船舶气囊下水工艺中气囊承载性能影响因素分析

合集下载

70000 吨散货船气囊下水静力计算分析报告

70000 吨散货船气囊下水静力计算分析报告

70000 吨散货船气囊下水静力计算分析报告目录1. 前言 (4)1.1 该船的主要特征 (4)1.2 计算分析依据的图纸及文件 (4)1.3 计算采用的软件 (4)2. 有限元模型的建立 (4)2.1 模型范围 (4)2.2 坐标系及量纲 (5)2.3 结构模型化 (5)2.4 网格控制 (5)2.5 材料特性 (6)2.6 有限元模型简述 (6)3. 载荷与边界 (8)3.1 计算工况 (8)3.2 模型中所施加的载荷 (8)3.3 边界条件 (9)4. 计算结果 (9)4.1 肋板 (9)4.2 纵桁 (10)4.3 外板 (10)5. 总结 (11)6. 计算结果图片 (11)6.1 Fr115 肋板 (11)6.2 Fr118 肋板 (12)6.3 Fr121 肋板 (13)6.4 Fr124 肋板 (14)6.5 Fr127 肋板 (15)6.6 Fr130 肋板 (16)6.7 CL.11912SB 纵桁 (17)6.8 CL.8632SB 纵桁 (18)6.9 CL.6172SB 纵桁 (19)6.10 CL.3712SB 纵桁 (20)6.11 CL.1252SB 纵桁 (21)6.12 CL.1252PS 纵桁 (22)6.13 CL.3712PS 纵桁 (23)6.14 CL.6172PS 纵桁 (24)6.15 CL.8632PS 纵桁 (25)6.16 CL.11912PS 纵桁 (26)6.17 外板 (27)附件 (30)A.端部弯矩和剪力计算 (30)B.3#70000 船气囊下水工艺(2010.11) (34)1. 前言本报告根据山东省昌林船舶气囊与靠球技术研究中心提供的《3#70000船气囊下水工艺(2010.11)》文件以下简称《工艺》,用有限元方法做了相应静力计算,本文所作计算不考虑动载荷和冲击载荷对船体结构的影响,也无法考虑实际操作中的一些其它因素的影响。所作计算仅供中国船级社参考之用。1.1该船的主要特征70000吨散货船的主尺度如下:: 222.00米总长LOA垂线间长L: 216.20米PP结构船长L: 213.27米S型宽B: 32.26米型深H: 18.00米结构吃水T: 13.00米S服务航速V: 13.8节max: 0.897方形系数CB1.2计算分析依据的图纸及文件SC4582-010-04 横剖面图SC4582-110-05 基本结构图SC4582-110-06 外板展开图SC4582-112-02 双层底结构图SC4582-111-02 舷侧结构图SC4582-121-03 横舱壁结构图1.3计算采用的软件计算中,采用MSC/Patran建立模型、施加载荷及显示应力和变形结果,计算分析采用MSC/Nastran进行。2. 有限元模型的建立2.1模型范围气囊下水静力计算,采用三维有限元模型对散货船主要构件进行强度直接计算时,模型范围为船中货舱区的1/2个货舱+1个货舱+1/2个货舱,垂向范围为船体型深,强度评估采用中间一个货舱(含舱壁的)的结果。由于本船重心位于第4舱,故选用1/2个3货舱+1个4货舱+1/2个5货舱的全宽模型为本次建模的范围,即FR91—FR164。2.2坐标系及量纲模型全局坐标系的X方向为船长方向,指向船艏;Y方向为船宽方向,自中纵剖面指向左舷;Z方向为型深方向,自基线指向甲板。模型全局坐标系的原点位于FR0、纵中剖面、基线处。结构模型的建立和载荷施加过程中采用毫米单位制(SI-mm),单位定义如下:质量: 吨(t)长度: 毫米(mm)时间: 秒(s)力: 牛顿(N)应力: 兆帕(MPa)压力: 牛顿每平方毫米(N/mm2)2.3结构模型化图纸中所述的所有主要构件均在有限元模型中建模。有限元网格边界尽可能的模拟实际结构的扶强材排列规律,并尽可能的表示扶强材之间的板格真实几何形状。结构尺寸采用船舶建造厚度。模型中船体的外板、甲板、船底板、强框架、纵向列板、舷侧肋骨高腹板以及槽形舱壁、壁凳和凳内隔板均采用4节点板壳单元模拟,在高应力区和高应力变化区尽量避免使用三角形单元。对于承受水压力和货物压力的各类板上的扶强材用梁单元模拟,并考虑偏心影响。纵桁、肋板上的加强筋,肋骨和轴板等主要构件的面板和加强筋用杆单元模拟。当遇到网格布置和大小划分比较困难时,部分区域上的线单元用一根代替多根,或线单元位置和实际的加强筋布置有一定的错位。2.4网格控制不与气囊接触的船体结构有限元网格参考《CCS散货船有限元强度直接计算指南》要求,沿船壳横向按纵骨间距或类似的间距划分,纵向按肋骨间距或类是间距大小划分,网格形状接近正方形。船底纵桁和肋板在垂直方向上布置3个单元。每个槽型舱壁的腹板和翼板划分为一个板单元,在槽型舱壁下端接近底凳处的板单元和凳板的临近单元其长宽比尽量为1。与气囊接触的船体结构使用1/2纵骨间距,并考虑相邻结构的单元协调性。其中Fr122与Fr126位置处使用100X100有限元网格,并考虑相邻结构的单元协调性。2.5 材料特性70000吨散货船货舱段结构由普通钢及高强度钢构成,计算中取材料的物理特性参数如下:扬氏模量 E: 泊松比: 密 度: 2.06 ⨯105 N / mm 2 0.3 7.85⨯10-9 t / mm 3 材料系数 k: 普通钢为 1;H32 为 0.78;H36 为 0.72。2.6 有限元模型简述有限元模型如下图所示:图 1,有限元模型总揽图 2,有限元模型侧视图四边形壳单元个数: 58072 个三角形壳单元个数: 2277 个梁单元个数: 21075 个杆单元个数: 5011 个多点约束: 1 个工况数: 1 个图3,船体外板有限元网格划分图4,内底板有限元网格划分3. 载荷与边界3.1计算工况依据《工艺》,确定的计算工况为下水过程中船舶重心到达船台末端时的船舶受力状态。此时船舶承受水的浮力,气囊的支撑力和船舶自身重力。由于浮力较小,船舶在自身重量的作用下处于中拱状态,且气囊支撑力主要集中在船台末端即船舶重心位置附近。