△ABC,已点O为位似中心作△DEF,使它与△ABC位似,并且相似比为2。

思考:满足条件的△DEF可以再点O的另一侧吗?四、达标测试1、判断正误:(1)位似多边形一定是相似多边形。

(2)相似多边形一定是位似多边形(3)两个位似多边形每一对对应点到位似中心的距离之比为2︰3,则两个多边形的面积之比为4︰9。

(4)两个位似多边形的对应边互相平行或在同一直线上。

2.判断一下两组多边形是否是位似多边形。

3、画一个任意四边形ABCD,在它的内部任取一点O,一点O为位似中心,画一个四边形A′B′C′D′,使它与四边形ABCD位似,且相似比为21。

第2题五、课堂小结与反思你通过本节课的探索解决了哪些问题?还有那些困惑?有哪些新的发现、想法?六、课堂延伸、布置作业、预习思考1、必做题:课本P115习题4.13第1、2、3题。

九年级数学上册 4.8.1 图形的位似教案 北师大版(2021年整理)

九年级数学上册 4.8.1 图形的位似教案 北师大版(2021年整理)

九年级数学上册4.8.1 图形的位似教案(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学上册4.8.1 图形的位似教案(新版)北师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学上册4.8.1 图形的位似教案(新版)北师大版的全部内容。

