专题:直角三角形培优
《直角三角形的应用与动点问题》培优资料

《直角三角形的应用与动点问题》培优资料一、例题例1、小明在轮船上,看见前面岛上有个灯塔,仰角为15°,当轮船向岛的方向行驶5米时,此时小明看灯塔的仰角为30°,求灯塔离海平面的高度。
例2.在一棵树10m 高的B 处,有两只猴子,一只爬下树走到离树20m 处的池塘A 处;另 外一只爬到树顶D 处后直接跃到A 外,距离以直线计算,如果两只猴子所经过的距离相等, 试问这棵树有多高?例3.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A 点沿纸箱爬到B 点,那么它所行的最短路线的长是_____________。
例4.有一个小朋友拿着一根竹竿要通过一个长方形的门,如果把竹竿竖放就比门高出1尺,斜放就恰好等于门的对角线长,已知门宽4尺, 求竹竿高与门高。
A BA B C D 15° 30°A A ′B B ′ O 例5、一架方梯长25米,如图,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子的底端在水平 方向滑动了几米?例6.如图,在气象站台A 的正西方向240km 的B 处有一台风中心,该台风中心以每小时20km 的速度沿北偏东o 60的BD 方向移动,在距离台风中心130km 内的地方都要受到其影响。
⑴台风中心在移动过程中,与气象台A 的最短距离是多少?⑵台风中心在移动过程中,气象台将受台风的影响,求台风影响气象台的实践会持续多长?例7、如图,在Rt △ABC 中,∠C=90°,AB=10cm ,AC :BC=4:3,点P 从点A 出发沿AB 方向向点B 运动,速度为1cm/s ,同时点Q 从点B 出发沿B→C→A 方向向点A 运动,速度为2cm/s ,当一个运动点到达终点时,另一个运动点也随之停止运动.(1)求AC 、BC 的长;(2)当x=5秒时,在直线PQ 上是否存在一点M ,使△BCM 得周长最小?若存在,求出最小周长;若不存在,请说明理由.(3)设点P 的运动时间为t (秒),以点B 、P 、Q 为顶点的三角形是Rt △,求t 的值.例8、如图在Rt ABC ∆中,90B ∠=︒,30C ∠=︒, 12AB =厘米,点P 从点A 出发沿线路AB —BC 作匀速运动,点Q 从AC 的中点D 同时出发沿线路DC —CB 作匀速运动逐步靠近点P, 设P,Q 两点运动的速度分别为1厘米/秒、a 厘米/秒(1a >),它们在t 秒后于BC 边上的某一点E 相遇.⑴求出AC 与BC 的长度.⑵若以D,E,C 为顶点的三角形是Rt △,试分别求出a 与t 的值.C B AD P QB C A 30° 5 20 15 10 C A B二、练习1.如图一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距 ( )A 、25海里B 、30海里C 、35海里D 、40海里2、某人欲从A 点横渡一条河,由于水流的影响,实际上岸地点C 偏离欲到达点B 240米,结果他在水中实际游了510米,则该河的宽度为 米。
初中数学《直角三角形》培优、拔高(奥数)专题讲义

初中数学《直角三角形》培优、拔高(奥数)专题讲义阅读与思考直角三角形是一类特殊三角形,有以下丰富的性质: 角的关系:两锐角互余;边的关系:斜边的平方等于两直角边的平方和;边角关系:30所对的直角边等于斜边的一半.这些性质广泛应用于线段计算、证明线段倍分关系、证明线段平方关系等方面.在现阶段,勾股定理是求线段的长度的主要方法,若图形缺少条件直角条件,则可通过作辅助垂线的方法,构造直角三角形为勾股定理的应用创造必要条件;运用勾股定理的逆定理,通过代数方法计算,也是证明两直线垂直的一种方法.熟悉以下基本图形基本结论:例题与求解【例l 】(1)直角△ABC 三边的长分别是x ,1x 和5,则△ABC 的周长=_____________.△ABC 的面积=_____________.(2)如图,已知Rt △ABC 的两直角边AC =5,BC =12,D 是BC 上一点,当AD 是∠A 的平分线时,则CD =_____________.DC(太原市竞赛试题)解题思路:对于(1),应分类讨论;对于(2),能在Rt △ACD 中求出CD 吗?从角平分线性质入手.【例2】如图所示的方格纸中,点A ,B ,C ,都在方格线的交点,则∠ACB =( ) A.120° B.135° C.150° D.165°(“希望杯”邀请赛试题)解题思路:方格纸有许多隐含条件,这是解本例的基础.【例3】如图,P为△ABC边BC上的一点,且PC=2PB,已知∠ABC=45°,∠APC =60°,求∠ACB的度数.B C(“祖冲之杯”邀请赛试题)解题思路:不能简单地由角的关系推出∠ACB的度数,综合运用条件PC=2PB及∠APC =60°,构造出含30°的直角三角形是解本例的关键.【例4】如图,在△ABC中,∠C=90°,∠A=30°,分别以AB,AC为边在△ABC的外侧作等边△ABE和等边△ACD,DE与AB交于F,求证:EF=FD.BA C(上海市竞赛试题)解题思路:已知FD为Rt△FAD的斜边,因此需作辅助线,构造以EF为斜边的直角三角形,通过全等三角形证明.【例5】如图,在四边形ABCD中,∠ABC=30°,∠ADC=60°,AD=CD,求证:222+=BD AB BCBC(北京市竞赛试题)解题思路:由待证结论易联想到勾股定理,因此,三条线段可构成直角三角形,应设法将这三条线段集中在同一三角形中.【例6】斯特瓦尔特定理:如图,设D 为△ABC 的边BC 上任意一点,a ,b ,c 为△ABC 三边长,则222b BDc DC AD BD DC a+=-⋅.请证明结论成立.B解题思路:本题充分体现了勾股定理运用中的数形结合思想.能力训练A 级1.如图,D 为△ABC 的边BC 上一点,已知AB =13,AD =12,AC =15,BD =5,则BC =_____________.第1题2.如图,在Rt △ABC 中∠C =90°,BE 平分∠ABC 交AC 于E ,DE 是斜边AB 的垂直平分线,且DE =1cm ,则AC =_____________cm.第2题3.如图,四边形ABCD 中,已知AB ∶BC ∶CD ∶DA =2∶2∶3∶1,且∠B =90°,则∠DAB =_____________.第3题ABC(上海市竞赛试题)4.如图,在△ABC 中,AB =5,AC =13,边BC 上的中线AD =6,则BC 的长为_____________.第4题D B(湖北省预赛试题)5.如果一个三角形的一条边是另一条边的2倍,并且有一个角是30 º,那么这个三角形的形状是( )A.直角三角形B. 钝角三角形C. 锐角三角形D.不能确定(山东省竞赛试题)6.如图,小正方形边长为1,连结小正方形的三个顶点可得△ABC ,则AC 边上的高为( )B.C.D. 第6题CB(福州市中考试题)7.如图,一个长为25分米的梯子,斜立在一竖直的墙上,这时梯足距墙底端7分米,如果梯子的顶端沿墙下滑4分米,那么梯足将滑( )A. 15分米B. 9分米C. 8分米D. 5分米第7题8.如图,在四边形ABCD 中,∠B =∠D =90°,∠A =60°,AB =4,AD =5,那么BCCD等于( ) A.1 B. 2C.D.54第8题A9. 如图,△ABC 中,AB =BC =CA ,AE =CD ,AD ,BE 相交于P ,BQ ⊥AD 于Q ,求证:BP =2PQ.DC(北京市竞赛试题)10. 如图,△ABC 中,AB =AC.(1)若P 是BC 边上中点,连结AP ,求证:22BP CP AB AP ⋅=-(2)P 是BC 边上任意一点,上面的结论还成立吗?若成立,请证明;若不成立,请说明理由;(3)若P 是BC 边延长线上一点,线段AB ,AP ,BP ,CP 之间有什么样的关系?请证明你的结论.BP11.如图,直线OB 是一次函数2y x =图象,点A 的坐标为(0,2),在直线OB 上找点C ,使得△ACO 为等腰三角形,求点C 的坐标.12.已知:如图,将矩形ABCD 沿对角线BD 折叠,使点C 落在C '处,BC '交AD 于E ,AD =8,AB =4,求△BED 的面积.D(山西省中考试题)B 级1.若△ABC 的三边a,b,c 满足条件:222338102426a b c a b c +++=++,则这个三角形最长边上的高为_____________.2.如图,在等腰Rt △ABC 中,∠A =90°,P 是△ABC 内的一点,PA =1,PB=3,PC ,则∠CPA =_____________.第2题A3. 在△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为_____________.4.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,AF 平分∠CAB 交CD 于E ,交CB 于F ,且EG ∥AB 交CB 于G ,则CF 与GB 的大小关系是( )A. CF >GBB. CF =GBC. CF <GBD. 无法确定第4题AB5. 在△ABC 中,∠B 是钝角,AB =6,CB =8,则AD 的范围是( ) A. 8<AC <10 B. 8<AC <14 C. 2<AC <14 D. 10<AC <14(江苏省竞赛试题)6.满足两条直角边长均为整数,且周长恰好等于面积的整数倍的直角三角形的个数有( )A. 1个B. 2个C. 3个D.4个(浙江省竞赛试题)7.如图,△ABC 是等腰直角三角形,AB =AC ,D 是斜边BC 的中点,E ,F 分别是AB ,AC 边上的点,且DE ⊥DF ,若BE =12,CF =5,求△DEF 的面积.DBC(四川省联赛试题)8.如图,在Rt △ABC 中,∠A =90°,D 为斜边BC 中点,DE ⊥DF ,求证:222EF BE CF =+B(江苏省竞赛试题)9.周长为6,面积为整数的直角三角形是否存在?若不存在,请给出证明;若存在,请证明有几个.(全国联赛试题)10.如图,在△ABC 中,∠B AC =45°,AD ⊥BC 于D ,BD =3,CD =2,求△ABC 面积.BC(天津市竞赛试题)11.如图,在△ABC 中,∠B AC =90°,AB =AC ,E ,F 分别是BC 上两点,若∠EAF=45°,试推断BE ,CF ,EF 之间数量关系,并说明理由.A C12.已知在Rt △ABC 中,∠ACB =90°,AC =BC ,∠MCN =45°. (1)如图1,当M ,N 在AB 上时,求证:222MN AM BN =+(2)如图2,将∠MCN 绕点C 旋转,当M 在BA 的延长线上时,上述结论是否成立?若成立,请证明;若不成立,请说明理由.图1NAB M图2N BM(天津市中考试题)。
八年级下册第一章《直角三角形》培优习题

八年级下册第一章《直角三角形》培优习题一、知识要点填空:1、直角三角形的性质:(1)直角三角形的两个锐角_________(2)直角三角形斜边上的中线等于斜边的_________;(3)直角三角形30°角所对的直角边是______的一半;(4)直角三角形中,如果有一条直角边是斜边的一半,那么这条直角边所对的角是30°.2、直角三角形的判定方法:(1)有一个角是直角的三角形是直角三角形;(2)有两个角______的三角形是直角三角形;(3)如果一条边上的中线等于这边的一半,那么这个三角形是直角三角形。
3、等腰直角三角形是特殊的直角三角形,它的两个底角都是_____,且两条直角边相等。
等腰直角三角形具有等腰三角形和直角三角形的所有性质,是很常见的特殊三角形。
二、练习题1、如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则则∠1+∠2等于__________.2、设M表示直角三角形,N表示等腰三角形,P表示等边三角形,Q表示等腰直角三角形,则下列四个图中,能表示它们之间关系的是()A. B.C. D.3、如图,Rt△ABC中,AB⊥AC,AD⊥BC,BE平分∠ABC,交AD于E,EF∥AC,下列结论一定成立的是()A.AB=BF B.AE=ED C.AD=DC D.∠ABE=∠DFE4、如图,在△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP的长不可能的是()A.3.5 B.4.2 C.5.8 D.75、如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交于BC的延长线于F,若∠F=30°,DE=1,则EF的长是() A.3 B.2 C.3 D.16、已知等腰△ABC 中,AD ⊥BC 于点D ,且AD=21BC ,则△ABC 底角的度数为___________________.7、四边形ABCD 由一个∠ACB=30°的Rt △ABC 与等腰Rt △ACD 拼成,E 为斜边AC 的中点,则∠BDE=__________.8、已知:在△ABC 中,∠BAC=90°,AD ⊥BC 于点D ,∠ABC 的平分线BE 交AD 于点F ,试说明AE=AF.9、在△ABC 中,∠A=90°,AB=AC ,∠ABC 的平分线BD 交AC 于D ,CE ⊥BD 的延长线于点E .求证:CE =21BD10、一根长2a 的木棍(AB ),斜靠在与地面(OM )垂直的墙(ON )上,设木棍的中点为P .若木棍A 端沿墙下滑,且B 端沿地面向右滑行.木棍滑动的过程中,点P 到点0的距离不变化,在木棍滑动的过程中,△AOB 的面积最大为______________.11、如图在Rt △ABC 中,∠ACB=90°,CD 、CE 分别是斜边AB 边上的高与中线,CF 是∠ACB 的平分线,则∠1与∠2的大小关系是( )A .∠1>∠2 B. ∠1=∠2 C. ∠1<∠2 D.不能确定12、如图,在Rt △ABC 中,∠ACB=90°,AB=2BC ,在直线BC 或AC 上取一点P ,使得△PAB 为等腰三角形,则符合条件的点P 共有( )A .4个B .5个C .6个D .7个13、如图,在直角三角形ABC 中,CM 是斜边AB 上的中线,MN ⊥AB ,∠ACB 的平分线CN 交MN 于N ,求证:CM=MN .14、如图,在斜边长为1的等腰直角三角形OAB 中,作内接正方形A 1B 1D 1C 1;在等腰直角三角形OA 1B 1中作内接正方形A 2B 2D 2C 2;在等腰直角三角形OA 2B 2中作内接正方形A3B3D3C3;…;依次做下去,则第n个正方形A nB n D nC n的边长是_______________.15、下面的方格图案中的正方形顶点叫做格点,图1中以格点为顶点的等腰直角三角形共有4个,图2中以格点为顶点的等腰直角三角形共有________个,图3中以格点为顶点的等腰直角三角形共有_________个,图4中以格点为顶点的等腰直角三角形共有_________个.16、如图,在△ABC中,∠B=90°,∠BAC=78°,过C作CF∥AB,连接AF于BC相交于G,若GF=2AC,则∠BAG=17、如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持AD=CE.连接DE、DF、EF.在此运动变化的过程中,下列结论:①△DFE是等腰直角三角形;②DE长度的最小值为4;③四边形CDFE的面积保持不变;④△CDE面积的最大值为8.其中正确的结论是()A.①②③B.①③ C.①③④D.②③④18、如图,已知OA=a,P是射线ON上一动点(即P可以在射线ON上运动),∠AON=60°,填空:(1)当OP=_________时,△AOP为等边三角形;(2)当OP=__________时,△AOP为直角三角形;(3)当OP满足___________时,△AOP为钝角三角形.GF CB A。
九年级数学中考复习分类培优专题练习:30°的直角三角形性质运用(附解析)