3.2模型中所施加的载荷1)气囊支撑力模型中加载了Fr104.5/Fr108/ Fr111.5/ Fr115/ Fr118.5/ Fr122/ Fr126/ Fr130/ Fr134/ Fr1138/ Fr142/ Fr146/ Fr150处的气囊支撑力,气囊支撑力来自《工艺》,见下表。表1.船舶重心到船台末端时气囊承载力2)弯矩和剪力模型后部端面施加一个弯矩和一个剪力,所施加的弯矩和剪力为计算所得的船舶重心处的弯矩和剪力。船舶重心处的弯矩: M1 =M2+M3+M4其中: M1为船舶重心处的弯矩,M2为船舶重量引起的船舶重心处的弯矩,M3为1#—6#气囊入水后浮力对船舶重心处的弯矩,数值见《工艺》,M4船舶入水部分浮力对船舶重心处的弯矩,数值见《工艺》。船舶重心处的剪力: F 1 = F 2 + F 3 + F 4其中: F 1 为船舶重心处的剪力,F 2 为船舶重量引起的船舶重心处的剪力,F 3 为1#—6#气囊入水后浮力,数值见《工艺》,F 4 船舶入水部分浮力,数值见《工艺》。计算得到: M 1 = 215517.0818(t ⋅ m); F 1 = 3181.12(t) 。计算过程详见附件A 。需要注意的是,实际船中弯矩和剪力会略小于计算所得之值,因为模型中施加了气囊的支撑力,支撑力会起到减小船中弯矩和剪力的作用,这部分作用在有限元计算中由软件自动考虑,此处计算端部施加弯矩和剪力时不考虑在内。3.3 边界条件模型前端面上所有点约束六个方向的自由度。4. 计算结果板单元的应力计算结果包括单元的(σx ,σy ,τ)及 V on Mises 合成应力,合成应力按下式计算:σ E =4.1 肋板详细的计算结果图片见第6节,图6.1.1—图6.6.4。σ x + σ - σ ⋅ σ + 3τ2 2 2 y x y4.2纵桁详细的计算结果图片见第6节,图6.7.1—图6.16.4。4.3外板详细的计算结果图片见第6节,图6.17.1—图6.17.4。5.总结静力计算结果显示,应力值没有超过钢材的最小屈服应力。6.计算结果图片6.1Fr115肋板图6.1.1,Fr115 肋板Y 向应力图6.1.2,Fr115 肋板Z 向应力图6.1.3,Fr115 肋板面内剪应力图6.1.4,Fr115 肋板合成应力6.2Fr118肋板图6.2.1,Fr118 肋板Y 向应力图6.2.2,Fr118 肋板Z 向应力图6.2.4,Fr118 肋板合成应力6.3Fr121肋板图6.3.1,Fr121 肋板Y 向应力图6.3.2,Fr121 肋板Z 向应力图6.3.4,Fr121 肋板合成应力6.4Fr124肋板图6.4.1,Fr124 肋板Y向应力图6.4.2,Fr124 肋板Z 向应力图6.4.4,Fr124 肋板合成应力6.5Fr127肋板图6.5.1,Fr127 肋板Y向应力图6.5.2,Fr127 肋板Z 向应力图6.5.4,Fr127 肋板合成应力6.6Fr130肋板图6.6.1,Fr130 肋板Y向应力图6.6.2,Fr130 肋板Z 向应力图6.6.3,Fr130 肋板面内剪应力图6.6.4,Fr130 肋板合成应力6.7CL.11912SB纵桁图6.7.1,CL.11912SB 纵桁X向应力图6.7.2,CL.11912SB 纵桁Z 向应力图6.7.3,CL.11912SB 纵桁面内剪应力图6.7.4,CL.11912SB 纵桁合成应力6.8CL.8632SB纵桁图6.8.1,CL.8632SB 纵桁X向应力图6.8.2,CL.8632SB 纵桁Z 向应力图6.8.3,CL.8632SB 纵桁面内剪应力图6.8.4,CL.8632SB 纵桁合成应力6.9CL.6172SB纵桁图6.9.1,CL.6172SB 纵桁X向应力图6.9.2,CL.6172SB 纵桁Z 向应力图6.9.4,CL.6172SB 纵桁合成应力6.10CL.3712SB纵桁图6.10.1,CL.3712SB 纵桁X向应力图6.10.2,CL.3712SB 纵桁Z 向应力图6.10.4,CL.3712SB 纵桁合成应力6.11CL.1252SB纵桁图6.11.1,CL.1252SB 纵桁X向应力图6.11.2,CL.1252SB 纵桁Z 向应力图6.11.3,CL.1252SB 纵桁面内剪应力图6.11.4,CL.1252SB 纵桁合成应力6.12CL.1252PS纵桁图6.12.1,CL.1252PS 纵桁X向应力图6.12.2,CL.1252PS 纵桁Z 向应力图6.12.4,CL.1252PS 纵桁合成应力6.13CL.3712PS纵桁图6.13.1,CL.3712PS 纵桁X向应力图6.13.2,CL.3712PS 纵桁Z 向应力图6.13.4,CL.3712PS 纵桁合成应力6.14CL.6172PS纵桁图6.14.1,CL.6172PS 纵桁X向应力图6.14.2,CL.6172PS 纵桁Z 向应力图6.14.4,CL.6172PS 纵桁合成应力6.15CL.8632PS纵桁图6.15.1,CL.8632PS 纵桁X向应力图6.15.2,CL.8632PS 纵桁Z 向应力图6.15.4,CL.8632PS 纵桁合成应力6.16CL.11912PS纵桁图6.16.1,CL.11912PS 纵桁X向应力图6.16.2,CL.11912PS 纵桁Z 向应力图6.16.3,CL.11912PS 纵桁面内剪应力图6.16.4,CL.11912PS 纵桁合成应力6.17外板图6.17.1,外板X向应力图6.17.2,外板Y向应力图6.17.3,外板面内剪应力图6.17.4,外板合成应力附件A.端部弯矩和剪力计算根据表格可以得到:M3为1#—6#气囊入水后浮力对船舶重心处的弯矩为-3801.6M4船舶入水部分浮力对船舶重心处的弯矩为-125852.61F3为1#—6#气囊入水后浮力为198F4船舶入水部分浮力为2874.66因此:M1=M2+M3+M4=345171.2918-3801.6-125852.61 =215517.0818(t⋅m)F1=F2+F3+F4=6253.78-198-2874.66 =3181.12(t)B.3#70000船气囊下水工艺(2010.11)。