课题:4。

8。

1 图形的位似教学目标:1.了解位似多边形的有关概念,会判断简单的位似图形及位似中心. 2.能够利用位似将一个图形放大或缩小,并能解决一些简单的实际问题.3.经历位似图形的概念形成过程和位似图形、位似变换的性质的探索过程,感受数学学习的实用性,体会学习数学的快乐. 教学重、难点:重点:位似多边形的相关定义、性质的理解,绘制位似多边形方法的掌握. 难点:位似多边形的判断,从位似中心的不同方向绘制位似多边形. 课前准备:制作多媒体课件,图钉、橡皮筋、铅笔等. 教学过程:一、创设情境,导入新课导语:同学们,色彩斑谰的世界中有许多美丽的图形,它们有的是形状、大小都相同的全等形(多媒体出示图1);有的是形状相同,大小不同的相似图形(多媒体出示图2);有的不但是相似图形,而且所处的位置也特殊(多媒体出示图3),这样的两个图形是位似图形.你知道如何画位似图形吗?你知道位似图形有哪些性质吗?本节课就让我们一起来探究位似图形的性质与画法.【板书课题:4.8图形的位似(1)】处理方式:教师播放媒体课件,学生观察生活中的存在的全等形、相似形、位似形,体会数学来源于生活,在相似形的基础上感知位似图形.设计意图:通过用多媒体课件展示生活的的图片,引入本章的学习内容:位似图形.初步图1图2图3感知位似图形,引发学生思考位似图形的特征,激发学生的求知欲及学习兴趣.为新课的学习做好情感铺垫.二、探究学习,获取新知 活动1:美图赏析(多媒体出示)请同学们欣赏这幅海报,它是由一组形状相同的图片组成.在图片①和图片②上任取一组对应点A ,A ',试问A ,A '的连线是否经过镜头中心O ?OAA O '的值与哪两条线段的比相等?在图片上换其他的点还有类似的规律吗?处理方式:学生先自主观察这些图形的特点,然后在小组内交流自已的看法,交流后借助多媒体展示自己的成果.教师在学生交流展示时可作以下引导:(1)在图片①和图片②上任取一组对应点A ,A ',它们的连线是否经过镜头中心O ?(2)OAA O '的值与哪两条线段的比相等?设计意图:通过以上问题引导学生感悟出:图片①和图片②上任意一组对应点的连线都经过镜头中心O ,而且对应点A ,A '到镜头中心O 的距离比等于两个图形的相似比.便于引出位似图形的概念.活动2:动手连一连(多媒体出示)如图,是两个相似比为k 的相似五边形,设直线A A ' 与B B '相交于点O ,那么直线C C '、D D '、?OA OB OC OD OE ,,,,有什么关系?AO②A '①处理方式:学生先自主观察这些图形的特点,然后在小组内交流自已的看法,交流后借助多媒体展示自己的成果.教师在学生交流展示时可作以下引导:(1)直线CC'、DD'、EE'是否也都经过点O?(2)OA OB OC OD OEOA OB OC OD OE''''',,,,有什么关系?(多媒体演示三角形相似)设计意图:通过以上问题引导学生感悟出:直线CC'、DD'、EE'都经过点O,而且每一对应点到O的距离比等于两个图形的相似比.活动3:出示位似图形的概念(多媒体出示)一般地,如果两个相似多边形任意一组对应点P,P'所在的直线都经过同一点O,且有PO'=k·OP(k≠0),那么这样的两个多边形叫做位似多边形,点O叫做位似中心.k就是这两个相似多边形的相似比.处理方式:教师利用多媒体出示位似多边形及位似中心的概念.强调相关要点,明确k就是这两个位似多边形的相似比.设计意图:了解位似多边形及位似中心的概念,感悟位似图形的性质.活动4:位似图形的性质(多媒体出示)请观察下列两组图形,回答问题:每组图形中两个图形是否是位似图形?若是位似图形,请找出位似中心,对应边有什么特处理方式:学生先观察、连线、测量、计算,小组内交流,教师启发引导:①如何判断两②③个图形是否位似?如果两个图形位似,位似中心与两个图形;②每组对应点到位似中心的距离之比与对应边的比有什么关系?学生交流展示①、②位似,且相似比等于对应点到位似中心的距离之比,③相似但不位似;位似中心可能在对应点的同侧,也可能在它们之间.