九年级数学中考复习分类培优专题练习30°的直角三角形性质运用(附解析)一.选择题1.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN =2,则OM=()A.3 B.4 C.5 D.62.如图,梯形ABCD中,AD∥BC,∠C=90°,∠B=60°,AD=3,BC=5,则腰AB的长为()A.8 B.6 C.4 D.23.如图,在△ABC中,∠A=150°,AB=20cm,AC=30cm,则△ABC的面积为()A.330cm2B.450cm2C.150cm2D.300cm24.如图,四边形ABCD中,∠BCD=90°,BC=CD,对角线AC⊥BD于点O,若AD=CD,则∠ADC的度数为()A.100°B.105°C.85°D.95°5.如图,矩形ABCD的对角线AC、BD相交于点O,∠AOD=120°,AB=4cm,则矩形的对角线长为()A.4cm B.6cm C.8cm D.10cm6.如图,沿AC方向开山修路,为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B,取∠ABD=150°,BD=500米,∠D=60°.要使A,C,E成一直线.那么开挖点E离点D的距离是()A.200米B.250米C.300米D.350米7.如图,△ABC中,∠C=90°,∠B=30°,AC=3.点P是BC边上的动点,则AP长不可能是()A.3 B.4.2 C.5 D.6.18.如图,想测量旗杆AB的高,在C点测得∠ACB=30°,然后在地面上沿CD方向从C点到D点,使∠ACD=∠ACB,DA⊥AC于点A,此时测得CD=36m,则旗杆高()A.9m B.18m C.36m D.72m9.如图,一架梯子斜靠在墙上,梯子与地面的夹角∠ABC=60°,梯子的长为5米,则梯子与墙角的距离BC为()米.A.5 B.2.5 C.4 D.310.如图,在△ABC中,∠ACB=90°,∠A=30°,BD平分∠ABC,DE⊥AB于E,AC=12cm,则AD=()cm.A.4 B.8 C.6 D.无法确定11.在四边形ABCD中,∠A=60°,AB⊥BC,CD⊥AD,AB=4cm,CD=2cm,求四边形ABCD 的周长()A.10+2B.8+2C.8+3D.10+212.如图,在△ABC中,AB=AC,∠BAC=120°,AD⊥AC,交BC于点D.若BC=6cm,则CD 的长为()A.2cm B.3cm C.4cm D.5cm二.填空题13.如图,在等边△ABC中,BC=2,D是AB的中点,过点D作DF⊥AC于点F,过点F作EF ⊥BC于点E,则BE的长为.14.如图,△ABC中,AB=AC,BC=24,∠BAC=120°,过点A作AD⊥AB,交BC于点D,则CD=.15.如图,在△ABC中,∠A=30°,AB=AC=4,则△ABC的面积为.16.如图所示,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,若DE=2,则BC=.17.如图,在△ABC中,AB=AC,∠BAC=120°,AB的垂直平分线交AB于点E,交BC于点F,若BF=1,则BC的长为:.18.如图,在△ABC中,∠C=90°,∠B=30°,斜边AB的垂直平分线DE交AB于点E,交BC于点D,BC=9,则CD的长是.19.如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,AB=2,点E为AC上任意一点(不与点A、C重合),连结EB,分别过点A、B作BE、AE的平行线交于点F,则EF的最小值为.20.如图,∠MON=60°,点A1在射线ON上,且OA1=1,过点A1作A1B1⊥ON交射线OM于点B 1,在射线ON上截取A1A2,使得A1A2=A1B1;过点A2作A2B2⊥ON交射线OM于点B2,在射线ON上截取A2A3,使得A2A3=A2B2;…;按照此规律进行下去,则A2020B2020长为.三.解答题21.如图,AD是△ABC的高,BE是△ABC的角平分线,F是AB中点,∠ABC=50°,∠CAD =60°.(1)求∠AEB的度数;(2)若△BCF与△ACF的周长差为3,AB=5,AC=8,求△ABC的周长.22.如图,在Rt△ABC中,∠C=90°,∠A=30°,AC=.(1)求AB的长;(2)求Rt△ABC的面积.23.已知:在Rt△ABC中,∠ACB=90°,D为线段CB上一点且满足CD=CA,连接AD,过点C作CE⊥AB于点E.(1)如图1,∠B=30°,BD=2,AD与CE交于点P,则∠CPD=,AE=;(2)如图2,若点F是线段CE延长线上一点,连接FD.若∠F=45°,求证:AE=FE.24.如图(1)将三角板ABC与∠DAE摆放在一起,射线AE与AC重合,射线AD在三角形ABC 外部,其中∠ACB=30°,∠B=60°,∠BAC=90°,∠DAE=45°.固定三角板ABC,将∠DAE绕点A按顺时针方向旋转,如图(2),记旋转角∠CAE=α.(1)当α为60°时,在备用图(1)中画出图形,并判断AE与BC的位置关系,并说明理由;(2)在旋转过程中,当0°<α<180°,∠DAE的一边与BC的平行时,求旋转角α的值;(3)在旋转过程中,当0°<α≤90°时,探究∠CAD与∠BAE之间的关系.(温馨提示:对于任意△ABC,都有∠A+∠B+∠C=180°)25.如图1,△ABC中,∠ABC=∠BAC,D是BC延长线上一动点,连接AD,AE平分∠CAD 交CD于点E,过点E作EH⊥AB,垂足为点H.直线EH与直线AC相交于点F.设∠AEH=α,∠ADC=β.(1)求证:∠EFC=∠FEC;(2)①若∠B=30°,∠CAD=50°,则α=,β=;②试探究α与β的关系,并说明理由;(3)若将“D是BC延长线上一动点”改为“D是CB延长线上一动点”,其它条件不变,请在图2中补全图形,并直接写出α与β的关系.。
初中数学 八年级竞赛培优训练 直角三角形 含解析

直角三角形【思维入门】1.在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是() A.120°B.90°C.60°D.30°2.如图1-5-1,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连结DE,则△CDE的周长为()A.20 B.12 C.14 D.13图1-5-13.如图1-5-2,Rt△ABC中,∠ACB=90°,点D为斜边AB的中点,AB=10 cm,则CD的长为______cm.图1-5-24.将一副三角板拼成如图1-5-3所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB;(2)求∠DFC的度数.图1-5-35.如图1-5-4,在△ABC 中,AB =CB ,∠ABC =90°,D 为AB 延长线上一点,点E 在BC 边上,且BE =BD ,连结AE ,DE ,DC . (1)求证:△ABE ≌△CBD ;(2)若∠CAE =30°,求∠BDC 的度数.【思维拓展】6.如图1-5-5,在Rt △ABC 中,D ,E 为斜边AB 上的两个点,且BD =BC ,AE =AC ,则∠DCE 的大小为____°.图1-5-57.如图1-5-6,△ABC 中,AB =AC ,DE 垂直平分AB ,BE ⊥AC ,AF ⊥BC ,则∠EFC =______.图1-5-68.如图1-5-7,∠ABC =90°,D ,E 分别在BC ,AC 上,AD ⊥DE ,且AD =DE ,点F 是AE 的中点,FD 与AB 延长线相交于点M . (1)求证:∠FMC =∠FCM ; (2)AD 与MC 垂直吗?并说明理由.图1-5-79.如图1-5-8,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点图1-5-8D.CG平分∠ACB交BD于点G,F为AB边上一点,连结CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.【思维升华】10.如图1-5-9,有一块直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY,XZ分别经过点B,C,若∠A=40°,则∠ABX+∠ACX=()图1-5-9A.25°B.30°C.45°D.50°11.如图1-5-10,直线l平行于射线AM,要在直线l与射线AM上各找一点B和C,使得以A,B,C为顶点的三角形是等腰直角三角形,这样的三角形最多能画____个.图1-5-1012.如图1-5-11,点P在△ABC的BC边上,且PC=2PB,若∠ABC=45°,∠APC =60°,则∠ACB的度数是____.图1-5-1113.如图1-5-12,在△ABC中,AC=BC,且∠ACB=90°,点D是AC上一点,AE⊥BD,交BD的延长线于点E,且AE=12BD,则∠ABD=____.图1-5-1214.如图1-5-13,在△ABC中,∠ACB=90°,M是∠CAB的平分线AL的中点,延长CM交AB于K,BK=BC,则∠CAB=____,∠ACK∠KCB=____.图1-5-1315.如图1-5-14,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点.过点E与AD平行的直线交射线AM于点N.(1)当A,B,C三点在同一直线上时(如图1-5-14①),求证:M为AN的中点;(2)将图1-5-14①中△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图1-5-14②),求证:△CAN为等腰直角三角形;(3)将图1-5-14①中△BCE绕点B旋转到图③的位置时,(2)中的结论是否仍然成立?若成立,试证明之;若不成立,请说明理由.图1-5-14第5讲直角三角形【思维入门】1.在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是(D) A.120°B.90°C.60°D.30°2.如图1-5-1,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连结DE,则△CDE的周长为(C) A.20 B.12 C.14 D.13图1-5-1【解析】∵AB=AC,AD平分∠BAC,BC=8,∴AD⊥BC,CD=BD=12BC=4,∵点E为AC的中点,∴DE=CE=12AC=5,∴△CDE的周长=CD+DE+CE=4+5+5=14.3.如图1-5-2,Rt△ABC中,∠ACB=90°,点D为斜边AB的中点,AB=10 cm,则CD的长为__5____cm.图1-5-24.将一副三角板拼成如图1-5-3所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB;(2)求∠DFC的度数.图1-5-3解:(1)证明:∵∠DCE=90°,CF平分∠DCE,∴∠DCF =45°,∵△ABC 是等腰直角三角形,∴∠BAC =45°,∴∠BAC =∠DCF ,∴CF ∥AB ; (2)∵∠D =30°,∴∠DFC =180°-30°-45°=105°.5.如图1-5-4,在△ABC 中,AB =CB ,∠ABC =90°,D 为AB 延长线上一点,点E 在BC 边上,且BE =BD ,连结AE ,DE ,DC . (1)求证:△ABE ≌△CBD ;(2)若∠CAE =30°,求∠BDC 的度数. 解:(1)证明:∵∠ABC =90°,∴∠DBE =180°-∠ABC =180°-90°=90°, ∴∠ABE =∠CBD .在△ABE 和△CBD 中,∵⎩⎨⎧AB =CB ,∠ABE =∠CBD ,EB =DB ,∴△ABE ≌△CBD ;(2)∵AB =CB ,∠ABC =90°, ∴△ABC 是等腰直角三角形, ∴∠ECA =45°.∵∠CAE =30°,∠BEA =∠ECA +∠EAC , ∴∠BEA =45°+30°=75°. 由①知∠BDC =∠BEA . ∴∠BDC =75°.【思维拓展】6.如图1-5-5,在Rt △ABC 中,D ,E 为斜边AB 上的两个点,且BD =BC ,AE =AC ,则∠DCE 的大小为__45__°.图1-5-5【解析】设∠DCE=x,∠ACD=y,则∠ACE=x+y,∠BCE=90°-∠ACE=90°-x-y.∵AE=AC,∴∠ACE=∠AEC=x+y,∵BD=BC,∴∠BDC=∠BCD=∠BCE+∠DCE=90°-x-y+x=90°-y.在△DCE中,∵∠DCE+∠CDE+∠DEC=180°,∴x+(90°-y)+(x+y)=180°,解得x=45°,∴∠DCE=45°.7.如图1-5-6,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则∠EFC =__45°____.图1-5-68.如图1-5-7,∠ABC=90°,D,E分别在BC,AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD与AB延长线相交于点M.(1)求证:∠FMC=∠FCM;(2)AD与MC垂直吗?并说明理由.图1-5-7解:(1)证明:∵△ADE是等腰直角三角形,F是AE的中点,∴DF⊥AE,DF=AF=EF.又∵∠ABC=90°,∠DCF,∠AMF都与∠MAC互余,∴∠DCF=∠AMF.又∵∠DFC=∠AFM=90°,∴△DFC≌△AFM.∴CF=MF.∴∠FMC=∠FCM;(2)AD⊥MC.由(1)知∠MFC=90°,FD=FE,FM=FC,∴∠FDE=∠FMC=45°,∴DE∥CM,∴AD⊥MC.9.如图1-5-8,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点图1-5-8D.CG平分∠ACB交BD于点G,F为AB边上一点,连结CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.证明:(1)∵∠ACB=90°,CG平分∠ACB,AC=BC.∴∠BCG=∠CAB=45°,又∵∠ACF=∠CBG,AC=BC,∴△ACF≌△CBG(ASA),∴AF=CG;(2)如答图,延长CG交AB于点H.∵AC=BC,CG平分∠ACB,∴CH⊥AB,H为AB的中点,又∵AD⊥AB,∴CH∥AD,∴G为BD的中点,∠D=∠EGC,∵E为AC的中点,∴AE=EC,又∵∠AED=∠CEG,∴△AED≌△CEG,∴DE=EG,∴DG=2DE,∴BG=DG=2DE,由(1)得CF=BG,∴CF=2DE.第9题答图【思维升华】10.如图1-5-9,有一块直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY,XZ分别经过点B,C,若∠A=40°,则∠ABX+∠ACX=(D)图1-5-9A.25°B.30°C.45°D.50°11.如图1-5-10,直线l平行于射线AM,要在直线l与射线AM上各找一点B和C,使得以A,B,C为顶点的三角形是等腰直角三角形,这样的三角形最多能画__3__个.图1-5-10【解析】如答图.①AC为直角边时,符合的等腰直角三角形有2个,一个是以∠BAC为直角,一个是以∠ACB为直角;②AC为斜边时,符合的等腰直角三角形有1个.∴这样的三角形最多能画3个,12.如图1-5-11,点P在△ABC的BC边上,且PC=2PB,若∠ABC=45°,∠APC=60°,则∠ACB的度数是__75°__.图1-5-11【解析】过C作AP的垂线CD,垂足为点D,连结BD.∵△PCD中,∠APC=60°,∴∠DCP=30°,PC=2PD,∵PC=2PB,∴BP=PD,∴△BPD是等腰三角形,∠BDP=∠DBP=30°,∵∠ABP=45°,∴∠ABD=15°,∵∠BAP=∠APC-∠ABC=60°-45°=15°,∴∠ABD=∠BAD=15°,∴BD=AD,∵∠DBP=∠DCP=30°,∴BD=DC,∴△BDC是等腰三角形,∵BD=AD,∴AD=DC,∵∠CDA=90°,∴∠ACD=45°,∴∠ACB=∠DCP+∠ACD=75°.13.