气囊在船舶坞修中的应用

气囊在船舶坞修中的应用
型 号
直 径 6 型 D= . M 08 0.5 2
我 单 位地 处 辽 宁丹 东 ,当地 没有
l 璺 I
气囊 的工作压力和 承载能力 公式
Q P S = .
气 囊 安全 工作 压 力 的上 限值 ( o) MP
D=10 .M O2 .0 D=12 .M O.7 1 D=15M . 01 .3 D= . M 18 O 1 .1 D= 0 2.M O.0 1
T条 / T
本 坡 度
数 据 长 度 M
作 标 准 压 力
状 态 工 作 面 宽
Mp a

O1 .O
l6 - 2
坡 度 余 弦 值
6 6 5 5
标 准 与 实践
ST ANDA RDS & PRACTI CE
大型船坞 ,现有 滑道式修船平 台最大承
载能力 为8 0 ,而所要 修理 的船舶 自 0吨
重达 1 0 余 吨,根本无法满足工作 的需 50
要 。 如 果 到 大 连 修 理厂 修 理 ,仅 拖 船 费
Hale Waihona Puke 就达 2 万 ,这还不 算进 坞费 。并且此次 0 坞修 项 目较多 ,修理周 期长 。势必要企

M M Mp a 条



O0
基 型 深 水 船 体 每 米 重 量
数 据 船 体 每 平 方 米 重 量 给 定 吃 水 深 度
基 行 走 工 作 高 度 3 7 17 . 6
10 . 8
1O . 0 01 .0 3 .0 00
3 .0 00
工程 绞 吸船 成 功进行 坞 修 ,创 下 本地 区 上水 船舶 自重 的纪录 ,也积 累 了宝 贵经 验 。针对 地 表 条件 恶 劣 ,缺 少必 要上 坞 设施 的情 况 下 ,完全 可 以利 用

船舶上排 下水用气囊标准

船舶上排 下水用气囊标准

船舶上排下水用气囊标准船舶上排下水用气囊标准。

船舶上排下水用气囊是一种常见的船舶辅助装置,它在船舶的上排下水过程中起到了非常重要的作用。

为了确保船舶上排下水用气囊的使用安全和有效性,制定了相应的标准和规范。

本文将就船舶上排下水用气囊的标准进行介绍。

首先,船舶上排下水用气囊的材料应符合相关标准要求。

通常情况下,船舶上排下水用气囊采用高强度、耐磨损、耐腐蚀的材料制成,以确保在使用过程中不会出现漏气或者破损的情况。

此外,材料的选择还需考虑其在海水中的抗老化性能,以及在恶劣海况下的耐用性。

其次,船舶上排下水用气囊的设计和制造应符合相关标准要求。

设计上需要考虑气囊的承载能力、稳定性和使用寿命等因素,以确保在船舶上排下水过程中能够承受船体的重量和压力,保证船舶的安全。

制造上需要严格按照相关标准进行,采用先进的工艺和技术,确保气囊的质量和性能符合要求。

另外,船舶上排下水用气囊的使用和维护也需要遵循相关标准要求。

在使用过程中,需要根据气囊的规格和要求正确使用,避免超载或者不当使用导致的损坏。

同时,定期对气囊进行检查和维护,及时发现问题并进行修理,以确保气囊的使用安全和可靠性。

最后,船舶上排下水用气囊的标准还包括了相关的测试和检验要求。

在气囊设计和制造完成后,需要进行一系列的测试和检验,包括气密性测试、承载能力测试等,以确保气囊的质量和性能符合标准要求,能够安全可靠地使用在船舶的上排下水过程中。