教师板书:位似图形的对应点的连线经过位似中心,且到位似中心的距离之比等于相似比;位似中心可能在对应点的同侧,也可能在它们之间;对应线段平行或在同一条直线上.设计意图:通过观察图形、猜想、测量、计算、验证结论,提高学生分析、归纳能力,体会分类的思想,进而掌握位似的性质,位运用位似放大或缩小图形做好铺垫.三、例题解析,应用新知例1 如图,已知△ABC ,DEF , 使它与△ABC 位似,且相似比为2.处理方式:给学生留时间,让学生先独立思考,并尝试到黑板展示,其余同学在练习本上完成,并进行相互点评,学生之间对比,教师提问作图依据及利用多媒体课件规范解题步骤,最后启发引导在O 点的另一侧作图,强调知识的应用及逆向思维.解:如图,⑴画射线OA ,OB ,OC ;⑵在射线OA ,OB ,OC 上分别取点D ,E ,F ,使OD =2OA ,OE =2OB ,OF =2OC ;⑶顺次连接D ,E ,F ,得△DEF ;则△DEF 与△ABC 位似,且相似比为2.设计意图:通过例题提供应用位似的性质的一个具体情境,加深学生位似图形的理解,掌握作图技巧,提高作图能力.让学生体会用所学的知识来解决问题的意识.导语:所作△DEF 与△ABC 位似,且相似比为2,即△ABC 被放大.利用位似的知识你能将任意图形进行放大或缩小吗?O · C B AFEDOCBA满足条件的△DEF 可以在点O 的另一侧吗?F 'E 'D '处理方式:教师演示并利用多媒体课件展示具体步骤,1.将两根长短相同的橡皮筋系在一起,联结处形成一个结点. 2.选取一个图形,在图形外取一点.3.将系在一起的橡皮筋的一端固定在定点,把一只铅笔固定在橡皮筋的另一端. 4.拉动铅笔,使两根橡皮筋的结点沿所选图形的边缘运动,当结点在已知图形上运动一圈时,铅笔就画出了一个新的图形.请同学们来完成“做一做”:用橡皮筋放大图形.对学生进行分组,学生根据操作步骤合作完成对已知图形的放大.设计意图:通过动手操作,拓展学生的思路,结合放大或缩小不规则图形的方法,让学生通过操作、思考,讨论,加深对前面知识的理解,感悟各种不同方法之间的内在联系,体会位似在生活中的应用.四、巩固训练,落实新知1.已知点O 在△ABC 内,以点O 为位似中心画一个三角形,使它与△ABC 位似,且相似比为12.2.如图,请把下面的五角星图样放大,使得放大前后的相似比为1∶2.要把图形放大其他的倍数应怎么办?要缩CO ·AB3.请观察:以下每组图中的两个多边形是位似多边形吗?若是,请指出位似中心.处理方式:给学生留足时间,让学生先独立完成,选代表到黑板展示,同学间相互点评.设计意图:通过练习让学生理解位似图形,能应用位似知识解决相似图形中的相关问题.五、回顾反思,提炼升华通过这节课的学习,你学习了哪些知识?你有什么收获?你有什么发现、探索? 先想一想,再分享给大家.处理方式:学生畅谈自己的收获!教师强调:⒈位似多边形的相关概念、性质,及放大、缩小图形的方法.⒉位似多边形一定是相似多边形,但相似多边形不一定位似.⒊图形变换包括:全等变换:平移、旋转、对称;位似变换.设计意图:使学生对本节课所学进行梳理,养成反思与总结的习惯,培养自我反馈,自主发展的意识.六、达标检测,反馈提高活动内容:通过本节课的学习,同学们的收获真多!收获的质量如何呢?请完成导学案中的达标检测题.(同时多媒体出示)⒈如果两个相似多边形任意一组对应顶点P ,P '所在的 ,那么这样的两个相似多边形叫做位似多边形,这个点叫做 .⒉如图,通过小孔点O 蜡烛在竖直的屏幕上形成倒立的实像,像的长度BD =2cm ,OA =20cm ,OB =5cm ,则蜡烛的长度为 .⒊已知,如图,A B ''∥AB ,B C ''∥BC ,且OA ':A A '=4:3,则△ABC 与 是位似图形,位似比为 ;△OAB 与 是位似图形,位似比为 .处理方式:,并统计学生答题情况.学生根据答案进行纠错.设计意图:学以致用,当堂检测及时获知学生对所学知识掌握情况,并最大限度地调动全体学生学习数学的积极性,使每个学生都能有所收益、有所提高,明确哪些学生需要在课后加强辅导,达到全面提高的目的.七、布置作业,课堂延伸必做题:课本 115页 习题4。