如图1-5-12,在△ABC中,AC=BC,且∠ACB=90°,点D是AC上一点,AE⊥BD,交BD的延长线于点E,且AE=12BD,则∠ABD=__22.5°__.第11题答图图1-5-12 第13题答图【解析】 延长AE ,BC 交于点F .∵AE ⊥BE , ∴∠BEF =90°,又∵∠ACF =∠ACB =90°, ∴∠DBC +∠AFC =∠F AC +∠AFC =90°, ∴∠DBC =∠F AC , 在△ACF 和△BCD 中,⎩⎨⎧∠ACF =∠BCD =90°,AC =BC ,∠F AC =∠DBC ,∴△ACF ≌△BCD (ASA ), ∴AF =BD . 又∵AE =12BD ,∴AE =EF ,即点E 是AF 的中点. ∴AB =BF ,∴BD 是∠ABC 的角平分线. ∴∠ABD =22.5°.14.如图1-5-13,在△ABC 中,∠ACB =90°,M 是∠CAB 的平分线AL 的中点,延长CM 交AB 于K ,BK =BC ,则∠CAB =__45°__,∠ACK ∠KCB=__13__.图1-5-13【解析】 设∠CAB =2α.∵AM =ML ,且∠ACB =90°,∴CM =MA , ∴∠ACM =∠MAC =α.∴∠CKB =∠CAK +∠ACM =3α, ∠KCB =90°-∠ACM =90°-α. ∵BK =BC , ∴∠CKB =∠KCB .∴3α=90°-α,即α=22.5°. ∴∠CAB =45°,∠ACK ∠KCB =22.5°67.5°=13.15.如图1-5-14,已知△BAD 和△BCE 均为等腰直角三角形,∠BAD =∠BCE =90°,点M 为DE 的中点.过点E 与AD 平行的直线交射线AM 于点N .(1)当A ,B ,C 三点在同一直线上时(如图1-5-14①),求证:M 为AN 的中点; (2)将图1-5-14①中△BCE 绕点B 旋转,当A ,B ,E 三点在同一直线上时(如图1-5-14②),求证:△CAN 为等腰直角三角形;(3)将图1-5-14①中△BCE 绕点B 旋转到图③的位置时,(2)中的结论是否仍然成立?若成立,试证明之;若不成立,请说明理由.图1-5-14证明:(1)∵点M 为DE 的中点,∴DM =ME . ∵AD ∥EN ,∴∠ADM =∠NEM ,又∵∠DMA=∠EMN,∴△DMA≌△EMN,∴AM=MN,即M为AN的中点;(2)由(1)中△DMA≌△EMN可知DA=EN,又∵DA=AB,∴AB=NE,∵∠ABC=∠NEC=135°,BC=CE,∴△ABC≌△NEC,∴AC=CN,∠ACB=∠NCE,∵∠BCE=∠BCN+∠NCE=90°,∴∠BCN+∠ACB=90°,∴∠ACN=90°,∴△CAN为等腰直角三角形.(3)由(2)可知AB=NE,BC=CE.又∵∠ABC=360°-45°-45°-∠DBE=270°-∠DBE=270°-(180°-∠BDE-∠BED)=90°+∠BDE+∠BED=90°+∠ADM-45°+∠BED=45°+∠MEN+∠BED =∠CEN,∴△ABC≌△NEC,再同(2)可证△CAN为等腰直角三角形,∴(2)中的结论仍然成立.。
2022-2023学年第二学期初二数学名校优选培优训练专题05 直角三角形斜边上的中线

2022-2023学年第二学期初二数学名校优选培优训练专题测试专题05 直角三角形斜边上的中线姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共10小题,满分20分,每小题2分)1.(2022春•武城县期末)一个直角三角形的两条直角边分别为5和12,则斜边上的中线和高分别为()A.和B.和C.和D.和2.(2022秋•北碚区校级期末)如图,在四边形ABCD中,∠BAD=∠BCD=90°,∠ABC=45°,E是BD 的中点,BD=8,则△AEC的面积为()A.B.16 C.8 D.3.(2022春•安乡县期末)如图是屋架设计图的一部分,其中∠A=30°,D是斜梁AB的中点,BC,DE垂直于横梁AC,DC=8cm,则DE的长为()A.2cm B.4cm C.6cm D.8cm4.(2022春•闽侯县期中)如图,在Rt△ABC中,∠ABC=90°,点D是AC的中点,且BD=,若Rt△ABC 的面积为2,则它的周长为()A.+2 B.+4 C.2+4 D.2+25.(2022春•凤山县期末)如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,AC=8,BC=6,则△ADC 的周长为()A.14 B.24 C.12 D.186.(2022•碑林区校级模拟)如图,△ABC中,CD⊥AB,垂足为D,E为BC边的中点,AB=4,AC=2,DE=,则∠ACD=()A.15°B.30°C.22.5°D.45°7.(2020秋•丹东期末)如图,在Rt△ABC和Rt△ABD中,∠ACB=∠ADB=90°,AB=10,M是AB的中点,连接MC,MD,CD,若CD=6,则△MCD的面积为()A.12 B.12.5 C.15 D.248.(2020•汝阳县模拟)如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,且∠ACD=30°,DE∥BC 交AC于点E,BF⊥CD于点F,连接EF.若AC=2,则EF的长是()A.2 B.C.1 D.9.(2019春•嘉祥县期末)如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,点E是边AB的中点,AB=10,DE=4,则S△AEC=()A.8 B.7.5 C.7 D.610.(2019•黄石)如图,在△ABC中,∠B=50°,CD⊥AB于点D,∠BCD和∠BDC的角平分线相交于点E,F为边AC的中点,CD=CF,则∠ACD+∠CED=()A.125°B.145°C.175°D.190°评卷人得分二.填空题(共10小题,满分20分,每小题2分)11.(2022春•南岗区校级期中)如图,∠ABC=∠ADC=90°,E是AC中点,∠BDE=52°,则∠DEB的度数为.12.(2022春•渝中区校级月考)如图,Rt△ABC中,∠BAC=90°,∠C=20°,点D为斜边BC的中点,连接AD,AE⊥BC于点E,则∠DAE为度.13.(2022春•广安期末)如图,在△ABC中,∠BAC为钝角,AF,CE都是这个三角形的高,P为AC的中点.若∠B=35°,则∠EPF的度数为.14.(2022春•紫阳县期末)如图,在△ABC中,AB=AC=4,∠CAB=30°,以AC为斜边作Rt△ADC.使∠ADC=90°,∠CAD=∠CAB,E,F分别是BC,AC的中点,则DE的长为.15.(2021春•龙岗区校级期末)如图,在△ABC中,∠BAC=90°,点D是BC的中点,点E、F分别是AB、AC上的动点,∠EDF=90°,M、N分别是EF、AC的中点,连接AM、MN,若AC=6,AB=5,则AM﹣MN的最大值为.16.(2021秋•诸暨市期中)如图,在△ABC中,∠BAC为钝角,AF、CE都是这个三角形的高,P为AC 的中点,若∠B=40°,则∠EPF=.17.(2021秋•温州期中)如图,在△ABC中,∠ACB=90°,∠CAB=30°.以AB长为一边作△ABD,且AD=BD,∠ADB=90°,取AB中点E,连DE、CE、CD.则∠EDC=°.18.(2020春•揭西县期末)如图,Rt△ABC中,∠ACB=90°,斜边AB=9,D为AB的中点,F为CD上一点,且CF=CD,过点B作BE∥DC交AF的延长线于点E,则BE的长为.19.(2019春•瑶海区期末)如图,直角边分别为3,4的两个直角三角形如图摆放,M,N为斜边的中点,则线段MN的长为.20.(2017春•武侯区校级月考)如图,∠MON=90°,边长为4的等边△ABC的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,等边三角形的形状保持不变,运动过程中,点C到点O的最大距离为.评卷人得分三.解答题(共9小题,满分60分)21.(2022春•汉滨区期中)如图,BN,CM分别是△ABC的两条高,点D,E分别是BC,MN的中点.(1)求证:DE⊥MN;(2)若BC=26,MN=10,求DE的长.22.(2021春•抚顺期末)如图,BN、CM分别是△ABC的两条高,点D、点E分别是BC、MN的中点,求证:DE⊥MN.23.(2019春•房山区期中)如图,锐角△ABC中,AD,CE为两条高,F,G分别为AC,DE的中点,猜想FG与DE的位置关系并加以证明.24.(2021春•新泰市期中)如图,已知四边形ABCD中,∠ABC=∠ADC=90°,点E为AC的中点.EF⊥BD,垂足为F.(1)求证:BE=DE;(2)若AC=26,EF=5,求BD的长.25.(2020春•江岸区校级月考)在三角形△ABC中,D是BC边的中点,AD=BC.(1)△ABC的形状为.(2)如图,BM=3,BC=12,∠B=45°,∠MAN=45°,求CN;(3)在(2)的条件下,AN=.26.(2019春•城关区校级期中)小明在学完北师大数学八年级(下)第一章后,看到这样一道题目:“已知,如图∠ABC=∠ADC=90°,M、N分别是AC、BD的中点,求证:MN⊥BD.小明思考片刻,找到了解决方法,他作了辅助线.聪明的你知道他作的辅助线是什么吗?怎么证明的?小明又突然想到,在边AD上能找一点P,使得PB=PD,请你写出证明过程.27.(2022•宜城市模拟)如图,四边形ABCD中,∠C=90°,AD⊥DB,点E为AB的中点,DE∥BC.(1)求证:BD平分∠ABC;(2)连接EC,若∠A=30°,DC=,求EC的长.28.(2022春•永丰县期中)同学们知道:“在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°.”(1)请写出它的逆命题;(2)应用:若学校有一块三角形的绿地,AB=BC=20m,∠A=15°,求绿地△ABC的面积?29.(2020春•重庆期末)如图(1),已知锐角△ABC中,CD、BE分别是AB、AC边上的高,M、N分别是线段BC、DE的中点.(1)求证:MN⊥DE.(2)连接DM,ME,猜想∠A与∠DME之间的关系,并证明猜想.(3)当∠A变为钝角时,如图(2),上述(1)(2)中的结论是否都成立,若结论成立,直接回答,不需证明;若结论不成立,说明理由.答案与解析一.选择题(共10小题,满分20分,每小题2分)1.(2022春•武城县期末)一个直角三角形的两条直角边分别为5和12,则斜边上的中线和高分别为()A.和B.和C.和D.和解:∵直角三角形的两条直角边分别为5和12,∴斜边长==13,∴斜边上的中线=,斜边上的高==,故选:C.2.(2022秋•北碚区校级期末)如图,在四边形ABCD中,∠BAD=∠BCD=90°,∠ABC=45°,E是BD 的中点,BD=8,则△AEC的面积为()A.B.16 C.8 D.解:∵∠BAD=∠BCD=90°,E是BD的中点,BD=8,∴AE=CE=BD=4,∴∠ABE=∠BAE,∠CBE=∠BCE,∵∠AED=∠ABE+∠BAE=2∠ABE,∠CED=∠CBE+∠BCE=2∠CBE,∴∠AEC=2∠ABE+2∠CBE=2∠ABC,∵∠ABC=45°,∴∠AEC=90°,∴S△ACE=AE•CE=×4÷4=8.故选:C.3.(2022春•安乡县期末)如图是屋架设计图的一部分,其中∠A=30°,D是斜梁AB的中点,BC,DE垂直于横梁AC,DC=8cm,则DE的长为()A.2cm B.4cm C.6cm D.8cm解:∵∠A=30°,DC=8cm,D是斜梁AB的中点,∴CD=AB,∴AB=2CD=2×8=16,∵∠A=30°,∴BC=AB=8,∵BC、DE垂直于横梁AC,∴BC∥DE,∵点D是斜梁AB的中点,∴DE=BC=×8=4cm.故选:B.4.(2022春•闽侯县期中)如图,在Rt△ABC中,∠ABC=90°,点D是AC的中点,且BD=,若Rt△ABC 的面积为2,则它的周长为()A.+2 B.+4 C.2+4 D.2+2解:∵∠ABC=90°,点D是AC的中点,∴AC=2BD=2,∴AB2+BC2=AC2=8,∵Rt△ABC的面积为2,∴AB•BC=2,∴AB•BC=4,∴(AB+BC)2=AB2+BC2+2AB•BC=8+8=16,∴AB+BC=4或AB+BC=﹣4(舍去),∴△ABC的周长=AB+BC+AC=4+2,故选:C.5.(2022春•凤山县期末)如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,AC=8,BC=6,则△ADC 的周长为()A.14 B.24 C.12 D.18解:在Rt△ABC中,∠ACB=90°,AC=8,BC=6,∴AB=,∵D是AB的中点,∴AD=CD=AB=5,∴△ACD的周长为:AD+CD+AC=5+5+8=18.故选:D.6.(2022•碑林区校级模拟)如图,△ABC中,CD⊥AB,垂足为D,E为BC边的中点,AB=4,AC=2,DE=,则∠ACD=()A.15°B.30°C.22.5°D.45°解:∵CD⊥AB,E为BC边的中点,DE=,∴BC=2DE=2,∵AB=4,AC=2,∴AC2+BC2=4+12=16=AB2,∴△ABC是直角三角形,且∠ACB=90°,且∠ABC=30°,∴∠ACD+∠BCD=90°,∵∠ABC+∠BCD=90°,∴∠ACD=∠ABC=30°.故选:B.7.(2020秋•丹东期末)如图,在Rt△ABC和Rt△ABD中,∠ACB=∠ADB=90°,AB=10,M是AB的中点,连接MC,MD,CD,若CD=6,则△MCD的面积为()A.12 B.12.5 C.15 D.24解:过M作ME⊥CD于E,∵∠ACB=∠ADB=90°,AB=10,M是AB的中点,∴CM=AB=5,MD=AB=5,∴CM=DM,∵ME⊥CD,CD=6,∴CE=DE=3,由勾股定理得:EM===4,∴△MCD的面积为==12,故选:A.8.(2020•汝阳县模拟)如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,且∠ACD=30°,DE∥BC 交AC于点E,BF⊥CD于点F,连接EF.若AC=2,则EF的长是()A.2 B.C.1 D.解:∵∠ACB=90°,D为AB的中点,∴CD=AD=BD,∴∠A=∠ACD,∵∠ACD=30°,∴∠A=30°,∴AB=2BC,∠ABC=60°,∵AC2+BC2=AB2,AC=2,∴(2)2+BC2=(2BC)2,解得:BC=2(负数舍去),∴AB=2BC=4,∵AB=4,D为AB的中点,∴BD=AD=2=BC,∵BF⊥CD,∴CF=DF,∵DE∥BC,D为AB的中点,∴AE=CE,∴EF=AD==1,故选:C.9.(2019春•嘉祥县期末)如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,点E是边AB的中点,AB=10,DE=4,则S△AEC=()A.8 B.7.5 C.7 D.6解:∵在△ABC中,∠ACB=90°,C点E是边AB的中点,∴AE=BE=CE=AB=5,∵CD⊥AB,DE=4,∴CD==3,∴S△AEC=S△BEC=BE•CD=3=7.5,故选:B.10.(2019•黄石)如图,在△ABC中,∠B=50°,CD⊥AB于点D,∠BCD和∠BDC的角平分线相交于点E,F为边AC的中点,CD=CF,则∠ACD+∠CED=()A.125°B.145°C.175°D.190°解:∵CD⊥AB,F为边AC的中点,∴DF=AC=CF,又∵CD=CF,∴CD=DF=CF,∴△CDF是等边三角形,∴∠ACD=60°,∵∠B=50°,∴∠BCD+∠BDC=130°,∵∠BCD和∠BDC的角平分线相交于点E,∴∠DCE+∠CDE=65°,∴∠CED=115°,∴∠ACD+∠CED=60°+115°=175°,故选:C.二.填空题(共10小题,满分20分,每小题2分)11.(2022春•南岗区校级期中)如图,∠ABC=∠ADC=90°,E是AC中点,∠BDE=52°,则∠DEB的度数为76°.