总的来说,船舶上排下水用气囊的标准涉及到了材料、设计、制造、使用和维护等方方面面,其目的是为了确保船舶上排下水过程中的安全和有效性。

船舶上排下水用气囊的标准不仅仅是对气囊本身的要求,更是对整个船舶上排下水系统的要求,只有严格遵守相关标准,才能保证船舶上排下水过程的安全和顺利进行。

大型船舶气囊上下水工艺安全对策的研究

大型船舶气囊上下水工艺安全对策的研究

科 技局 邀请 国内著 名 造船 专家 和 橡 胶 专 家 , 济南 对 昌林气 囊容 器 厂 自主开 发 的 “ 高承 载 力 多 层 揉压 气
囊 ” 行科研 成果 鉴定 。与会专 家 听取 了“ 进 高承 载力
的问题是 理论研 究 落 后 于 实 践 , 实 际应 用 中存 在 在
许 多不 确定 因素 。这些不 确定 因素 可能 导致 “ 安全 ”
提高 资金 的周转 效率 。采取 这样 的生产组 织模式 带 来 的综 合经 济效 益非 常显 著 。
3 船舶 采用 气 囊 上 下 水 的优 越 性
载 能力 , 有力 地促 进 了我 国 自主创 新 的 气 囊上 下 水 工 艺应 用到 中 、 型船 舶上 。 大 19 9 4年 9月底 , 山船厂 用 济南 昌林 气囊 容 器 舟 厂 生产 的新 型气囊 , 水 了一艘 长 6 . m, 1 . m 下 98 宽 48 的车客 渡船 , 水 质量 首次 突破 以往 在 5 0 以下 徘 下 0t 徊 的局 面 , 升到 了 9 0 。 攀 0t 19 9 5年 l 0月 6日, 水 船 厂 下 水 的 一艘 8 0 浠 00
舶 采 用 气 囊上 下 水 工 艺 中存 在 的 不 确 定 因 素 。 及 它 以
们 可 能 引发 的“ 全 ” 患 提 出对 策 , 技 术 角 度 和 管 安 隐 从
理角度来促进此项技术的健康发展 。 主题 词 下 水设 备 安 全 管理 气 囊 。 技 术 安 全
l9 9 3年 , 济南 昌林 气 囊 容 器 厂 组 建 成 立 , 制 研 成 功新 一代 环绕 贴敷 整体 成型 的高 强度锦 纶橡 胶气 囊 , 的制作 工艺 和 材 料结 构 大大 提 高 了气 囊 的承 新

船舶和海上技术 船舶气囊下水工艺

船舶和海上技术 船舶气囊下水工艺

船舶和海上技术船舶气囊下水工艺嘿,朋友!今天咱来聊聊船舶气囊下水工艺,这可是个相当神奇又实用的技术呢!你想想,一艘巨大的船舶,怎么能顺利地下水,还能稳稳当当驶入大海?这船舶气囊下水工艺就像是给船舶搭建了一座特别的“滑梯”。