图形的相似与位似教案

1.(2013北京,15,5)已知023a b =≠,求代数式()225224a b a b a b -⋅--的值. 线段的比、黄金分割与比例的性质2(2011山东省潍坊市,题号8,分值3)8、已知矩形ABCD 中,AB=1,在BC 上取一点E ,沿AE 将△ABE 向上折叠,使B 点落在AD 上的F 点,若四边形EFDC 与矩形ABCD 相似,则AD=( )A . 215-B .215+C . 3D .23(2013山东省聊城,11,3分)如图,△ABC 中,点D 、E 分别是AB 、AC 的中点,下列结论不正确的是( )A.BC=2DEB. △ADE ∽△ABCC. ACAB AE AD = D. ADE ABC S S ∆∆=3 4(2013四川省资阳市,10,3分)如图,在△ABC 中,∠C =90°,将△ABC 沿直线MN 翻折后,顶点C 恰好落在AB 边上的点D 处,已知MN ∥AB ,MC =6,NC =23,则四边形MABN 的面积是A .63B .123C .183D .2435(2013湖北随州,14,4分)如图,点D,E 分别在AB 、AC 上,且∠ABC=∠AED 。

若DE=4,AE=5,BC=8,则AB 的长为______________。

10 (第10题图)N M D A CB6相似三角形的性质(2013重庆,12,4分)已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为1,则△ABC与△DEF的面积之比为_______7(2013浙江省衢州,15,4分)如图,□ABCD中,E是CD的延长线上一点,BE与AD交于点F,CD=2DE.若△DEF的面积为a,则□ABCD中的面积为.(用a的代数式表示)8(2013山东省荷泽市,16(1),6)(1)如图,∠DAB=∠CAE,请你再补充一个条件____________,使得△ABC∽△ADE,并说明理由.9(湖南株洲市6,20题)((本题满分6分)如图,在矩形ABCD中,AB=6,BC=8,沿直线MN对折,使A、C重合,直线MN交AC于O.(1)、求证:△COM∽△CBA;(2)、求线段OM的长度.10(2013湖南娄底,25,10分)如图13,在△ABC中,AB=AC,∠B=30︒,BC=8,D在边BC上,E在线段DC 上,DE =4,△DEF 是等边三角形,边DF 交边AB 于点M ,边EF 交边AC 于点N .(1)求证:△BMD ∽△CNE ;(2)当BD 为何值时,以M 为圆心,以MF 为半径的圆与BC 相切?(3)设BD =x ,五边形ANEDM 的面积为y ,求y 与x 之间的函数解析式(要求写出自变量x 的取值范围);当x 为何值时,y 有最大值?并求y 的最大值.11(2013山东泰安,17,3分)如图,将矩形纸片ABCD 沿EF 折叠,使点B 与CD 的中点重合,若AB=2,BC=3,则△FC B '与△B 'DG 的面积之比为( )A.9:4B.3:2C.4:3D.16:912(2013山东省荷泽市,18,10)如图,在边长为1的小正方形组成的网格中,△ABC 和△DEF 的顶点都在格点上,P 1,P 2,P 3,P 4,P 5是△DEF 边上的5个格点,请按要求完成下列各题:(1)试证明三角形△ABC 为直角三角形;(2)判断△ABC 和△DEF 是否相似,并说明理由;BD E C NAFM(3)画一个三角形,它的三个顶点为中的3个格点并且与△ABC相似;(要求:用尺规作图,保留痕迹,不写作法与证明)13(2013安徽,22,12分)如图1,在△ABC中,D、E、F分别为三边的中点,G点在边AB上,△BDG 与四边形ACDG的周长相等,设BC=a、AC=b、AB=c.(1)求线段BG的长;解:(2)求证:DG平分∠EDF;证:(3)连接CG,如图2,若△BDG与△DFG相似,求证:B G⊥CG.证:14(2013山东泰安,28,10分)如图,E是矩形ABCE的边BC上一点,EF⊥AE,EF分别交AC、CD于点M、F,BG⊥AC,垂足为G,BG交AE于点H。

北师版初中九上数学精品授课课件 第四章 图形的相似 8 图形的位似 第1课时 位似图形的概念及其画法


【点击查看示意图】
( √)
课堂小结
1. 位似图形、位似中心、位似比:
如果两个图形不仅形状相同,而且每组对应顶 点所在的直线都经过同一个点,那么这样的两个图 形叫做位似图形.
这个点叫做位似中心. 这时的相似比又称为位似比.
2. 位似图形的性质:
位似图形上的任意一对对应点到位似中心的 距离之比等于位似比.
以坐标原点为位似中心的位似变换有以下性 质:若原图形上点的坐标为(x,y),与原图形 的位似比为k,则像上的对应点的坐标为(kx, ky)或(-kx,-ky).
3. 位似图形的画法:
①画出基本图形. ②选取位似中心. ③根据条件确定对应点,并描出对应点. ④顺次连接各对应点,所成的图形就是所求的图形.
这个新图形与已知图形形状相同.
请你用这种方法把一个已知图形 放大.
【点击图片观看动画】
二、判断正误. 1.位似多边形一定是相似多边形。 2.相似多边形一定是位似多边形。
( √) (Βιβλιοθήκη ×)3.两个位似多边形每一对对应点到位似中心的距离之比为
2︰3,则两个多边形的面积之比为4︰9。
( √)
4.两个位似多边形的对应边互相平行或在同一直线上。
位似图形的概念
4
及其画法
北师版九年级上册
O
O
(1)
(2)
用以下方法可以近似地 把一个不规则图形放大:
1.将两根等长的橡皮筋系在一 起,连接处形成一个结点.
2.选一个图形,在图形外取一 个定点. 3.将系在一起的橡皮筋的一端 固定在定点,把一支铅笔固定 在橡皮筋的另一端.
4.拉动铅笔,使两根橡皮筋的结 点沿所选图形的边缘运动,当 结点在已知图形上运动一圈时, 铅笔就画出了一个新的图形.