解:∵∠ABC=∠ADC=90°,E是AC中点,∴DE=AC,BE=AC,∴DE=BE,∴∠BDE=∠DBE=52°,∴∠DEB=180°﹣∠BDE﹣∠DBE=76°,故答案为:76°.12.(2022春•渝中区校级月考)如图,Rt△ABC中,∠BAC=90°,∠C=20°,点D为斜边BC的中点,连接AD,AE⊥BC于点E,则∠DAE为50度.解:∵∠BAC=90°,点D为斜边BC的中点,∴AD=CD=BC,∴∠C=∠DAC=20°,∴∠ADE=∠C+∠DAC=40°,∵AE⊥BC,∴∠AEC=90°,∴∠EAD=90°﹣∠ADE=50°,故答案为:50.13.(2022春•广安期末)如图,在△ABC中,∠BAC为钝角,AF,CE都是这个三角形的高,P为AC的中点.若∠B=35°,则∠EPF的度数为110°.解:∵CE⊥BE,AF⊥BC,∴∠CEB=∠AFC=90°,∵∠B=35°,∴∠ECB=90°﹣∠B=55°,∵点P是AC的中点,∴PF=PC=AC,PE=PC=AC,∴∠PFC=∠PCF,∠PEC=∠PCE,∵∠APF是△CFP的一个外角,∴∠APF=∠PFC+∠PCF,∴∠APF=2∠PCF,∵∠APE是△CEP的一个外角,∴∠APE=∠ACE+∠PEC,∴∠APE=2∠ACE,∴∠EPF=∠APE+∠APF=2∠PCF+2∠ACE=2∠ECB=110°,故答案为:110°14.(2022春•紫阳县期末)如图,在△ABC中,AB=AC=4,∠CAB=30°,以AC为斜边作Rt△ADC.使∠ADC=90°,∠CAD=∠CAB,E,F分别是BC,AC的中点,则DE的长为2.解:∵∠ADC=90°,∠CAD=30°,F是AC的中点,∴DF=AF=AC=×4=2,∴∠FDA=∠CAD=30°,∴∠DFC=∠FDA+∠CAD=60°∵E、F分别是BC、AC的中点,∴EF∥AB,EF=AB=×4=2,∴∠EFC=∠CAB=30°,∴∠EFD=60°+30°=90°,∴ED===2.故答案为:2.15.(2021春•龙岗区校级期末)如图,在△ABC中,∠BAC=90°,点D是BC的中点,点E、F分别是AB、AC上的动点,∠EDF=90°,M、N分别是EF、AC的中点,连接AM、MN,若AC=6,AB=5,则AM﹣MN的最大值为.解:如图,连接DM,DN,由图可以得到M的轨迹是一条线段(AD的垂直平分线的一部分),M在AN上的时候最大(此时AM最大,MN最小),当M在AN上时,如图,设AM=x,则MN=3﹣x,DM=AM=x,∵D、N分别是BC、AC的中点,∴DN=AB=,在直角三角形DMN中,根据勾股定理,得DM2=DN2+MN2,∴x2=(3﹣x)2+2.52,解得x=,∴3﹣x=,此时AM﹣MN=﹣=.∴AM﹣MN的最大值为.故答案为:.16.(2021秋•诸暨市期中)如图,在△ABC中,∠BAC为钝角,AF、CE都是这个三角形的高,P为AC 的中点,若∠B=40°,则∠EPF=100°.解:∵CE⊥BA,∠B=40°,∴∠BCE=50°,∵AF⊥BC,CE⊥BA,P为AC的中点,∴PF=AC=PC,PE=AC=PC,∴∠PFC=∠PCF,∠PEC=∠PCE,∴∠EPF=2∠PCF+2∠PCE=2∠BCE=100°,故答案为:100°.17.(2021秋•温州期中)如图,在△ABC中,∠ACB=90°,∠CAB=30°.以AB长为一边作△ABD,且AD=BD,∠ADB=90°,取AB中点E,连DE、CE、CD.则∠EDC=75°.解:∵∠ACB=90°,点E是AB中点,∴EC=EA=EB=AB,∴∠ECA=∠CAB=30°,∴∠CEB=60°,∵AD=BD,点E是AB中点,∴DE⊥AB,即∠AED=90°,∴∠DEC=180°﹣90°﹣60°=30°,∵∠ADB=90°,点E是AB中点,∴DE=AB,∴ED=EC,∴∠EDC=75°,故答案为:75.18.(2020春•揭西县期末)如图,Rt△ABC中,∠ACB=90°,斜边AB=9,D为AB的中点,F为CD上一点,且CF=CD,过点B作BE∥DC交AF的延长线于点E,则BE的长为6.解:∵Rt△ABC中,∠ACB=90°,斜边AB=9,D为AB的中点,∴CD=AB=4.5.∵CF=CD,∴DF=CD=×4.5=3.∵BE∥DC,∴DF是△ABE的中位线,∴BE=2DF=6.故答案为6.19.(2019春•瑶海区期末)如图,直角边分别为3,4的两个直角三角形如图摆放,M,N为斜边的中点,则线段MN的长为.解:连接CM、CN,由勾股定理得,AB=DE==5,∵△ABC、△CDE是直角三角形,M,N为斜边的中点,∴CM=,CN=,∠MCB=∠B,∠NCD=∠D,∴∠MCN=90°,∴MN=,故答案为:.20.(2017春•武侯区校级月考)如图,∠MON=90°,边长为4的等边△ABC的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,等边三角形的形状保持不变,运动过程中,点C到点O的最大距离为2+2.解:如图,取AB的中点D,连接OD、CD,∵△ABC是等边三角形,∴CD==2,∵∠MON=90°,∴OD=AB==2,由图可知,当点O、C、D三点共线时点C到点O的距离最大,最大值为2+2.故答案为:2+2.三.解答题(共9小题,满分60分)21.(2022春•汉滨区期中)如图,BN,CM分别是△ABC的两条高,点D,E分别是BC,MN的中点.(1)求证:DE⊥MN;(2)若BC=26,MN=10,求DE的长.(1)证明:如图,连接DM,DN,∵BN、CM分别是△ABC的两条高,∴BN⊥AC,CM⊥AB,∴∠BMC=∠CNB=90°,∵D是BC的中点,∴DM=BC,DN=BC,∴DM=DN,∵E为MN的中点,∴DE⊥MN;(2)解:∵BC=26,∴DM=BC=13,∵点E是MN的中点,MN=10,∴ME=5,由勾股定理得:DE==12.22.(2021春•抚顺期末)如图,BN、CM分别是△ABC的两条高,点D、点E分别是BC、MN的中点,求证:DE⊥MN.证明:如图,连接DM,DN,∵BN、CM分别是△ABC的两条高,∴BN⊥AC,CM⊥AB,∴∠BMC=∠CNB=90°,∵D是BC的中点,∴DM=BC,DN=BC,∴DM=DN,又∵E为MN的中点,∴DE⊥MN.23.(2019春•房山区期中)如图,锐角△ABC中,AD,CE为两条高,F,G分别为AC,DE的中点,猜想FG与DE的位置关系并加以证明.解:FG⊥DE,理由如下:连接FE、FD,∵AD,CE为两条高,∴AD⊥BC,CE⊥AB,∵F为AC的中点,∴EF=AC,FD=AC,∴FE=FD,∵G为DE的中点,∴FG⊥DE.24.(2021春•新泰市期中)如图,已知四边形ABCD中,∠ABC=∠ADC=90°,点E为AC的中点.EF⊥BD,垂足为F.(1)求证:BE=DE;(2)若AC=26,EF=5,求BD的长.解:(1)∵∠ABC=∠ADC=90°,点E为AC的中点,∴BE=DE=AC;(2)∵BE=DE,EF⊥BD,∴BD=2BF,∵BE=AC,AC=26,∴BE=13,∵EF=5,∴BF===12,∴BD=2BF=24.25.(2020春•江岸区校级月考)在三角形△ABC中,D是BC边的中点,AD=BC.(1)△ABC的形状为直角三角形.(2)如图,BM=3,BC=12,∠B=45°,∠MAN=45°,求CN;(3)在(2)的条件下,AN=2.解:(1)结论:△ABC是直角三角形.理由:∵BD=DC,AD=BC,∴DA=DB=DC,∴∠BAC=90°.故答案为直角三角形.(2)如图,设CN=x.∵∠B=45°,∠BAC=90°,∴∠ACB=∠B=45°,∴AB=AC,∵BD=DC,∴AD⊥BC,将△BAM绕点A逆时针旋转90°得到△ACH,连接NH.∵∠ACB=∠ACH=∠B=45°,∴∠NCH=90°,∵∠MAN=45°,∠MAH=90°,∴∠NAM=∠NAH=45°,∵NA=NA,AM=AH,∴△NAM≌△NAH(SAS),∴MN=NH,∵BM=CH=3,BC=12,∴CM=12﹣3=9,∴MN=NH=9﹣x,∵NH2=CH2+CN2,∴(9﹣x)2=x2+32,解得x=4.∴CN=4.(3)在Rt△ADN中,∵∠ADN=90°,AD=BD=CD=6,DN=CD﹣CN=6﹣4=2,∴AN===2.故答案为2.26.(2019春•城关区校级期中)小明在学完北师大数学八年级(下)第一章后,看到这样一道题目:“已知,如图∠ABC=∠ADC=90°,M、N分别是AC、BD的中点,求证:MN⊥BD.小明思考片刻,找到了解决方法,他作了辅助线.聪明的你知道他作的辅助线是什么吗?怎么证明的?小明又突然想到,在边AD上能找一点P,使得PB=PD,请你写出证明过程.解:①连接BM、DM,∵∠ABC=∠ADC=90°,M是AC的中点,∴BM=AC,DM=AC,∴BM=DM,又N为BD的中点,∴MN⊥BD;②∵BM=DM,∴M在BD的垂直平分线上,∵PB=PD,∴P在BD的垂直平分线上,∴PM垂直平分BD,∴MN⊥BD.27.(2022•宜城市模拟)如图,四边形ABCD中,∠C=90°,AD⊥DB,点E为AB的中点,DE∥BC.(1)求证:BD平分∠ABC;(2)连接EC,若∠A=30°,DC=,求EC的长.(1)证明:∵AD⊥DB,点E为AB的中点,∴DE=BE=AB.∴∠1=∠2.∵DE∥BC,∴∠2=∠3.∴∠1=∠3.∴BD平分∠ABC.(2)解:∵AD⊥DB,∠A=30°,∴∠1=60°.∴∠3=∠2=60°.∵∠BCD=90°,∴∠4=30°.∴∠CDE=∠2+∠4=90°.在Rt△BCD中,∠3=60°,DC=,∴DB=2.∵DE=BE,∠1=60°,∴DE=DB=2.∴EC===.28.(2022春•永丰县期中)同学们知道:“在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°.”(1)请写出它的逆命题在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半;(2)应用:若学校有一块三角形的绿地,AB=BC=20m,∠A=15°,求绿地△ABC的面积?解:(1)逆命题为:在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半,故答案为:在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半;(2)过C点作CD⊥AB交AB的延长线于点D,∵AB=BC=20m,∠A=15°,∴∠A=∠ACB=15°,∴∠DBC=∠A+∠ACB=30°,∴CD=BC=10cm,∴S△ABC=AB•CD=×20×10=100(cm2).29.(2020春•重庆期末)如图(1),已知锐角△ABC中,CD、BE分别是AB、AC边上的高,M、N分别是线段BC、DE的中点.(1)求证:MN⊥DE.(2)连接DM,ME,猜想∠A与∠DME之间的关系,并证明猜想.(3)当∠A变为钝角时,如图(2),上述(1)(2)中的结论是否都成立,若结论成立,直接回答,不需证明;若结论不成立,说明理由.(1)证明:如图(1),连接DM,ME,∵CD、BE分别是AB、AC边上的高,M是BC的中点,∴DM=BC,ME=BC,∴DM=ME,又∵N为DE中点,∴MN⊥DE;(2)在△ABC中,∠ABC+∠ACB=180°﹣∠A,∵DM=ME=BM=MC,∴∠BMD+∠CME=(180°﹣2∠ABC)+(180°﹣2∠ACB),=360°﹣2(∠ABC+∠ACB),=360°﹣2(180°﹣∠A),=2∠A,∴∠DME=180°﹣2∠A;(3)结论(1)成立,结论(2)不成立,理由如下:连接DM,ME,在△ABC中,∠ABC+∠ACB=180°﹣∠BAC,∵DM=ME=BM=MC,∴∠BME+∠CMD=2∠ACB+2∠ABC,=2(180°﹣∠BAC),=360°﹣2∠BAC,∴∠DME=180°﹣(360°﹣2∠BAC),=2∠BAC﹣180°.。
《直角三角形》全章培优提高复习(初二)
《直角三角形》全章培优提高复习一、知识过关:一、知识要点梳理与过关:1、直角三角形的定义: 叫直角三角形。
直角三角形ABC 用几何符号表示 为 。
说明一个三角形是直角三角形时,一般必须说明哪个内角是直角或哪条边是斜边,不然的话就要分类讨论。
2、直角三角形的性质:① 直角三角形中有一个角是 ;② 直角三角形中两个锐角 ;③ 直角三角形中,斜边上的中线等于斜边的 ;④ 直角三角形中,如果有一角等于30°,那么这个角所对的直角边是斜边的 ;⑤ 直角三角形中,如果有一条直角边是斜边的一半,那么这条直角边所对的角等于 ;⑥ 勾股定理(直角三角形的三边关系定理): ,用几何语言叙述为 。
注意:1、定理1用来求直角三角形的角的度数;定理2、3通常用于证明线段之间的倍分关系;定理4通常用于 求三角形中角的度数;定理5通常用来求直角三角形的边长。
2、勾股定理是在三角形为直角三角形的前提下描绘三边之间关系的,利用勾股定理,已知直角三角形的任意两边可求第三边。
计算中一定要注意找准斜边和直角边,同时要熟悉以下公式的变形:22222222,,b a c a c b b c a +=-=-=2222,a c b b c a -=-= ⑦ 直角三角形面积计算方法是: 。
⑧ 直角三角形斜边上的高线长度公式: 。
3、直角三角形的判定方法:①利用角来判定: 或 的三角形是直角三角形。
②利用一边上的中线与这一边的关系来判定: 。
③利用三边长度的关系来判定(勾股定理的逆定理): 。
注意:1、勾股定理的逆定理是用来判定一个三角形是否是直角三角形的,但在判定一个三角形是否是直角三角形时应首先确定该三角形的最大边,当其余两边的平方和等于最大边的平方时,该三角形才是直角三角形。
勾股定理的逆定理也可用来证明两直线是否垂直。
2、勾股定理有逆定理的推广:三角形的三边分别为a 、b 、c ,其中c 为最大边,若222c b a =+,则三角形是直角三角形;若222c b a >+,则三角形是锐角三角形;若2<+c b a 22,则三角形是钝角三角形。
初二-第02讲-直角三角形(培优)-教案
学科教师辅导讲义学员编号:年级:八年级(下)课时数:3学员姓名:辅导科目:数学学科教师:授课主题第02讲-直角三角形授课类型T同步课堂P实战演练S归纳总结教学目标①掌握直角三角形的性质与判定方法;②进一步掌握推理证明的方法,培养演绎推理能力;授课日期及时段T(Textbook-Based)——同步课堂一、知识梳理1、直角三角形的性质和判定方法定理:直角三角形的两个锐角互余。
定理:有两个角互余的三角形是直角三角形。
2、勾股定理勾股定理:直角三角形两条直角边的平方和等于斜边的平方。
3、勾股定理的逆定理如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
4、逆命题、逆定理互逆命题:在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个体系搭建命题称为互逆命题,其中一个命题称为另一个命题的逆命题。
互逆定理:如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,其中一个定理称为另一个定理的逆命题。
5、斜边、直角边定理定理:斜边和一条直角边分别相等的两个直角三角形全等。
简述为“斜边、直角边定理”或“HL”定理。