这工艺啊,简单来说,就是依靠气囊的力量来帮助船舶下水。

可别小看这些气囊,它们就像一个个大力士,齐心协力把船舶稳稳地送出去。

这些气囊可不是普通的气囊,它们得具备超强的抗压能力和耐磨性能。

就好比一个优秀的运动员,不仅要有力量,还得有耐力和韧性,才能在赛场上取得好成绩。

船舶气囊也一样,要能承受住船舶巨大的重量和下水时的各种摩擦。

在进行船舶气囊下水操作时,那可是需要精心规划和细致安排的。

得先把船舶稳稳地放置在合适的位置,然后精准地布置好气囊。

这就好像是在摆一个超级大的拼图,每一块都得放对地方,不然可就乱套啦!而且,对于下水的场地条件也有很高的要求。

地面得足够平整坚实,要不然气囊一受力,地面要是软塌塌的,那不就像人走在沼泽地里,越陷越深啦?再说了,下水的时机也得把握好。

天气得合适,风不能太大,浪不能太高,不然船舶下水就像是在狂风巨浪中冒险,多危险呐!这船舶气囊下水工艺还有一个很大的优点,就是相对来说成本比较低。

比起其他一些复杂又昂贵的下水方式,它就像是经济实惠的家常菜,虽然朴实,但是管用!不过,这也不意味着它就没有挑战和风险。

要是在操作过程中稍有疏忽,比如说气囊没安装好,或者下水的角度不对,那后果可就不堪设想啦!这就好比开车的时候没系安全带,一旦出了事,后悔都来不及。

所以啊,船舶气囊下水工艺虽然有着诸多优点,但也需要专业的团队,丰富的经验,严谨的态度来保障它的顺利进行。

只有这样,才能让船舶像一只矫健的海鸥,顺利地投入大海的怀抱,开启它的航行之旅。

总之,船舶气囊下水工艺是船舶制造中的一项重要技术,它为船舶的下水提供了一种高效、经济且相对安全的方式。

我们要不断地研究和改进,让这项技术更加完善,为船舶行业的发展贡献更多的力量!。

气囊在船舶坞修中的应用

气囊在船舶坞修中的应用

气囊在船舶坞修中的应用标准与实践STANDARDS&PRACTICE气囊在船舶坞修中的应用赫荣勋(辽宁省丹东港集团,丹东118000)提要:采用气囊上,下水方式对船长57m,宽22m,自重达1500余吨的工程绞吸船成功进行坞修,创下本地区上水船舶自重的纪录,也积累了宝贵经验.针对地表条件恶劣,缺少必要上坞设施的情况下,完全可以利用气囊进行船舶上下坞,解决船舶维修中实际需求.关键词:气囊;船舶上,下水;应用由几舶气囊上,下水是一项创新且有川口前途的工艺,使中小型船舶修造企业克服了修造能力受制于固定式下水滑道的弊端,可以减少基础设施的投资成本,而且机动灵活,综合经济效益显着等优点.其基本原理是:利用低充气压力气囊在承载情况下的大变形,使气囊与船体大面积接触而承受船舶大负载,同时气事与船体问的静摩擦力可使气囊在变形下仍能滚动,当使用多个气囊在船底下不断滚动,便能达到使船舶安全上,下水的目的.目前国家已经出台了气囊作业工艺要求:《中华人民共和国船舶行业标准CB/T3837--1998船舶用气囊上排,下水工艺要求》,也是由实际经验总结并上升到理论指导水平.我单位地处辽宁丹东,当地没有型号气囊安全工作压力的上限值(MPo)直径D=0.8MD=1.0MD=1.2MD=1.5MD=1.8MD=2.0M6型0.25O.20O.170.13O.11O.106型直径1.80米气囊在不同工作高度上的承载能力(t/m)受压高度(米I0.2O0.3O0.40O.5O0.6O0.7O0.801.1O单位承载能力l28.226.426.622.921.219.417.612.3大型船坞,现有滑道式修船平台最大承载能力为800吨,而所要修理的船舶自重达1500余吨,根本无法满足工作的需要.如果到大连修理厂修理,仅拖船费就达20万,这还不算进坞费.并且此次坞修项目较多,修理周期长.势必要企业付出巨额修理费用.此外,由于气囊与地面也是大面积接触,且容易变形,因而使船舶上,下坞对坡道地质,坡度及地面平整度的要求降低,帮在泥地,草地,沙滩地,淤泥沉积地等均可使用.再者,采用多个气囊滚动,当改变气囊的安放位置时,便可利用牵引达到使船舶转弯和斜向上,下水的目的.结合我们的场地实际情况,通盘考虑,最终决定采用气囊上,下水方式.首先,要做好气囊上下坞的理论计算,确保符合工艺标准.1,气囊的技术性能本次船体下水采用6层高承载力,直径1.8O米,有效长度7.O米的气囊.气囊安全工作压力上限值0.1IMPa.l璺I气囊的工作压力和承载能力公式Q=P.SQ一一气囊的承载能力P——气囊的工作压力s——承载接触面的正投影面积S=BxL(气囊长度)气囊压缩变形后与船体接触面宽度(见上图)B=1.57X(D—H)74船舶标准化工程师2010/5j趸戤琏小数据重量T1,500直径M1.80型长M57长度M7.O0船型宽M22气项升工作高度M】.O0体囊基型深M基行走工作高度M1.0O水船体每米重量T/M37本标准压力Mpa0.10数数据船体每平方米重量T/m1.67顶升气囊数量条30.00据给定吃水深度m1.80行走气囊数量条30.00气囊例数2.0O宽M51T/Ml2.57船气承载能力台-KMl24T/条87.96囊基坡比(系数)l65o.0l54工总承载力T2.638.86 本坡度作标准压力MpaO.1O数状据长度M工作面宽Ml-26态坡度余弦值65650.9999气囊工作宽度M2.26 :l作状念种数高度M1.00船体摩擦力kn617船气囊使用数量条30.OO坡移动惯性力妇63 体气囊压强Mpa0.08道坡道下滑力kn.238盎顶气囊承载力2,638.86下水牵引力kn.3l1升引气囊需要数量条28.65状上排牵引力kn934 安全系数1.26态值为(_)时为牵引力工作压强Mpa0.08顶升能力t2,100.00主卷扬机(2台)吨位20行接触面积m263.89卷滑轮组吨位1O0扬走标准承载力t/ml2.57绳道数道4机时受力面宽m1.26参导向滑轮吨位20气囊每米承载力t9.8O数总牵引力Ⅱ屯l60状后卷扬机(2台)吨位8态查滑轮组吨位50卷气囊标准承载力t2,638.86扬绳道数道2气囊间距m3.80机总牵引力吨322Olo/5船舶标准化工程师75标准与实践STANDARDS&PRACTlCE2,气囊数量的选择气囊数量选择按下式计算N=K_;+N式中:N为气囊数量条K系数1.2~1.3Q船体重量KNg重力加速度9.80c船体方形系数R气囊允许承载力KN/ML气囊与船体有效接触长度MN接续气囊数量气囊直径1.80米,标准长度7.0O米标准气压0.10Mpa.在压缩No.5米状态下,气囊承载能力为200.00KN/米每条气囊l00%承压状态下的承载能力:200.00*7=】400.00KN3,气囊间距验算—一≥—“rr—D+o.5N一12式中:L船体长度MN气囊数量条D气囊直径M经验算间距符合要求.4,卷扬机牵引力按下例公式计算F≥K.Fc/(NC.COSB)式中:K安全系数k=1.2~1.5Fc牵引力Nc钢丝绳道数CosB钢丝绳与坡道夹角在理论计算满足标准后,进入实际操作阶段.先对船台进行杂物清理, 防止在上坞过程中存在尖锐物体将气囊划伤,造成安全事故.在低潮露滩时,将气囊按计算间距排布并用砂袋压实.牵引钢丝绳按进船方向和位置浮动布置在砂袋上方,并保证不处于气囊进气口侧,以防作业时意外将气囊拉起.船舶牵引速度控制在3.0m/min之内.接续气囊按照二倍工作气囊间距布置,工作气囊间距为3.80米,接续气囊位置在第一条工作气囊进入船底时在气囊前方7.60米处安排接续气囊, 工作气囊采用数量为3O条,接续气囊数量1O条.船体在牵引过程中,要时刻注意船体的前进方向要始终保持在中轴线上,不可偏离.在牵引过程中由于牵引钢丝绳夹角逐渐增大,电机的出力也随之增加,操作人员要细心的观察卷扬机转速变化和电机的运行的声音变化. 当船舶牵引到指定位置时,将事先准备好的船垛交替送至船舶主骨架(龙骨或舱壁板)处,最后逐一撤走气囊,进行坞修项目的修理工作.总结上,下水过程如下:上岸程序清理船底,通道(清理船底附生物和气囊滚动区域,清除所有伤害气囊的物体)…一按施工要求修建坡道一一船体焊接拖船工眼板___一根据潮汐确定抢滩位置…一布置气囊,航标一一布设卷扬机…一定位抢滩___一固定抢滩船只…一挂前牵卷扬机…一充气顶升检查船底___一运行五米再次检查船底…一拖曳运行至指定位置…~支墩放气一一解除前牵一一完成上岸作业.下水程序清理船底,通道(清理船底和气囊滚动区域,清除所有伤害气囊的物体) ___一铺设气囊一一设置前后牵引一一顶升撤墩…~拖曳运行到低潮位线待潮___一高潮位拖曳至全浮…~解除前后牵引…一回收气囊完成下水作业.安全方面也要格外强调一点:由于是上水操作,尾部工作人员要时刻注意船体的动向,尽量在坡道船体后逗留时间要短,防止牵引问题造成船体下滑移动,引发安全事故.此外,气囊在使用之前,要逐一进行严格检查,对气囊的表面检查是否有伤痕,是否有氧化,充气头密封情况,是否有漏气等现象;对充气系统的压力监视仪表,包括空压机的压力表,要逐一进行试验,指示要准确.充气阀门密封要好,不应有漏气现象.(气泵压力0.8MPa;气囊实际工作压力0.13MPa).通过此次气囊上坞的应用,创下丹东地区上坞船舶自重的纪录, 也开了丹东地区大型船舶气囊上坞的先河.利用气囊进行船舶的上,下坞作业能够克服地表条件恶劣,基建工期长等不利因素,用少量投入赢得最大收益.唧参考文献:《气囊容器及船舶用气囊上排下水工艺》《中华人民共和国船舶行业标准CB/T3837--1998船舶用气囊上排, 下水工艺要求》76船舶标准化工程师2010/5。