2024九年级数学下册第27章相似27.3位似(位似图形)教学设计(新版)新人教版

教学方法/手段/资源:
- 自主学习法:引导学生自主完成作业和拓展学习。
- 反思总结法:引导学生对自己的学习过程和成果进行反思和总结。
作用与目的:
- 巩固学生在课堂上学到的位似图形的性质和应用。
- 通过拓展学习,拓宽学生的知识视野和思维方式。
- 通过反思总结,帮助学生发现自己的不足并提出改进建议,促进自我提升。
六、学生学习效果
1. 知识与技能:
- 学生能够理解位似图形的概念,掌握位似图形的性质,并能够运用位似图形的性质解决实际问题。
- 学生能够理解位似变换的应用,并能够运用位似变换来解决实际问题。
- 学生能够通过实际问题,理解和掌握位似图形在实际中的应用,提高解决实际问题的能力。
2. 过程与方法:
- 学生能够通过自主学习,提高自学能力和独立思考能力。
3. 题型三:位似比的计算
题目:一个三角形通过位似变换变成了另一个三角形,位似比为2:1。求原三角形的面积。
答案:设原三角形面积为S,则新三角形面积为4S。由于位似比为2:1,原三角形的面积为新三角形面积的1/4,即S = (1/4) * 4S = S。
4. 题型四:位似图形的问题解决
题目:一个房间的设计图是实际房间尺寸的1:5缩小模型。如果设计图中的房间面积是50平方米,实际房间的面积是多少?
这些题型和答案仅供参考,实际教学中应根据学生的具体情况和教材内容进行调整和扩展。
八、作业布置与反馈
1. 作业布置:
(1)题目:请根据位似图形的定义和性质,完成以下题目:
- 判断下列两个图形是否为位似图形,并解释原因。
- 确定下列位似变换中的位似比,并说明如何计算。
- 利用位似图形的性质,求解实际问题中的相关量。

专题21图形的相似与位似(讲义)(原卷版)

专题21 图形的相似与位似核心知识点精讲1.理解掌握比例线段的相关概念;2.理解掌握比例的性质、黄金分割点等定义; 3.理解掌握平行线分线段成比例定理; 4.理解掌握什么是相似多边形、位似图形。

考点1 比例线段1.比例线段的相关概念如果选用同一长度单位量得两条线段a ,b 的长度分别为m ,n ,那么就说这两条线段的比是,或写成a :b=m :n在两条线段的比a :b 中,a 叫做比的前项,b 叫做比的后项。

在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段 若四条a ,b ,c ,d 满足或a :b=c :d ,那么a ,b ,c ,d 叫做组成比例的项,线段a ,d 叫做比例外项,线段b ,c 叫做比例内项,线段的d 叫做a ,b ,c 的第四比例项。

如果作为比例内项的是两条相同的线段,即cbb a =或a :b=b :c ,那么线段b 叫做线段a ,c 的比例中项。

2.比例的性质 (1)基本性质①a :b=c :d ⇔ad=bc ②a :b=b :c ac b =⇔2(2)更比性质(交换比例的内项或外项)dbc a =(交换内项) ⇒=d c b a acb d =(交换外项)abc d =(同时交换内项和外项) (3)反比性质(交换比的前项、后项): (4)合比性质: (5)等比性质: 3.黄金分割把线段AB 分成两条线段AC ,BC (AC>BC ),并且使AC 是AB 和BC 的比例中项,叫做把线段AB 黄金分nmb a =dc b a =割,点C 叫做线段AB 的黄金分割点,其中AC=215-AB ≈0.618AB 考点2 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例。