考点一:直角三角形全等的判定例1、在如图中,AB=AC,BE⊥AC于E,CF⊥AB于F,BE、CF交于点D,则下列结论中不正确的是()A.△ABE≌△ACF B.点D在∠BAC的平分线上C.△BDF≌△CDE D.点D是BE的中点【解析】选D.例2、如图,AB=12,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动4分钟后△CAP与△PQB全等.【解析】∵CA⊥AB于A,DB⊥AB于B,∴∠A=∠B=90°,设运动x分钟后△CAP与△PQB全等;则BP=xm,BQ=2xm,则AP=(12﹣x)m,分两种情况:①若BP=AC,则x=4,AP=12﹣4=8,BQ=8,AP=BQ,∴△CAP≌△PBQ;②若BP=AP,则12﹣x=x,解得:x=6,BQ=12≠AC,此时△CAP与△PQB不全等;综上所述:运动4分钟后△CAP与△PQB全等;故答案为:4.例3、如图,∠A=∠B=90°,E是AB上的一点,且AE=BC,∠1=∠2.(1)Rt△ADE与Rt△BEC全等吗?并说明理由;(2)△CDE是不是直角三角形?并说明理由.【解析】(1)全等,理由是:∵∠1=∠2,∴DE=CE,∵∠A=∠B=90°,AE=BC,∴Rt△ADE≌Rt△BEC;P(Practice-Oriented)——实战演练实战演练➢课堂狙击1、下列条件中,能判定两个直角三角形全等的是()A.一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条直角边对应相等【解析】选:D.2、如图,若要用“HL”证明Rt△ABC≌Rt△ABD,则还需补充条件()A.∠BAC=∠BAD B.AC=AD或BC=BDC.AC=AD且BC=BD D.以上都不正确【解析】从图中可知AB为Rt△ABC和Rt△ABD的斜边,也是公共边.跟据“HL”定理,证明Rt△ABC≌Rt△ABD,还需补充一对直角边相等,即AC=AD或BC=BD,故选B.3、如图,BD平分∠ABC,CD⊥BD,D为垂足,∠C=55°,则∠ABC的度数是()A.35°B.55°C.60°D.70°【解析】∵CD⊥BD,∠C=55°,∴∠CBD=90°﹣55°=35°,∵BD平分∠ABC,∴∠ABC=2∠CBD=2×35°=70°.故选D.4、如图,△ABC中,CD⊥AB于D,且E是AC的中点.若AD=6,DE=5,则CD的长等于()A.5 B.6C.7 D.8【解析】∵△ABC中,CD⊥AB于D,∴∠ADC=90°.∵E是AC的中点,DE=5,∴AC=2DE=10.∵AD=6,∴CD===8.故选D.5、如图,AC⊥BC,AD⊥DB,要使△ABC≌△BAD,还需添加条件AC=BD或BC=AD或∠DAB=∠CBA或∠CAB=∠DBA.(只需写出符合条件一种情况)【解析】∵AC⊥BC,AD⊥DB,∴∠C=∠D=90°∵AB为公共边,要使△ABC≌△BAD∴添加AC=BD或BC=AD或∠DAB=∠CBA或∠CAB=∠DBA后可分别根据HL、HL、AAS、AAS判定△ABC≌△BAD.6、如图,已知点P是射线ON上一动点(即P可在射线ON上运动),∠AON=30°,当∠A=60°或90°时,△AOP为直角三角形.【解析】若∠APO是直角,则∠A=90°﹣∠AON=90°﹣30°=60°,若∠APO是锐角,∵∠AON=30°是锐角,∴∠A=90°,综上所述,∠A=60°或90°.故答案为:60°或90°.7、如图,在直角三角形ABC中,斜边上的中线CD=AC,则∠B等于30°.【解析】∵CD是斜边AB上的中线,∴CD=AD,又CD=AC,∴△ADC是等边三角形,∴∠A=60°,∴∠B=90°﹣∠A=30°.故答案为:30°.8、底角为30°,腰长为a的等腰三角形的面积是a2.【解析】如图,过点A作AD⊥BC于D,∵△ABC是等腰三角形,∴BC=2BD,∵底角∠B=30°,∴AD=AB=a,由勾股定理得,BD==a,∴BC=2BD=a,∴三角形的面积=×a×a=a2.故答案为a2.9、如图,在△ACB中,∠ACB=90゜,CD⊥AB于D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD、BC于E、F,求证:∠CEF=∠CFE.【解析】证明:(1)∵∠ACB=90゜,CD⊥AB于D,∴∠ACD+∠BCD=90°,∠B+∠BCD=90°,∴∠ACD=∠B;(2)在Rt△AFC中,∠CFA=90°﹣∠CAF,同理在Rt△AED中,∠AED=90°﹣∠DAE.又∵AF平分∠CAB,∴∠CAF=∠DAE,∴∠AED=∠CFE,又∵∠CEF=∠AED,∴∠CEF=∠CFE.10、已知:如图,在△ABC中,AB=AC=2,∠B=15°.过点C作CD⊥BA,交BA的延长线于点D,求△ACD的周长.【解析】如图,在△ABC中,AB=AC=2,∠B=15°,∴∠B=∠ACB=15°,∴∠DAC=2∠B=30°.又∵CD⊥BA,∴CD=AC=1,∴根据勾股定理得到AD==,∴△ACD的周长=AD+CD+AC=+1+2=+3.答:△ACD的周长是+3.➢课后反击1、要判定两个直角三角形全等,下列说法正确的有()①有两条直角边对应相等;②有两个锐角对应相等;③有斜边和一条直角边对应相等;④有一条直角边和一个锐角相等;⑤有斜边和一个锐角对应相等;⑥有两条边相等.A.6个B.5个C.4个D.3个【解析】故选B2、如图,O是∠BAC内一点,且点O到AB,AC的距离OE=OF,则△AEO≌△AFO的依据是()A.HL B.AASC.SSS D.ASA【解析】∵OE⊥AB,OF⊥AC,∴∠AEO=∠AFO=90°,又∵OE=OF,AO为公共边,∴△AEO≌△AFO.故选A.3、直角三角形两个锐角平分线相交所成的钝角的度数为()A.90°B.135°C.120°D.45°或135°【解析】如图:∵AE、BD是直角三角形中两锐角平分线,∴∠OAB+∠OBA=90°÷2=45°,两角平分线组成的角有两个:∠BOE与∠EOD这两个角互补,根据三角形外角和定理,∠BOE=∠OAB+∠OBA=45°,∴∠EOD=180°﹣45°=135°,故选B.4、如图,在Rt△ABC中,∠ACB=90°,∠A=60°,过点C的直线与AB交于点D,且将△ABC的面积分成相等的两部分,则∠CDA=()A.30°B.45°C.60°D.75°【解析】如图,∵在Rt△ABC中,∠ACB=90°,∠A=60°,∴AC=AB,又∵过点C的直线与AB交于点D,且将△ABC的面积分成相等的两部分,∴AD=BD∴AC=AD,∵∠A=60°,∴△ADC是等边三角形,∴∠CDA=60°.5、如图,△ABC中,AB=AC=10,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则DE 的长为()A.10 B.6C.8 D.5【解析】∵AB=AC=10,AD平分∠BAC,∴BD=DC,∵E为AC的中点,∴DE=AB=×10=5,故选D.6、如图,已知AB⊥CD,垂足为B,BC=BE,若直接应用“HL”判定△ABC≌△DBE,则需要添加的一个条件是AC=DE.【解析】AC=DE,理由是:∵AB⊥DC,∴∠ABC=∠DBE=90°,在Rt△ABC和Rt△DBE中,,∴Rt△ABC≌Rt△DBE(HL).故答案为:AC=DE.7、如图,在Rt△ABC中,∠ACB=90°,将边BC沿斜边上的中线CD折叠到CB′,若∠B=50°,则∠ACB′= 10°.【解析】∵∠ACB=90°,∠B=50°,∴∠A=40°,∵∠ACB=90°,CD是斜边上的中线,∴CD=BD,CD=AD,∴∠BCD=∠B=50°,∠DCA=∠A=40°,由翻折变换的性质可知,∠B′CD=∠BCD=50°,∴∠ACB′=∠B′CD﹣∠DCA=10°,故答案为:10°.8、如图,在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线ED交AB于点E,交BC于点D,若CD=3,则BD的长为6.【解析】∵DE是AB的垂直平分线,∴AD=BD,∴∠DAE=∠B=30°,∴∠ADC=60°,∴∠CAD=30°,∴AD为∠BAC的角平分线,∵∠C=90°,DE⊥AB,∴DE=CD=3,∵∠B=30°,∴BD=2DE=6,故答案为:6.9、如图所示,AB⊥BC,DC⊥AC,垂足分别为B,C,过D点作BC的垂线交BC于F,交AC于E,AB=EC,试判断AC和ED的长度有什么关系并说明理由.【解析】AC=ED,理由如下:∵AB⊥BC,DC⊥AC,ED⊥BC,∴∠B=∠EFC=∠DCE=90°.∴∠A+∠ACB=90°,∠CEF+∠ACB=90°.∴∠A=∠CEF.在△ABC和△ECD中,∴△ABC≌△ECD(ASA).∴AC=ED(全等三角形的对应边相等).10、在直角△ABC中,∠ACB=90°,∠B=30°,CD⊥AB于D,CE是△ABC的角平分线.(1)求∠DCE的度数.(2)若∠CEF=135°,求证:EF∥BC.【解析】∵∠B=30°,CD⊥AB于D,∴∠DCB=90°﹣∠B=60°.S(Summary-Embedded)——归纳总结重点回顾1、直角三角形的性质和判定方法定理:直角三角形的两个锐角互余。
专题03 7.5解直角三角形培优训练(解析版)九下数学专题培优训练
专题03 7.5解直角三角形培优训练班级:___________姓名:___________得分:___________一、选择题1.如图,△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD+√55BD的最小值是()A. 2√5B. 4√5C. 5√3D. 10【答案】B【解析】如图,作DH⊥AB于H,CM⊥AB于M.由tanA=BEAE=2,设AE=a,BE=2a,利用勾股定理构建方程求出a,再证明DH=√55BD,推出CD+√55BD=CD+DH,由垂线段最短即可解决问题.本题考查解直角三角形,等腰三角形的性质,垂线段最短等知识,解题的关键是学会添加常用辅助线,用转化的思想思考问题,属于中考常考题型.【解答】解:如图,作DH⊥AB于H,CM⊥AB于M.∵BE⊥AC,∴∠ABE=90°,∵tanA=BEAE=2,设AE=a,BE=2a,则有:100=a2+4a2,∴a2=20,∴a=2√5或−2√5(舍弃),∴BE=2a=4√5,∵AB=AC,BE⊥AC,CM⊥AC,∴CM=BE=4√5(等腰三角形两腰上的高相等))∵∠DBH=∠ABE,∠BHD=∠BEA,∴sin∠DBH=DHBD =AEAB=√55,∴DH=√55BD,∴CD+√55BD=CD+DH,∴CD+DH≥CM,∴CD+√55BD≥4√5,∴CD+√55BD的最小值为4√5.故选:B.2.将一副学生常用的三角板如图摆放在一起,组成一个四边形ABCD,连接AC,则tan∠ACD的值为()A. √3B. √3+1C. √3−1D. 2√3【答案】B【解析】本题考查了锐角三角函数,解直角三角形,解此题的关键是能构造直角三角形,并进一步求出各个线段的长,有一定难度.作AH⊥CB交CB的延长线于H,利用含45°的等腰直角三角形和含30°角的直角三角形,解直角三角形,求出各边长,并证明AH//DC,推出∠ACD=∠CAH,由锐角三角函数定义即可解决问题.【解答】解:如图,△BCD是含45°的等腰直角三角形,△ABD是含30°角的直角三角形,∠ADB= 30°,作AH⊥CB交CB的延长线于H.∵∠ABD=90°,∠DBC=45°,∴∠ABH=45°,∵∠AHB=90°,∴△ABH是等腰直角三角形,∴AH=BH,设AH=BH=a,则AB=√2a,BD=√6a,BC=CD=√3a,CH=a+√3a,∵∠AHB=∠DCB=90°,∴AH//DC,∴∠ACD=∠CAH,∴tan∠ACD=tan∠CAH=CHAH=√3+1,故选B.3.如图,在正方形ABCD中,以BC为边向正方形内部作等边△BCE连接AE,DE,连接BD交CE于点F,有下列结论:①∠AED=150∘;②△DEF∽△BAE;③DFFB =√33;④S△BEC:S△BFC=(√3+2):3.其中正确结论的个数为()A. 4个B. 3个C. 2个D. 1个【答案】B【解析】此题主要考查了正方形的性质,等边三角形的性质,等腰三角形的性质及三角形的内角和,相似三角形,全等三角形的判定及含30°的直角三角形的性质.①利用正方形的性质,等边三角形的性质,等腰三角形的性质及三角形的内角和,周角求得判定即可②由①可得到∠ADE的度数,再利用正方形的性质即可得∠DEF=∠ABE,即可判定③可利用含30°的直角三角形的性质即可分别求出DFBF,再与tan∠ECD=tan30°作比较即可④两个三角形的底相同,由高的比进行判定即可【解答】解:∵△BEC为等边三角形∴∠EBC=∠BEC=∠ECB=60°,AB=EB=EC=BC=DC ∵四边形ABCD为正方形∴∠ABE=∠ECD=90°−60°=30°∴在△ABE和△DCE中,AB=DC∠ABE=∠ECDBE=EC∴△ABE≌△DCE(SAS)∴∠AEB=∠DEC=180°−30°2=75°∴∠AED=360°−60°−75°×2=150°故①正确由①知AE=ED∴∠EAD=∠EDA=15°∴∠EDF=45°−15°=30°∴∠EDF=∠ABE由①知∠AEB=∠DEC,∴△DEF~△BAE故②正确过点F作FM⊥DC交于M,如图设DM=x,则FM=x,DF=√2x∵∠FCD=30°∴MC=√3x则在Rt△DBC中,BD=√2⋅(√3+1)x∴BF=BD−DF=√2⋅(√3+1)x−√2x则DFBF =√2x√2(√3+1−1)x=√33故③正确如图过点E作EH⊥BC交于H,过F作FG⊥BC交于G,得由③知MC=√3x,MC=FG∴FG=√3x∵BC=DC=(√3+1)x∴BH=√3+12x∵∠EBC=60°∴EH=√3⋅√3+12x,∴S△BECS△BFC =12⋅EH⋅BC12⋅FG⋅BC=EHFG=√3⋅√3+12x√3x=√3+12故④错误,所以正确的有3个.故选:B.4.在如图所示8×8的网格中,小正方形的边长为1,点A、B、C、D都在格点上,AB与CD相交于点E,则∠AED的正切值是()A. 2B. 12C. 23D. √55【答案】B【解析】如图,取格点K,连接AK,BK.观察图象可知AK⊥BK,BK=2AK,BK//CD,推出∠AED=∠ABK,解直角三角形求出tan∠ABK即可.本题考查解直角三角形,解题的关键是学会添加常用辅助线,学会用转化的思想思考问题,属于中考常考题型.【解答】解:如图,取格点K,连接AK,BK.观察图象可知AK⊥BK,BK=2AK,BK//CD,∴∠AED=∠ABK,∴tan∠AED=tan∠ABK=AKBK =12,故选:B.5.如图,在△ABC中,∠ACB=90°,点D为AB的中点,AC=3,cosA=13,将△DAC沿着CD折叠后,点A落在点E处,则BE的长为()A. 4√2B. 4C. 7D. 3√2【答案】C【解析】本题考查的是翻转变换的性质、勾股定理、直角三角形的性质,翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.连接AE,根据余弦的定义求出AB,根据勾股定理求出BC,根据直角三角形的性质求出CD,根据面积公式出去AE,根据翻转变换的性质求出AF,根据勾股定理、三角形中位线定理计算即可.【解答】解:连接AE交CD于点F,∵AC=3,cos∠CAB=13,∴AB=3AC=9,由勾股定理得,BC=√AB2−AC2=6√2,∠ACB=90°,点D为AB的中点,∴CD=12AB=92,S△ABC=12×3×6√2=9√2,∵点D为AB的中点,∴S△ACD=12S△ABC=9√22,由翻转变换的性质可知,S四边形ACED=9√2,AE⊥CD,×CD×AE=9√2,则12解得,AE=4√2,∴AF=2√2,,由勾股定理得,DF=√AD2−AF2=72∵AF=FE,AD=DB,∴BE=2DF=7,故选C.6.在长和宽分别是19和15矩形内,如图所示放置5个大小相同的正方形,且A、B、C、D四个顶点分别在矩形的四条边上,则每个小正方形的边长是()A. √29B. 5.5C. √181D. 3√52【答案】A【解析】本题考查了矩形的性质、正方形的性质、解直角三角形以及同角三角函数的关系.设正方形边长为x,EF与OD边成的角为θ,则GH与OA、OC边成的角为θ,AB与AJ 边成的角为θ,利用θ的正弦值、余弦值表示出矩形的长和宽,进一步利用同角三角函数的关系,求得结论即可.【解答】解:如图,作EF平行于长方形的长,GH平行于长方形的宽,交于O,设正方形边长为x,EF与OD边成的角为θ,则GH与OA、OC边成的角为θ,AB与AJ边成的角为θ,在Rt△AOH、Rt△COG中,GH=OG+OH=xcosθ+2xcosθ=3xcosθ=15,同理得出EF=EO+HA+AJ=2xcosθ+2xsinθ+xcosθ=3xcosθ+2xsinθ=19②解①得xcosθ=5将xcosθ=5代入②解②得xsinθ=2,两边平方相加得x2=29,所以正方形的边长x=√29.