中小型船舶的气囊下水工艺.doc

中小型船舶的气囊下水工艺摘要:本文根据船舶气囊下水实施案例,通过对下水过程中气囊压力、牵引力等一系列的计算,介绍船舶气囊下水的原理、方法及流程,探讨气囊下水作为中小型船舶下水方式的可行性。

关键词:船舶;下水;气囊Abstract: Based on some actual cases of ship launching by air bags and through calculation of pressure and pull force of air bags, this paper introduces the principles, method and procedures for ship launching by air bags in order to explore the feasibility of launching by air bags for small and medium-sized ships.Key words: Vessel; Launching; Air bag船舶下水是船舶建造过程中的一个重要环节。

目前除了拥有造船坞的船厂采用坞内造船、船舶出坞进水之外,下水的方式还有很多,以纵横方向分作二大类的话,纵向下水以纵向油脂、滑道方式占主要地位,横向下水以轨道、液压堕船小车、机械方式见多数。

而采用气囊下水,业内人士过往都认为那是“山寨厂”的船舶下水方式。

当然,华东沿海一带的民营船厂成功地应用气囊下水,将30 000~80 000万DWT级的船舶推下水,是促使船舶气囊下水行业标准诞生的重要因素。

尽管如此,仍不足从根本上扭转人们对其的不正确认识。

根据我们广州航通船业有限公司(以下简称航通公司)多年、多艘、多船型船舶气囊下水的实践,着力向中小型船厂,中小型船舶推荐采用气囊下水作业既安全、可靠又环保、经济是很有理由的。

如表1所列航通公司先后以气囊下水的计有“粤工桩九”、3 300 m3 LPG船(二艘)、78 m三用工程船(二艘)和58.7 m工程船(四艘)等共九艘船舶;其中有船底平坦的、也有型线变化比较大的船舶,然实践证明均可取得很好的效果,每条船都安全下水。

船舶气囊下水的应用介绍

船舶气囊下水的应用介绍船舶气囊下水的应用介绍船舶气囊下水的应用介绍船舶下水气囊的发展:船用气囊下水是在理论体系建立的同时并应用于实践的发展,使船舶利用气囊下水的技术更加完善,被更多的船东所接受。

船用气囊下水是一种具有我国自主知识产权的创新产品,目前广泛用应于船舶上下水,大型重物的起重搬运,打捞沉船,搁浅施救等。

具有投资少、见效快、安全可靠的特点。

船用气囊的应用受场地限制少,无需大型的机械设备,因此能够缩短工程周期、节省大量资金。

经过二十多年的发展实践,证明这种产品具有安全高效、绿色环保、机动灵活等特点。

船舶以起重气囊和滚动气囊为主要工具,将船舶承托在气囊上,从修造场地移入水域或从水域迁移上岸,利用气囊的低充气压力、大承载面积以及大变形后仍容易滚动的特点,先用起重气囊将船舶从墩木上抬起,搁置于滚动气囊上,然后通过钢缆牵引和气囊的滚动,使船舶缓慢的滑入水中。