推论:(1)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。

逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图形的相似与位似教师版
一、选择题
1.如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于.
1【解答】解:∵AG=2,GD=1,∴AD=3,∵AB∥CD∥EF,∴=,故答案为:.
2如图,在四边形ABCD中,AD∥BC,∠ABC=90°,E是AB上一点,且DE⊥CE.若AD=1,BC=2,CD=3,则CE与DE的数量关系正确的是()
A.CE=DE B.CE=DE C.CE=3DE D.CE=2DE
2解:过点D作DH⊥BC,∵AD=1,BC=2,∴CH=1,DH=AB===2,∵AD∥BC,∠ABC=90°,∴∠A=90°,∵DE⊥CE,∴∠AED+∠BEC=90°,∵∠AED+∠ADE=90°,∴∠ADE=∠BEC,∴△ADE∽△BEC,∴,设BE=x,则AE=2,即,解得x=,∴,∴CE=,故选B.
3如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则S△BDE与S△CDE的比是()
A.1:3 B.1:4 C.1:5 D.1:25
3解:∵DE∥AC,∴△DOE∽△COA,又S△DOE:S△COA=1:25,∴=,∵DE∥AC,∴
==,∴=,∴S△BDE与S△CDE的比是1:4,故选:B.
5如图,正方形ABCD边长为3,连接AC,AE平分∠CAD,交BC的延长线于点E,FA⊥AE,交CB延长线于点F,则EF的长为.
5解:∵四边形ABCD为正方形,且边长为3,∴AC=3,∵AE平分∠CAD,
∴∠CAE=∠DAE,∵AD∥CE,∴∠DAE=∠E,∴∠CAE=∠E,∴CE=CA=3,
∵FA⊥AE,∴∠FAC+∠CAE=90°,∠F+∠E=90°,∴∠FAC=∠F,∴CF=AC=3,
∴EF=CF+CE=3=6,故答案为:6.
二、填空题
1.在△ABC中,D为AB边上一点,且∠BCD=∠A.已知BC=,AB=3,则BD=.
1【解答】解:∵∠BCD=∠A,∠B=∠B,∴△DCB≌△CAB,
∴=,∴=,∴BD=.故答案为.
2.如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=5
5,则BD 的长为_______.
2连接AC ,过点D 作BC 边上的高,交BC 延长线于点H .在Rt △ABC 中,AB =3,BC =4,∴AC =5,又CD =10,DA =55,可知△ACD 为直角三角形,且∠ACD =90°,易证△ABC
∽△CHD ,则CH =6,DH =8,∴BD =
三解答题
1在△ABC 中,P 为边AB 上一点.
(1) 如图1,若∠ACP =∠B ,求证:AC 2=AP ·AB ;(2) 若M 为CP 的中点,AC =2, ① 如图2,若∠PBM =∠ACP ,AB =3,求BP 的长;
② 如图3,若∠ABC =45°,∠A =∠BMP =60°,直接写出BP 的长.
1【解析】(1)证明:∵∠ACP =∠B ,∠BAC =∠CAP ,∴△ACP ∽△ABC ,∴AC :AB =AP :AC ,∴AC 2=AP ·AB ;(2)①如图,作CQ ∥BM 交AB 延长线于Q ,设BP =x ,则P Q =2x ∵∠PBM =∠ACP ,∠P AC =∠CAQ ,∴△APC ∽△ACQ ,由AC 2=AP ·AQ 得:22=(3-x )(3+x ),∴x =5即BP =5;
②如图:作CQ ⊥AB 于点Q ,作CP 0=CP 交AB 于点P 0,
∵AC =2,∴AQ =1,CQ =BQ ,
设P 0Q =PQ =1-x ,BP -1+x ,
∵∠BPM =∠CP 0A ,∠BMP =∠CAP 0,∴△AP 0C ∽△MPB ,∴00AP P C MP BP
=,
∴MP ∙ P 0C =2012P C ==AP 0 ∙BP =x -1+x ),解得x
∴BP -11.
2如图①,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M、N 分别是斜边AB、DE的中点,点P为AD的中点,连接AE、BD.
(1)猜想PM与PN的数量关系及位置关系,请直接写出结论;
(2)现将图①中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图②,AE与MP、BD 分别交于点G、H.请判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;
(3)若图②中的等腰直角三角形变成直角三角形,使BC=kAC,CD=kCE,如图③,写出PM 与PN的数量关系,并加以证明.
2【解答】解:
(1)PM=PN,PM⊥PN,理由如下:∵△ACB和△ECD是等腰直角三角形,
∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE和△BCD中
,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,
∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,∴PM=BD,PN=AE,
∴PM=PM,∵∠NPD=∠EAC,∠MPN=∠BDC,∠EAC+∠BDC=90°,
∴∠MPA+∠NPC=90°,∴∠MPN=90°,即PM⊥PN;(2)∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD.∴△ACE≌△BCD.∴AE=BD,∠CAE=∠CBD.又∵∠AOC=∠BOE,∠CAE=∠CBD,
∴∠BHO=∠ACO=90°.∵点P、M、N分别为AD、AB、DE的中点,
∴PM=BD,PM∥BD;PN=AE,PN∥AE.∴PM=PN.∴∠MGE+∠BHA=180°.
∴∠MGE=90°.∴∠MPN=90°.∴PM⊥PN.
(3)PM=kPN ∵△ACB和△ECD是直角三角形,∴∠ACB=∠ECD=90°.
∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD.∵BC=kAC,CD=kCE,∴=k.∴△BCD∽△ACE.∴BD=kAE.
∵点P、M、N分别为AD、AB、DE的中点,
∴PM=BD,PN=AE.
∴PM=kPN.。

相关文档
最新文档