故选A.二、填空题7.如图,在直角△BAD中,延长斜边BD到点C,使DC=12BD,连接AC,若tanB=53,则tan∠CAD的值______.【答案】15【解析】延长AD ,过点C 作CE ⊥AD ,垂足为E ,由tanB =53,即AD AB =53,设AD =5x ,则AB =3x ,然后可证明△CDE∽△BDA ,然后相似三角形的对应边成比例可得:CE AB =DE AD =CD BD =12,进而可得CE =32x ,DE =52x ,从而可求tan∠CAD =EC AE =15. 本题考查了锐角三角函数的定义,相似三角形的判定和性质以及直角三角形的性质,是基础知识要熟练掌握,解题的关键是:正确添加辅助线,将∠CAD 放在直角三角形中.【解答】解:如图,延长AD ,过点C 作CE ⊥AD ,垂足为E ,∵tanB =53,即AD AB =53, ∴设AD =5x ,则AB =3x ,∵∠CDE =∠BDA ,∠CED =∠BAD ,∴△CDE∽△BDA ,∴CE AB =DE AD =CD BD =12,∴CE =32x ,DE =52x , ∴AE =152x ,∴tan∠CAD =EC AE =15, 故答案为15.8. 已知在菱形ABCD 中,∠A =60°,DE//BF ,sinE =45,DE =6,EF =BF =5,则菱形ABCD 的边长=______.【答案】4√5【解析】连接BD ,过B 作BG//EF 交DE 的延长线于G ,根据菱形的判定和性质以及解直角三角形求得BD ,判断△ABD 是等边三角形,根据等边三角形的性质即可得出菱形ABCD 的长.本题考查了菱形的性质及勾股定理的知识,解答本题的关键是作出辅助线,构造直角三角形.【解答】解:连接BD ,过B 作BG//EF 交DE 的延长线于G ,∵∠DEF =∠F ,∴EG//BF ,∴四边形BFEG 是平行四边形,∵EF =BF ,∴四边形BFEG 是菱形,∴EG =BG =EF =BF =5,∴DG =6+5=11,∵EF//BG ,∴∠G =∠DEF ,过D 作DH ⊥GB 交GB 的延长线于H ,∴∠DHG =90°,∵sin∠DEF =sinG =DH DG =45, ∴DH =445, ∴GH =335,∴BH =GH −BG =85,∴BD =√BH 2+DH 2=√(85)2+(445)2=4√5,∵在菱形ABCD 中,∠A =60°,∴△ABD 是等边三角形,∴AB =BD =4√5,故答案为:4√5.9. 如图,△AOB 为等腰三角形,顶点A 的坐标为(2,√5),底边OB 在x 轴上.将△AOB 绕点B 按顺时针方向旋转一定角度后得到△A′O′B ,点A 的对应点A′在x 轴上,则点O′的坐标为________【答案】(203,4√5 3)【解析】本题考查了坐标与图形变化−旋转,主要利用了勾股定理,等腰三角形的性质,解直角三角形,熟记性质并作辅助线构造出直角三角形是解题的关键.过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D,根据点A的坐标求出OC、AC,再利用勾股定理列式计算求出OA,根据等腰三角形三线合一的性质求出OB,根据旋转的性质可得BO′=OB,∠A′BO′=∠ABO,然后解直角三角形求出O′D、BD,再求出OD,然后写出点O′的坐标即可.【解答】解:如图,过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D,∵A(2,√5),∴OC=2,AC=√5,由勾股定理得,OA=√OC2+AC2=√22+(√5)2=3,∵△AOB为等腰三角形,OB是底边,∴OB=2OC=2×2=4,由旋转的性质得,BO′=OB=4,∠A′BO′=∠ABO,∴O′D=4×√53=4√53,BD=4×23=83,∴OD=OB+BD=4+83=203,∴点O′的坐标为(203,4√53),故答案为(203,4√5 3).10.三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点C在FD的延长线上,点B在ED上,AB//CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,则CD的长度是______.【答案】15−5√3【解析】过点B作BM⊥FD于点M,根据题意可求出BC的长度,然后在△EFD中可求出∠EDF=45°,进而可得出答案.本题考查了解直角三角形的性质及平行线的性质,难度较大,解答此类题目的关键根据题意建立三角形利用所学的三角函数的关系进行解答.【解答】解:过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=60°,AC=10,∴∠ABC=30°,BC=10×tan60°=10√3,∵AB//CF,=5√3,∴BM=BC×sin30°=10√3×12CM=BC×cos30°=15,在△EFD中,∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5√3,∴CD=CM−MD=15−5√3.故答案是:15−5√3.11.如下图,正方形ABCD中,AB=3,点E为对角线AC上的动点,以DE为边作正CD连接GH,则GH的最小值为________.方形DEFG,点H是CD上一点,且DH=23【答案】√22【解析】此题考查正方形的性质,关键是根据正方形的性质和三角形中位线定理解答.连接CG.证明△ADE≌△CDG(SAS),推出∠DCG=∠DAE=45°,推出点G的运动轨迹是射线CG,根据垂线段最短可知,当GH⊥CG时,GH的值最小.【解答】解:连接CG.∵四边形ABCD是正方形,四边形DECG是正方形,∴DA=DC=AB=3,DE=DG,∠ADC=∠EDG=90∘,∠DAC=45∘,∴∠ADE=∠CDG,∴△ADE≌△CDG(SAS),∴∠DCG=∠DAE=45∘,∴点G的运动轨迹是射线,根据垂线段最短可知,当GH⊥CG时,GH的值最小,∵DH=23CD=2,∴CH=CD−DH=3−2=1,∴最小值=CH⋅sin45∘=1×√22=√22.故答案为:√2.212.如图,∠EFG=90°,EF=10,OG=17,,则点F的坐标是_________.【答案】(8,12)【解析】本题考查坐标与图形性质,解直角三角形,勾股定理的运用,过点F作直线FA//OG,交y轴于点A,过点G作GH⊥AH于点H,易得∠AEF=∠HFG=∠FGO,然后利用勾股定理和解直角三角形分别求出AF和HG的长即可.【解答】解:过点F作直线FA//OG,交y轴于点A,过点G作GH⊥AH于点H,∴∠FGO=∠HFG,∠EAF=90°,∠AOG=90°=∠AHG,∴四边形AOGH为矩形,∴OG=AH=17,∵∠EFG=90°,∴∠AFE+∠AEF=90°,∠HFG+∠AFE=90°,∴∠AEF=∠HFG=∠FGO,=6,在Rt△AEF中,EF=10,则AE=10·cos∠FEA=10×35∴AF=√EF2−AE2=8,FH=AH−AF=17−8=9,在Rt△FGH中,FG=FHcos∠HFG=935=15,∴HG=√FG2−FH2=12,∴点F的坐标为(8,12).故答案为(8,12).三、解答题13.如图,AB是⊙O的直径,半径OC⊥AB,垂足为O,直线l为⊙O的切线,A是切点,D是OA上一点,CD的延长线交直线l于点E,F是OB上一点,CF的延长线交⊙O于点G,连接AC,AG,已知⊙O的半径为3,CE=√34,5BF−5AD=4.(I)求AE的长;(2)求cos∠CAG的值及CG的长.【解析】(1)延长CO交⊙O于T,过点E作EH⊥CT于H.首先证明四边形AEHO是矩形,利用勾股定理求出CH,OH即可.(2)利用勾股定理求出CF,利用相似三角形的性质求出FG,证明∠CAG=∠CTG,求出cos∠CTG即可解决问题.本题考查切线的性质,解直角三角形,相似三角形的判定和性质,圆周角定理等知识,解题的关键是学会添加常用辅助线,构造特殊四边形解决问题,属于中考常考题型.【答案】解:(1)延长CO交⊙O于T,过点E作EH⊥CT于H.∵直线l是⊙O的切线,∴AE⊥OD,∵OC⊥AB,∴∠EAO=∠AOH=∠EHO=90°,∴四边形AEHO是矩形,∴EH=OA=3,AE=OH,∵CH=√EC2−EH2=√(√34)2−32=5,∴AE=OH=CH−CO=5−3=2.(2)∵AE//OC,∴AE OC =AD DO =23,∴AD =25OA =65, ∵5BF −5AD =4,∴BF =2,∴OF =OB −BF =1,AF =AO +OF =4,CF =√OC 2+OF 2=√32+12=√10, ∵∠FAC =∠FGB ,∠AFC =∠GFB ,∴△AFC∽△GFB ,∴AF FG =CF BF ,∴4FG =√102, ∴FG =4√105, ∴CG =FG +CF =9√105,∵CT 是直径,∴∠CGT =90°, ∴GT =√TC 2−CG 2=(9√105)=3√105, ∴cos∠CTG =TG TC =3√1056=√1010, ∵∠CAG =∠CTG ,∴cos∠CAG =√1010.14. 在矩形ABCD 中,AB =8,点H 是直线AB 边上的一个点,连接DH 交直线CB 的干点E ,交直线AC 于点F ,连接BF .(1)如图①,点H 在AB 边上,若四边形ABCD 是正方形,求证:△ADF≌△ABF ;(2)在(1)的条件下,若△BHF 为等腰三角形,求HF 的长;(3)如图②,若tan∠ADH =43,是否存在点H ,使得△BHF 为等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.【解析】(1)根据SAS证明三角形全等即可.(2)想办法证明∠ADH=30°,求出AH即可解决问题.(3)如图②中,可以假设AH=4k,AD=3k,DH=5k,因为△BHF是等腰三角形,∠BHF 是钝角,推出HF=BH,设BH=HF=x,构建方程组解决问题即可.本题属于四边形综合题,考查了矩形的性质,全等三角形的判定和性质,解直角三角形,等腰三角形的判定和性质等知识,解题的关键是学会利用参数构建方程组解决问题,属于中考压轴题.【答案】(1)证明:如图①中,∵四边形ABCD是正方形,∴AB=AD,∠FAB=∠FAD=45°,∵AF=AF,∴△ADF≌△ABF(SAS).(2)解:如图①中,∵∠BHF>∠HAD,∴∠BHF是钝角,∵△BHF是等腰三角形,∴BH=FH,∴∠HBF=∠BFH,∵△ADF≌△ABF,∴∠ADF=∠ABF,∵∠AHD =∠HBF +∠BFH ,∴∠AHD =2∠ADH ,∵∠AHD +∠ADH =90°,∴∠ADH =30°,∴AH =AD ⋅tan30°=8√33, ∴BH =HF =8−8√33.(3)解:如图②中,存在.理由如下:∵四边形ABCD 是矩形,∴AB =CD =8,AB//CD ,∠DAH =90°,∵tan∠ADH =AHAD =43, ∴可以假设AH =4k ,AD =3k ,则DH =5k ,∵△BHF 是等腰三角形,∠BHF 是钝角,∴HF =BH ,设BH =HF =x ,∵AH//CD ,∴AH CD =HF DF , ∴4k8=x 5k−x①, ∵AH +BH =8,∴4k +x =8 ②,由①②可得,x =83或403(舍弃),∴存在,该三角形的腰长为83.15. 如图,在锐角△ABC 中,小明进行了如下的尺规作图:①分别以点A 、B 为圆心,以大于12AB 的长为半径作弧,两弧分别相交于点P 、Q ;②作直线PQ分别交边AB、BC于点E、D.(1)小明所求作的直线DE是线段AB的______;(2)联结AD,AD=7,sin∠DAC=17,BC=9,求AC的长.【答案】(1)线段AB的垂直平分线(或中垂线);(2)过点D作DF⊥AC,垂足为点F,如图,∵DE是线段AB的垂直平分线,∴AD=BD=7∴CD=BC−BD=2,在Rt△ADF中,∵sin∠DAC=DFAD =17,∴DF=1,在Rt△ADF中,AF=√72−12=4√3,在Rt△CDF中,CF=√22−12=√3,∴AC=AF+CF=4√3+√3=5√3.【解析】本题考查了作图−基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了解直角三角形.【解答】】(1)利用基本作法进行判断;(2)过点D作DF⊥AC,垂足为点F,如图,根据线段垂直平分线的性质得到AD=BD=7,则CD=2,在Rt△ADF中先利用正弦的定义可计算出DF,再利用勾股定理可计算出AF,接着在Rt△CDF中利用勾股定理可计算出CF,然后计算AF+CF.解:(1)小明所求作的直线DE是线段AB的垂直平分线(或中垂线);故答案为线段AB的垂直平分线(或中垂线);(2)见答案.16.如图,矩形ABCD中,AD=8,AB=16,点E在AB边上,与点A、B不重合,过点D作DE的垂线与BC的延长线相交于点F,连结EF,交CD于点G.(Ⅰ)当G为EF的中点时,求AE的长;(Ⅱ)当△DEG是以DE为腰的等腰三角形时,求tan∠ADE.【解析】本题考查了相似三角形的判定和性质、等腰三角形的性质、矩形的性质、解直角三角形等知识,解决本题的关键是综合运用以上知识.(Ⅰ)根据∠ADE=∠CDF,∠A=∠DCF=90°证明△DAE∽△DCF,对应边成比例,再根据三角形中位线定理即可求解;(Ⅱ)①当DE=DG时,先证明△EDF≌△EBF得DE=BE,再根据勾股定理求得AE的长,即可求得结果;②当ED=EG时,证明△DAE∽△FBE得DAFB =AEBE,求得AE的长,即可求得结果.【答案】解:(Ⅰ)∵DF⊥DE ∴∠EDG+∠CDF=90°又∵∠EDG+∠ADE=90°∴∠ADE=∠CDF又∵∠A=∠DCF=90°∴△DAE∽△DCF∴ADCD =AECF∴CF=16×AE8=2AE又∵CD//AB,点G为EF的中点∴点C为BF的中点∴CF=BC=8∴2AE=8∴AE=4(Ⅱ)①当DE=DG时,则∠DEG=∠DGE 又∵CD//AB,∴∠DGE=∠BEG∴∠DEG=∠BEG又∵∠EDF=∠EBF=90°EF=EF∴△EDF≌△EBF(AAS)∴DE=BE设AE=x,则BE=16−x,在Rt△DAE中,AD2+AE2=DE2∴82+x2=(16−x)2解得x=6,即AE=6∴tan∠ADE=AEAD =68=34②当ED=EG时,则∠EDG=∠EGD 又∵CD//AB∴∠EGD=∠BEG,∠EDG=∠AED ∴∠AED=∠BEG又∠A=∠B=90°∴△DAE∽△FBE∴DAFB =AEBE由(I)得:CF=2AE设AE=x,则CF=2x,BE=16−x,BF=8+2x,∴88+2x =x16−x解得:x1=4√5−4,x2=−4√5−4(舍去)∴AE=4√5−4∴tan∠ADE=AEAD =4√5−48=√5−12综上所述:tan∠ADE=34或tan∠ADE=√5−12.17.在△ABC中,∠ACB=90°.(1)如图①,若点E在AC的延长线上,ED⊥AB,垂足为D,MN//AB分别交AE、BE于点M、N.且BC=MN,cos∠ABC=35,AD=8,求AM的长;(2)如图②,若将△ABC绕点A逆时针旋转一个锐角得到△AEF,连接FC并延长交BE于点M,若CFBM =43,求tan∠ABC.【解析】本题是几何变换综合题,考查了勾股定理,全等三角形判定和性质,相似三角形的判定和性质,锐角三角函数等知识,灵活运用相关的性质定理、综合运用知识是解题的关键.(1)设BC=3x,AB=5x,根据勾股定理可求AC=4x,根据锐角三角函数可求AE=10,由题意可证△EMN∽△EAB,可得EMEA =MNAB,可求EM=6,即可求AM的长;(2)根据旋转的性质可得AF=AC,EF=BC,AE=AB,∠FAE=∠CAB,∠ACB=∠AFE=90°,即可得∠FAC=∠EAB,∠EFM=∠G=∠BCG,可得BC=BG=EF,根据“AAS”可证△EFM≌△BGM,可得BM=EM,通过证明△FAC∽△EAB,可得ACAB=CF BE =4a6a=23,设AC=2b,AB=3b,根据勾股定理求出AC,即可求tan∠ABC的值.【答案】解:(1)∵cos∠ABC=35=BCAB,∴设BC=3x,AB=5x.在Rt△ABC中,AC=√AB2−BC2=4x.∵tan∠CAB=BCAC =DEAD=3x4x=34,∴DE=34AD,且AD=8,∴DE=6.在Rt△ADE中,AE=√AD2+DE2=10.∵MN=BC,∴MN=3x.∵MN//AB,∴△EMN∽△EAB,∴EMEA =MNAB,∴EM10=3x5x,∴EM=6,∴AM=AE−ME=4.(2)过点B作BG//EF,交FM延长线于点G.∵CFBM =43,∴设CF=4a,BM=3a.∵将△ABC绕点A逆时针旋转一个锐角,得到△AEF,∴AF=AC,EF=BC,AE=AB,∠FAE=∠CAB.∵AF=AC,∴∠AFC=∠ACF.∵∠ACB=∠AFE=90°,∴∠AFC+∠EFM=90°,∠ACF+∠BCG=90°,∴∠BCG=∠EFM.∵EF//BG,∴∠EFM=∠G,∴∠BCG=∠G,∴BC=BG,∴BG=EF,且∠EFM=∠G,∠FME=∠BMG,∴△EFM≌△BGM,∴EM=BM=3a,∴BE=6a.∵∠FAE=∠CAB,∴∠FAC=∠EAB,且AFAE =ACAB,∴△FAC∽△EAB,∴ACAB =CFBE=4a6a=23,∴设AC=2b,AB=3b.在Rt△ACB中,BC=√AB2−BC2=√5b,∴tan∠ABC=ACBC =2√55.。