船用气囊标准:船用气囊的生产和应用主要参照两个行业标准来执行:CB/T3795《船舶上排、下水用气囊》、CB/T3837《船舶用气囊上排、下水工艺要求》。

国防科工委制定的《船舶生产企业生产条件基本要求及评价方法》中,首次将气囊作为一种认可的下水方式列入其中,并规定二级Ⅰ类企业允许采用气囊下水方式,同时对采用气囊下水的设施设备也提出了相应的要求。

利用气囊下水需要考虑的三个因素:第一:根据计算出的牵引力大小选择绞车船舶气囊下水之初,首先要将船艏与地牛拉住,即使在坡度很小的坡道上下水,为了防止意外事故也要把船先拉住。

根据计算出的牵引力大小选择绞车;脱钩器;动、定滑轮组;卸扣;前端动滑轮组与船体和后端定滑轮组与地牛连接的大绳规格和数量;紧紧将其连接住。

第二:船舶下水的坡道一般一、二万吨船舶要求承压能力在大于0.18MPa;三、四万吨船舶要求滑道的承压能力大于0.20MPa,五六万吨船舶要求滑道承压能力大于0.22MPa.坡道必须有足够的承压能力,标准要求达到气囊内压的两倍以上,坡道如果承压能力不足,坡道就会被压塌,压裂。

船舶气囊下水静力学计算与结构分析的开题报告

船舶气囊下水静力学计算与结构分析的开题报告一、研究背景和意义随着全球经济的快速发展,海洋贸易逐年增长,船舶产业也得到了迅速发展。

在新造船舶的建造过程中,下水环节是重要的一步,同时也是危险的环节。

船舶气囊作为一种新型的下水工具得到了广泛的应用。

船舶气囊下水是指通过气囊在水中推动船体,使船体从船台滑入水中,其具有下水速度快、造价低、安全性好等优点。

但是,船舶气囊下水过程中仍然存在一些问题,如气囊数量、气囊尺寸、气囊布置等需要进行合理的设计,以保证下水过程的顺利进行。

为了提高船舶气囊下水的效率和安全性,需要对船舶气囊下水的静力学进行分析和计算。

通过对船舶气囊下水的静力学进行分析和计算,可以了解气囊的受力情况和变形情况,以及气囊下水后的浮力和初始稳定状态,从而保证下水过程的安全性和顺利性。

因此,对船舶气囊下水静力学的计算与结构分析进行研究具有重要的理论和实际意义。

二、研究目标和内容本研究的目标是对船舶气囊下水的静力学进行计算和结构分析,研究气囊的受力情况和变形情况,以及气囊下水后的浮力和初始稳定状态,保证下水过程的安全性和顺利性。

具体的研究内容包括:1. 针对船舶气囊下水的特点,建立气囊下水的数学模型,确定气囊在下水过程中的受力情况和变形情况。

2. 建立船舶气囊下水的计算模型,计算气囊下水后的浮力和初始稳定状态,并检验计算结果的准确性。

3. 讨论气囊数量、气囊尺寸、气囊布置等对下水过程的影响,进行优化设计,提高下水效率和安全性。

三、研究方法和技术路线本研究采用的研究方法主要包括理论分析和数值模拟两种方法。

通过对船舶气囊下水的静力学进行理论分析,建立数学模型,并利用数学方法对模型进行求解,以确定气囊在下水过程中的受力情况和变形情况,以及气囊下水后的浮力和初始稳定状态。

同时,用数值模拟的方法对气囊下水过程进行仿真计算,进一步验证理论分析的准确性,并进行参数敏感性分析和优化设计。

具体的技术路线如下:1. 收集研究文献,了解气囊下水的基本原理和相关技术。

船舶气囊下水理论及安全风险评估

福建华东船舶及海洋工程设计院East China Marine Design Institute Co., Ltd of Fujian华设(2012)第HD2012001号船舶气囊下水理论及安全风险评估目录1、概述2、气囊的特性2.1.气囊的构造2.2.气囊的特征参数2.3.气囊的性能曲线3、气囊下水阶段及船舶位置参数3.1.气囊下水阶段的划分3.2.下水时船舶的位置参数3.3.船舶倾斜度的变化3.4.船舶的“弯折”现象4、作用在船舶上的作用力及受力分析4.1.作用在船舶上的作用力4.2.力与力矩的平衡方程4.3.船舶下水过程的安全问题4.4.气囊承载力的分布形式(1)梯形分布(2)三角形分布5、气囊形式的静力学计算程序5.1.辅助计算表5.2.计算程序及说明5.3.气囊下水状态曲线6、气囊的数量与布置6.1.气囊数量与分布计算6.2静置气囊及前置气囊6.3静制动及牵引力计算。

7、气囊下水的动力学计算8、气囊下水的安全风险评估9.计算实例1、概述:船舶气囊下水技术是中国在20世纪80年代初发明的,这项具有我国完全自主知识产权的技术,经过三十年的改进与发展,目前已具备十万吨级船舶的下水能力。