中考数学直角三角形的边角关系(大题培优)附答案
中考数学直角三角形的边角关系(大题培优)附答案一、直角三角形的边角关系1.如图(9)所示(左图为实景侧视图,右图为安装示意图),在屋顶的斜坡面上安装太阳能热水器:先安装支架AB 和CD (均与水平面垂直),再将集热板安装在AD 上.为使集热板吸热率更高,公司规定:AD 与水平面夹角为1θ,且在水平线上的射影AF 为1.4m .现已测量出屋顶斜面与水平面夹角为2θ,并已知1tan 1.082θ=,2tan 0.412θ=.如果安装工人确定支架AB 高为25cm ,求支架CD 的高(结果精确到1cm )? 【答案】【解析】过A 作AF CD ⊥于F ,根据锐角三角函数的定义用θ1、θ2表示出DF 、EF 的值,又可证四边形ABCE 为平行四边形,故有EC=AB=25cm ,再再根据DC=DE+EC 进行解答即可.2.已知:如图,在Rt △ABC 中,∠ACB=90°,点M 是斜边AB 的中点,MD ∥BC ,且MD=CM ,DE ⊥AB 于点E ,连结AD 、CD .(1)求证:△MED ∽△BCA ;(2)求证:△AMD ≌△CMD ;(3)设△MDE 的面积为S 1,四边形BCMD 的面积为S 2,当S 2=175S 1时,求cos ∠ABC 的值.【答案】(1)证明见解析;(2)证明见解析;(3)cos ∠ABC=57. 【解析】【分析】 (1)易证∠DME=∠CBA ,∠ACB=∠MED=90°,从而可证明△MED ∽△BCA ;(2)由∠ACB=90°,点M 是斜边AB 的中点,可知MB=MC=AM ,从而可证明∠AMD=∠CMD ,从而可利用全等三角形的判定证明△AMD ≌△CMD ;(3)易证MD=2AB ,由(1)可知:△MED ∽△BCA ,所以2114ACB S MD S AB ⎛⎫== ⎪⎝⎭V ,所以S △MCB =12S △ACB =2S 1,从而可求出S △EBD =S 2﹣S △MCB ﹣S 1=25S 1,由于1EBD S ME S EB =V ,从而可知52ME EB =,设ME=5x ,EB=2x ,从而可求出AB=14x ,BC=72,最后根据锐角三角函数的定义即可求出答案.【详解】(1)∵MD ∥BC ,∴∠DME=∠CBA ,∵∠ACB=∠MED=90°,∴△MED ∽△BCA ;(2)∵∠ACB=90°,点M 是斜边AB 的中点,∴MB=MC=AM ,∴∠MCB=∠MBC ,∵∠DMB=∠MBC ,∴∠MCB=∠DMB=∠MBC ,∵∠AMD=180°﹣∠DMB ,∠CMD=180°﹣∠MCB ﹣∠MBC+∠DMB=180°﹣∠MBC ,∴∠AMD=∠CMD ,在△AMD 与△CMD 中, MD MD AMD CMD AM CM =⎧⎪∠=∠⎨⎪=⎩,∴△AMD ≌△CMD (SAS );(3)∵MD=CM ,∴AM=MC=MD=MB ,∴MD=2AB ,由(1)可知:△MED ∽△BCA , ∴2114ACB S MD S AB ⎛⎫== ⎪⎝⎭V , ∴S △ACB =4S 1,∵CM 是△ACB 的中线,∴S △MCB =12S △ACB =2S 1, ∴S △EBD =S 2﹣S △MCB ﹣S 1=25S 1, ∵1EBD S ME S EB=V , ∴1125S ME EB S =, ∴52ME EB =, 设ME=5x ,EB=2x ,∴MB=7x ,∴AB=2MB=14x , ∵12MD ME AB BC ==, ∴BC=10x , ∴cos ∠ABC=105147BC x AB x ==. 【点睛】本题考查相似三角形的综合问题,涉及直角三角形斜边中线的性质,全等三角形的性质与判定,相似三角形的判定与性质,三角形面积的面积比,锐角三角函数的定义等知识,综合程度较高,熟练掌握和灵活运用相关的性质及定理进行解题是关键.3.如图,在△ABC 中,∠ABC =90°,以AB 的中点O 为圆心,OA 为半径的圆交AC 于点D ,E 是BC 的中点,连接DE ,OE .(1)判断DE 与⊙O 的位置关系,并说明理由;(2)求证:BC 2=2CD•OE ;(3)若314cos ,53BAD BE ∠==,求OE 的长.【答案】(1)DE为⊙O的切线,理由见解析;(2)证明见解析;(3)OE =356.【解析】试题分析:(1)连接OD,BD,由直径所对的圆周角是直角得到∠ADB为直角,可得出△BCD为直角三角形,E为斜边BC的中点,由直角三角形斜边上的中线等于斜边的一半,得到CE=DE,从而得∠C=∠CDE,再由OA=OD,得∠A=∠ADO,由Rt△ABC中两锐角互余,从而可得∠ADO与∠CDE互余,可得出∠ODE为直角,即DE垂直于半径OD,可得出DE为⊙O的切线;(2)由已知可得OE是△ABC的中位线,从而有AC=2OE,再由∠C=∠C,∠ABC=∠BDC,可得△ABC∽△BDC,根据相似三角形的对应边的比相等,即可证得;(3)在直角△ABC中,利用勾股定理求得AC的长,根据三角形中位线定理OE的长即可求得.试题解析:(1)DE为⊙O的切线,理由如下:连接OD,BD,∵AB为⊙O的直径,∴∠ADB=90°,在Rt△BDC中,E为斜边BC的中点,∴CE=DE=BE=BC,∴∠C=∠CDE,∵OA=OD,∴∠A=∠ADO,∵∠ABC=90°,∴∠C+∠A=90°,∴∠ADO+∠CDE=90°,∴∠ODE=90°,∴DE⊥OD,又OD为圆的半径,∴DE为⊙O的切线;(2)∵E是BC的中点,O点是AB的中点,∴OE是△ABC的中位线,∴AC=2OE,∵∠C=∠C,∠ABC=∠BDC,∴△ABC∽△BDC,∴,即BC2=AC•CD.∴BC2=2CD•OE;(3)解:∵cos∠BAD=,∴sin∠BAC=,又∵BE=,E是BC的中点,即BC=,∴AC=.又∵AC=2OE,∴OE=AC=.考点:1、切线的判定;2、相似三角形的判定与性质;3、三角函数4.2018年12月10日,郑州市城乡规划局网站挂出《郑州都市区主城区停车场专项规划》,将停车纳入城市综合交通体系,计划到2030年,在主城区新建停车泊位33.04万个,2019年初,某小区拟修建地下停车库,如图是停车库坡道入口的设计图,其中MN是水平线,MN∥AD,AD⊥DE,CF⊥AB,垂足分别为D,F,坡道AB的坡度为1:3,DE =3米,点C在DE上,CD=0.5米,CD是限高标志屏的高度(标志牌上写有:限高米),如果进入该车库车辆的高度不能超过线段CF的长,则该停车库限高多少米?(结果精确到0.1米,参考数据2≈1.41,3≈1.73)【答案】该停车库限高约为2.2米.【解析】【分析】据题意得出3tan B ,即可得出tan A,在Rt△ADE中,根据勾股定理可求得DE,即可得出∠1的正切值,再在Rt△CEF中,设EF=x,即可求出x,从而得出CF3的长.【详解】解:由题意得,tan B=∵MN∥AD,∴∠A=∠B,∴tan A,∵DE⊥AD,∴在Rt△ADE中,tan A=DEAD,∵DE=3,又∵DC=0.5,∴CE=2.5,∵CF⊥AB,∴∠FCE+∠CEF=90°,∵DE⊥AD,∴∠A+∠CEF=90°,∴∠A=∠FCE,∴tan∠FCE在Rt△CEF中,设EF=x,CF x(x>0),CE=2.5,代入得(52)2=x2+3x2,解得x=1.25,∴CFx≈2.2,∴该停车库限高约为2.2米.【点睛】本题考查了解直角三角形的应用,坡面坡角问题和勾股定理,解题的关键是坡度等于坡角的正切值.5.如图,在⊙O的内接三角形ABC中,∠ACB=90°,AC=2BC,过C作AB的垂线l交⊙O 于另一点D,垂足为E.设P是»AC上异于A,C的一个动点,射线AP交l于点F,连接PC与PD,PD交AB于点G.(1)求证:△PAC∽△PDF;(2)若AB=5,¼¼AP BP=,求PD的长.【答案】(1)证明见解析;(2310 【解析】【分析】 (1)根据AB ⊥CD ,AB 是⊙O 的直径,得到¶¶ADAC =,∠ACD =∠B ,由∠FPC =∠B ,得到∠ACD =∠FPC ,可得结论;(2)连接OP ,由¶¶APBP =,得到OP ⊥AB ,∠OPG =∠PDC ,根据AB 是⊙O 的直径,得到∠ACB =90°,由于AC =2BC ,于是得到tan ∠CAB =tan ∠DCB =BC AC ,得到12CE BE AE CE ==,求得AE =4BE ,通过△OPG ∽△EDG ,得到OG OP GE ED=,然后根据勾股定理即可得到结果.【详解】(1)证明:连接AD ,∵AB ⊥CD ,AB 是⊙O 的直径,∴¶¶ADAC =, ∴∠ACD =∠B =∠ADC ,∵∠FPC =∠B ,∴∠ACD =∠FPC ,∴∠APC =∠ACF ,∵∠FAC =∠CAF ,∴△PAC ∽△CAF ;(2)连接OP ,则OA =OB =OP =1522AB =, ∵¶¶APBP =, ∴OP ⊥AB ,∠OPG =∠PDC ,∵AB 是⊙O 的直径,∴∠ACB =90°,∵AC =2BC ,∴tan ∠CAB =tan ∠DCB =BC AC,∴12 CE BEAE CE==,∴AE=4BE,∵AE+BE=AB=5,∴AE=4,BE=1,CE=2,∴OE=OB﹣BE=2.5﹣1=1.5,∵∠OPG=∠PDC,∠OGP=∠DGE,∴△OPG∽△EDG,∴OG OP GE ED=,∴2.52 OE GE OPGE CE-==,∴GE=23,OG=56,∴PG=225OP OG6+=,GD=222 3DE GE+=,∴PD=PG+GD=3102.【点睛】本题考查了相似三角形的判定和性质,垂径定理,勾股定理,圆周角定理,证得△OPG∽△EDG是解题的关键.6.在正方形ABCD中,AC是一条对角线,点E是边BC上的一点(不与点C重合),连接AE,将△ABE沿BC方向平移,使点B与点C重合,得到△DCF,过点E作EG⊥AC于点G,连接DG,FG.(1)如图,①依题意补全图;②判断线段FG与DG之间的数量关系与位置关系,并证明;(2)已知正方形的边长为6,当∠AGD=60°时,求BE的长.【答案】(1)①见解析,②FG=DG,FG⊥DG,见解析;(2)BE=【解析】【分析】(1)①补全图形即可,②连接BG,由SAS证明△BEG≌△GCF得出BG=GF,由正方形的对称性质得出BG=DG,得出FG=DG,在证出∠DGF=90°,得出FG⊥DG即可,(2)过点D作DH⊥AC,交AC于点H.由等腰直角三角形的性质得出DH=AH=FG=DG=2GH=,得出DFDG=Rt△DCF中,由勾股定理得出CF=得出结果.【详解】解:(1)①补全图形如图1所示,②FG=DG,FG⊥DG,理由如下,连接BG,如图2所示,∵四边形ABCD是正方形,∴∠ACB=45°,∵EG⊥AC,∴∠EGC=90°,∴△CEG是等腰直角三角形,EG=GC,∴∠GEC=∠GCE=45°,∴∠BEG=∠GCF=135°,由平移的性质得:BE=CF,在△BEG和△GCF中,BE CFBEG GCF EG CG=⎧⎪∠=∠⎨⎪=⎩,∴△BEG≌△GCF(SAS),∴BG=GF,∵G在正方形ABCD对角线上,∴BG=DG,∴FG=DG,∵∠CGF=∠BGE,∠BGE+∠AGB=90°,∴∠CGF+∠AGB=90°,∴∠AGD+∠CGF=90°,∴∠DGF=90°,∴FG⊥DG.(2)过点D 作DH ⊥AC ,交AC 于点H .如图3所示,在Rt △ADG 中,∵∠DAC =45°,∴DH =AH =32, 在Rt △DHG 中,∵∠AGD =60°,∴GH =3=323=6,∴DG =2GH =26,∴DF =2DG =43,在Rt △DCF 中,CF =()22436-=23,∴BE =CF =23.【点睛】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的性质、勾股定理、解直角三角形的应用等知识;本题综合性强,证明三角形全等是解题的关键.7. 兰州银滩黄河大桥北起安宁营门滩,南至七里河马滩,是黄河上游的第一座大型现代化斜拉式大桥如图,小明站在桥上测得拉索AB 与水平桥面的夹角是31°,拉索AB 的长为152米,主塔处桥面距地面7.9米(CD 的长),试求出主塔BD 的高.(结果精确到0.1米,参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)【答案】主塔BD的高约为86.9米.【解析】【分析】根据直角三角形中由三角函数得出BC相应长度,再由BD=BC+CD可得出.【详解】在Rt△ABC中,∠ACB=90°,sin BCAAB=.∴sin152sin311520.5279.04BC AB A︒=⨯=⨯=⨯=.79.047.986.9486.9BD BC CD=+=+=≈(米)答:主塔BD的高约为86.9米.【点睛】本题考察了直角三角形与三角函数的结合,熟悉掌握是解决本题的关键.8.在Rt△ABC中,∠ACB=90°,AB=7,AC=2,过点B作直线m∥AC,将△ABC绕点C 顺时针旋转得到△A′B′C(点A,B的对应点分别为A',B′),射线CA′,CB′分別交直线m于点P,Q.(1)如图1,当P与A′重合时,求∠ACA′的度数;(2)如图2,设A′B′与BC的交点为M,当M为A′B′的中点时,求线段PQ的长;(3)在旋转过程中,当点P,Q分别在CA′,CB′的延长线上时,试探究四边形PA'B′Q的面积是否存在最小值.若存在,求出四边形PA′B′Q的最小面积;若不存在,请说明理由.【答案】(1)60°;(2)PQ=72;(3)存在,S四边形PA'B′Q=33【解析】【分析】(1)由旋转可得:AC=A'C=2,进而得到BC3=∠A'BC=90°,可得cos ∠A 'CB 3'2BC A C ==,即可得到∠A 'CB =30°,∠ACA '=60°; (2)根据M 为A 'B '的中点,即可得出∠A =∠A 'CM ,进而得到PB 3=BC 32=,依据tan ∠Q =tan ∠A 3=,即可得到BQ =BC 3⨯=2,进而得出PQ =PB +BQ 72=; (3)依据S 四边形PA 'B 'Q =S △PCQ ﹣S △A 'CB '=S △PCQ 3-,即可得到S 四边形PA 'B 'Q 最小,即S △PCQ 最小,而S △PCQ 12=PQ ×BC 3=PQ ,利用几何法即可得到S △PCQ 的最小值=3,即可得到结论.【详解】(1)由旋转可得:AC =A 'C =2.∵∠ACB =90°,AB 7=,AC =2,∴BC 3=.