它的应用和发展已经引起船舶修造技术出现了一项“革命性”转变。

是对船舶下水工艺的重大贡献。

气囊下水的技术又称为“柔性下水技术”,是在传统的滑道下水技术的基础上发展起来的。

它利用柔性的气囊来取代滑道和滑板,克服了传统滑道下水的许多缺点。

柔性的气囊好似一个弹性垫,它使船体在下水过程中可以自由俯仰,保持船底下有较大的接触面积,使船底的受力十分缓和,以致船体的结构、表面的油漆(涂层)不会受到损伤。

气囊下水技术与传统的滑道下水技术比较,具有如下的优越性:(1)节省了船厂基本建设的投资。

在船厂基本建设中,下水设施,如传统的下水滑道及其水下工程的投资十分惊人。

采用气囊下水技术的船厂只需建造简易的坡道,设施简单,而且无需复杂的水下工程,大大节省了船厂基本建设的投资。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

i r v h a e flu c ig s i no t ewae.S c ee rh i epu rte mp o et e sft o n hn hp it tr u h ar sac sh lf lf y a h o h
s i y d t ra g a o a l u c i g s h me . h p a a r n er s n b el n h n c e s r o e a
(.hj n rfcS re 1 e a g a uvy&DeinC . t. az o rn h T i o 3 8 0 ,Z ei g C ia Z i T i s o, d,T i uB a c , a h u 1 0 0 hj n , hn g L h z a 2 Naj gUnvri at c n e dE gn e n olg , Naj g 2 9 ,J n s , C ma . ni iesyE r S i cs n n ier gC l e n t h e a i e ni 0 3 i gu n 1 0 a h )
Ke r s p r s i i a b aigc p ct if e t l a tr lu c igs ft ywo d : ot hp ar g e rn a a i b y n u n i cos a n hn ae l af y
世 界上 除部 分船 舶 的下 水 在船坞 内进 行 以及
摘 要 :根据 气囊承 载形状 变化规律 ,基 于 目前通 用的假设 条件 归纳 出船舶 气囊下水工
艺中气囊承载能力计算模型,分析影响气囊承载力相关因素。发现气囊承载力与气囊
初始压 力和工作 高度 密切相 关;通过模型 分析 ,设 定合适 初始压 力与降低工作 高度 可
提高船舶气囊下水的安全性。研究成果可供船厂在制定合理的船舶气囊下水工艺方案 时参考。 关键词:港 口 船舶气囊 承载性能 影响 因素 下水安全性
发放 与认证 工 作 。这 将 进一 步为船 舶气 囊下 水技
些中小型船舶采用轨道滑车进行纵向或横向下
水 外 ,大 型船 舶一般 均采 用纵 向滑道 下 水形式 完 成 所 建造船 舶 由陆地 移入 水 中的工 艺过程 。近 年
来 ,在我 国各造 船企 业特 别是 民营 企业广 泛应 用
的气囊 下水 技术 是一 项具有 广 阔发展 前途 的新 工 艺【 】 1 。该工 艺 克服 了以往 中小船厂 船舶 修造 能力 . 2
受 制 于滑板 、滑 道等 传统 工艺 制约 的不足 ,具 有
术提 供更加 广 阔的发展 契机 。 船 舶制 造 技术 不断 向纵深 发展 ,采 用气 囊下
港口科技 ・ 科研与技革
水 的船 舶 吨位 越来 越大 ,部 分船 舶 自重 已超 过 万 吨[。技 术 发展 促 使气 囊承 载 能力 提 高 的 同 时也 4 1

投 资 少 、消低 耗 、无 污 染 、高效 率 、机 动灵 活 、 安全 可靠 等 优 点【。最新 发布 并 实施 的 《 舶 生 3 】 船 产 企 业 生 产 条 件 基 本 要 求 及 评 价 方 法 》 标 准 ( BT 30—07 C / 0020 )当中 已将 气囊 下水 作 为一种 认 可 的船 舶下 水方法 列 入船 舶生产 企业 的许 可证 ห้องสมุดไป่ตู้
p ee t ac lt n mo e setbih d t n lz e ar a ’ b a n a a i n r sn,ac luai d li sa l e o a ay e t i gS e r g c p ct a d o s h b i y
i f e t lf co s i e lu h n r c s f s i .I i f u d t a h i a ’ b a i g n u n i a t r n t a c i g p o e s o h p t s o n h tt e a r g S e r l a h b n
港 口科技 ・ 科研与技革
船舶 囊下7 工艺 中气囊承载 性 能影 响因素 析 K
成 小飞 ,曹 亮
1 浙江 交通勘 察设计有 限公 司台州分公 司, 浙江 台州 3 8 0 ; . 10 0 2 南京大学地球科 学与工程 学 院, 江 苏 南京 2 0 9 ) . 10 3
c p ct ls l eae oii a r su ea d teo eaigh ih . h o g emo e a a i i co eyrltd t nt l e s r n p rt eg t T r u ht d l y s i p h n h
a ayss etn a u tbl i ii l r su e nd e u i t e p r t h i t o d n l i,s ti g s ia e n ta p e s a r d cng h o e a i r ng egh c ul
I lu n i l c o s nf e ta Fa t r Ana y i o r g SBe r n pa iy i un hi g l ssf r Ai ba ’ a i g Ca ct n La c n
Pr e s oc s
CHENG a f i CA O a 2 Xi o e Li ng
Ab t a t Ac o d n h h n e o i a e rn h p d g n r l s u t n t sr c : c r i g t t e c a g far g b a i g s a e a e e a s mp i s a o b n a o
相关文档
最新文档