∵∠ACB =90°,m ∥AC ,∴∠A 'BC =90°,∴cos ∠A 'CB 3'2BC A C ==,∴∠A 'CB =30°,∴∠ACA '=60°;(2)∵M 为A 'B '的中点,∴∠A 'CM =∠MA 'C ,由旋转可得:∠MA 'C =∠A ,∴∠A =∠A 'CM ,∴tan ∠PCB =tan ∠A 3=,∴PB 3=BC 32=. ∵∠BQC =∠BCP =∠A ,∴tan ∠BQC =tan ∠A 3=,∴BQ =BC 3⨯=2,∴PQ =PB +BQ 72=; (3)∵S 四边形PA 'B 'Q =S △PCQ ﹣S △A 'CB '=S △PCQ 3-,∴S 四边形PA 'B 'Q 最小,即S △PCQ 最小,∴S △PCQ 12=PQ ×BC 3=PQ , 取PQ 的中点G . ∵∠PCQ =90°,∴CG 12=PQ ,即PQ =2CG ,当CG 最小时,PQ 最小,∴CG ⊥PQ ,即CG 与CB 重合时,CG 最小,∴CG min 3=,PQ min =23,∴S △PCQ 的最小值=3,S 四边形PA 'B 'Q =33-;【点睛】本题属于几何变换综合题,主要考查了旋转的性质,解直角三角形以及直角三角形的性质的综合运用,解题时注意:旋转变换中,对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.9.如图,半圆O 的直径AB =20,弦CD ∥AB ,动点M 在半径OD 上,射线BM 与弦CD 相交于点E (点E 与点C 、D 不重合),设OM =m .(1)求DE 的长(用含m 的代数式表示);(2)令弦CD 所对的圆心角为α,且sin 4=25α. ①若△DEM 的面积为S ,求S 关于m 的函数关系式,并求出m 的取值范围;②若动点N 在CD 上,且CN =OM ,射线BM 与射线ON 相交于点F ,当∠OMF =90° 时,求DE 的长.【答案】(1)DE =10010m m -;(2)①S =2360300m m m-+,(5013<m <10),②DE =52. 【解析】【分析】 (1)由CD ∥AB 知△DEM ∽△OBM ,可得DE DM OB OM=,据此可得; (2)①连接OC 、作OP ⊥CD 、MQ ⊥CD ,由OC =OD 、OP ⊥CD 知∠DOP =12∠COD ,据此可得sin ∠DOP =sin ∠DMQ =45、sin ∠ODP =35,继而由OM =m 、OD =10得QM =DM sin ∠ODP =35(10﹣m ),根据三角形的面积公式即可得;如图2,先求得PD =8、CD =16,证△CDM ∽△BOM 得CD DM BO OM =,求得OM =5013,据此可得m 的取值范围; ②如图3,由BM =OB sin ∠BOM =10×35=6,可得OM =8,根据(1)所求结果可得答案.【详解】(1)∵CD ∥AB ,∴△DEM ∽△OBM ,∴DE DM OB OM =,即1010DE m m-=,∴DE =10010m m -; (2)①如图1,连接OC 、作OP ⊥CD 于点P ,作MQ ⊥CD 于点Q ,∵OC =OD 、OP ⊥CD ,∴∠DOP =12∠COD , ∵sin 2α=45, ∴sin ∠DOP =sin ∠DMQ =45,sin ∠ODP =35, ∵OM =m 、OD =10,∴DM =10﹣m ,∴QM =DM sin ∠ODP =35(10﹣m ), 则S △DEM =12DE •MQ =12×10010m m -×35(10﹣m )=2360300m m m-+, 如图2,∵PD =OD sin ∠DOP =10×45=8, ∴CD =16,∵CD ∥AB ,∴△CDM ∽△BOM ,∴CD DM BO OM =,即1610=10OM OM-, 解得:OM =5013,∴5013<m <10, ∴S =2360300m m m-+,(5013<m <10). ②当∠OMF =90°时,如图3,则∠BMO =90°,在Rt △BOM 中,BM =OB sin ∠BOM =10×35=6, 则OM =8,由(1)得DE =100108582-⨯=. 【点睛】本题主要考查圆的综合题,解题的关键是熟练掌握圆的有关性质、相似三角形的判定与性质及解直角三角形的能力.10.如图,在航线l 的两侧分别有观测点A 和B ,点B 到航线l 的距离BD 为4km ,点A 位于点B 北偏西60°方向且与B 相距20km 处.现有一艘轮船从位于点A 南偏东74°方向的C 处,沿该航线自东向西航行至观测点A 的正南方向E 处.求这艘轮船的航行路程CE 的长度.(结果精确到0.1km )(参考数据:3≈1.73,sin74°≈0.96,cos74°≈0.28,tan74°≈3.49)【答案】20.9km【解析】分析:根据题意,构造直角三角和相似三角形的数学模型,利用相似三角形的判定与性质和解直角三角形即可.详解:如图,在Rt △BDF 中,∵∠DBF=60°,BD=4km ,∴BF=cos 60BD o=8km , ∵AB=20km ,∴AF=12km , ∵∠AEB=∠BDF ,∠AFE=∠BFD ,∴△AEF ∽△BDF ,∴AE BD AF BF=, ∴AE=6km , 在Rt △AEF 中,CE=AE•tan74°≈20.9km .故这艘轮船的航行路程CE 的长度是20.9km .点睛:本题考查相似三角形,掌握相似三角形的概念,会根据条件判断两个三角形相似.11.如图,△ABC 是边长为6cm 的等边三角形,点D 从B 点出发沿B→A 方向在线段BA 上以a cm/s 速度运动,与此同时,点E 从线段BC 的某个端点出发,以b cm/s 速度在线段BC 上运动,当D 到达A 点后,D 、E 运动停止,运动时间为t (秒).(1)如图1,若a=b=1,点E 从C 出发沿C→B 方向运动,连AE 、CD ,AE 、CD 交于F ,连BF .当0<t <6时:①求∠AFC 的度数;②求222AF FC BF AF FC+-⋅的值; (2)如图2,若a=1,b=2,点E 从B 点出发沿B→C 方向运动,E 点到达C 点后再沿C→B 方向运动.当t≥3时,连DE ,以DE 为边作等边△DEM ,使M 、B 在DE 两侧,求M 点所经历的路径长.【答案】(1)①120°;②1;(2)当3≤t≤6时,M 点所经历的路径长为3.【解析】【分析】(1)①如图1,由题可得BD =CE =t ,易证△BDC ≌△CEA ,则有∠BCD =∠CAE ,根据三角形外角的性质可求得∠EFC=60°,即可得到∠AFC=120°;②延长FD到G,使得FG=FA,连接GA、GB,过点B作BH⊥FG于H,如图2,易证△FAG 是等边三角形,结合△ABC是等边三角形可证到△AGB≌△AFC,则有GB=FC,∠AGB=∠AFC=120°,从而可得∠BGF=60°.设AF=x,FC=y,则有FG=AF=x,BG=CF=y.在Rt△BHG中运用直角三角形的性质可得BH=2y,GH=12y,从而有FH=x﹣12y.在Rt△BHF中根据勾股定理可得BF2=x2﹣xy+y2,代入所求代数式就可解决问题;(2)过点E作EN⊥AB于N,连接MC,如图3,由题可得∠BEN=30°,BD=t,CE=2t﹣6,从而有BE=12﹣2t,BN=6﹣t,进而可得DN=EC.由△DEM是等边三角形可得DE=EM,∠DEM=60°,从而可得∠NDE=∠MEC,进而可证到△DNE≌△ECM,则有∠DNE=∠ECM=90°,故M点运动的路径为过点C垂直于BC的一条线段.然后只需确定点M的始点和终点位置,就可解决问题.【详解】(1)如图1,由题可得BD=CE=t.∵△ABC是等边三角形,∴BC=AC,∠B=∠ECA=60°.在△BDC和△CEA中,BD CEB ECABC AC=⎧⎪∠=∠⎨⎪=⎩,∴△BDC≌△CEA,∴∠BCD=∠CAE,∴∠EFC=∠CAE+∠ACF=∠BCD+∠ACF=∠ACB=60°,∴∠AFC=120°;②延长FD到G,使得FG=FA,连接GA、GB,过点B作BH⊥FG于H,如图2.∵∠AFG=180°﹣120°=60°,FG=FA,∴△FAG是等边三角形,∴AG=AF=FG,∠AGF=∠GAF=60°.∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∴∠GAF=∠BAC,∴∠GAB=∠FAC.在△AGB和△AFC中,AG AFGAB FACAB AC=⎧⎪∠=∠⎨⎪=⎩,∴△AGB≌△AFC,∴GB=FC,∠AGB=∠AFC=120°,∴∠BGF=60°,∴∠GBH=30°.设AF=x,FC=y,则有FG=AF=x,BG=CF=y.在Rt△BHG中,GH=12y,BH=y,∴FH=FG﹣GH=x﹣12y.在Rt△BHF中,BF2=BH2+FH2=(2y)2+(x﹣12y)2=x2﹣xy+y2,∴222AF FC BFAF FC+-⋅=2222x y x xy yxy+--+()=1;(2)过点E作EN⊥AB于N,连接MC,如图3,由题可得:∠BEN=30°,BD=1×t=t,CE=2(t﹣3)=2t﹣6,∴BE=6﹣(2t﹣6)=12﹣2t,BN=12BE=6﹣t,∴DN=t﹣(6﹣t)=2t﹣6,∴DN=EC.∵△DEM是等边三角形,∴DE=EM,∠DEM=60°.∵∠NDE+∠NED=90°,∠NED+∠MEC=180°﹣30°﹣60°=90°,∴∠NDE=∠MEC.在△DNE和△ECM中,∵DN ECNDE CEMDE EM=⎧⎪∠=∠⎨⎪=⎩,∴△DNE≌△ECM,∴∠DNE=∠ECM=90°,∴M点运动的路径为过点C垂直于BC的一条线段.当t=3时,E在点B,D在AB的中点,此时CM=EN=CD=BC•sin B=6×3=33;当t=6时,E在点C,D在点A,此时点M在点C;∴当3≤t≤6时,M点所经历的路径长为33.【点睛】本题主要考查了等边三角形的判定与性质、全等三角形的判定与性质、锐角三角函数、特殊角的三角函数值、勾股定理、三角形外角的性质等知识,综合性比较强,有一定的难度;构造旋转型全等三角形(由共顶点的两个等边三角形组成)是解决第1(2)小题的关键,证到∠ECM=90°是解决第(2)小题的关键.12.如图所示,小华在湖边看到湖中有一棵树AB,AB与水面AC垂直.此时,小华的眼睛所在位置D到湖面的距离DC为4米.她测得树梢B点的仰角为30°,测得树梢B点在水中的倒影B′点的俯角45°.求树高AB(结果保留根号)【答案】AB=(3)m.【解析】【分析】设BE=x ,则BA=x+4,B′E=x+8,根据∠ADB′=45°,可知DE=B′E=x+8,再由tan30°=BE DE 即可得出x 的值,进而得到答案,【详解】如图:过点D 作DE ⊥AB 于点E ,设BE=x ,则BA=x+4,B′E=x+8,∵∠ADB′=45°,∴DE=B′E=x+8,∵∠BDE=30°,∴tan30°=383BE x DE x ==+ ,解得x=4+43 , ∴AB=BE+4=(8+43 )m .【点睛】本题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解答此题的关键。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题:直角三角形
知识要点:
1、直角三角形的性质:
(1)直角三角形的两个锐角_________
(2)直角三角形斜边上的中线等于斜边的_________; (3)直角三角形30°角所对的直角边是______的一半;
(4)直角三角形中,如果有一条直角边是斜边的一半,那么这条直角边所对的角是30°. 2、直角三角形的判定方法:
(1)有一个角是直角的三角形是直角三角形; (2)有两个角______的三角形是直角三角形;
(3)如果一条边上的中线等于这边的一半,那么这个三角形是直角三角形。
3、等腰直角三角形是特殊的直角三角形,它的两个底角都是_____,且两条直角边相等。
等腰直角三角形具有等腰三角形和直角三角形的所有性质,是很常见的特殊三角形。
典型例题
1、如图,已知△ABC 为直角三角形,∠C=90°,若沿图中虚线剪去∠C ,则则∠1+∠2等于__________.
2、设M 表示直角三角形,N 表示等
腰三角形,P 表
示等边三角形
,Q 表示等腰直角
三角形,则下列四个图中,能表示它们之间关系的是( )
A. B. C. D.
3、如图,Rt △ABC 中,AB ⊥AC ,AD ⊥BC ,BE 平分∠ABC ,交AD 于E ,EF ∥AC ,下列结论一定成立的是( )
A.AB=BF B .AE=ED C .AD=DC D .∠ABE=∠DFE
4、如图,在△ABC 中,∠C=90°,AC=3,∠B=30°,点P 是BC 边上的动点,则AP 的长不可能的是( )
A .3.5
B .4.2
C .5.8
D .7
5、如图,在Rt △ABC 中,∠ACB=90°,AB 的垂直平分线DE 交于BC 的延长线于F ,若∠F=30°,DE=1,则EF 的长是( ) A .3 B .2 C .
3 D .1
6、已知等腰△ABC 中,AD ⊥BC 于点D ,且AD=
2
1BC ,则△ABC 底角的度数为___________________.
7、如图所示,四边形ABCD 由一个∠ACB=30°的Rt △ABC 与等腰Rt △ACD 拼成,E 为斜边AC 的中点,则∠BDE=__________.
8、已知:在△ABC 中,∠BAC=90°,AD ⊥BC 于点D ,∠ABC 的平分线BE 交AD 于点F ,试说明
AE=AF.
10、如图,一根长2a 的木棍(AB ),斜靠在与地面(OM )垂直的墙(ON )上,设木棍的中点为P .若木棍A 端沿墙下滑,且B 端沿地面向右滑行.木棍滑动的过程中,点P 到点0的距离不变化,在木棍滑动的过程中,△AOB 的面积最大为______________.
11、如图,只剪两刀把一个直角三角形分割成三个直角三角形(至少给出三种剪法,用铅笔作出分割线,只要有一条分割线不同,就视作不同的剪法).
12、如图在Rt △ABC 中,∠ACB=90°,CD 、CE 分别是斜边AB 边上的高与中线,CF 是∠ACB 的平分线,则∠1与∠2的大小关系是( )
A .∠1>∠2 B. ∠1=∠2 C. ∠1<∠2 D.不能确定
13、如图,在Rt △ABC 中,∠ACB=90°,AB=2BC ,在直线 BC 或AC 上取一点P ,使得△PAB 为等
腰
三
角形
,
则
符
合
条件
的点P 共有( )
A .4个
B .5个
C .6个
D .7个
14、如图,在直角三角形ABC 中,CM 是斜边AB 上的中线,MN ⊥AB ,∠ACB 的平分线CN 交MN 于N ,求证:CM=MN .
15、如图,在斜边长为1的等腰直角三角形OAB 中,作内接正方形A 1B 1D 1C 1;在等腰直角三角形OA 1B 1中作内接正方形A 2B 2D 2C 2;在等腰直角三角形OA 2B 2中作内接正方形A 3B 3D 3C 3;…;依次做下去,则第n 个正方形A n B n D n C n 的边长是_______________.
16、下面的方格图案中的正方形顶点叫做格点,图1中以格点为顶点的等腰直角三角形共有4个,图2中以格点为顶点的等腰直角三角形共有________个,图3中以格点为顶点的等腰直角三角形共有_________个,图4中以格点为顶点的等腰直角三角形共有_________个.
17、如图,在△ABC 中,∠B=90°,∠BAC=78°,过C 作CF ∥AB,连接AF 于BC 相交于G ,若GF=2AC ,则∠BAG=
18、如图,在等腰Rt △ABC 中,∠C=90°,AC=8,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD=CE .连接DE 、DF 、EF .在此运动变化的过程中,下列结论:①△DFE 是等腰直角三角形;②DE 长度的最小值为4;③四边形CDFE 的面积保持不变;④△CDE 面积的最大值为8.其中正确的结论是( ) A .①②③ B .①③ C .①③④ D .②③④
19、电子跳蚤游戏盘是如图所示的△ABC ,AB=AC=BC=6.如果跳蚤开始时在BC 边的P 0处,BP 0=2.跳蚤第一步从P 0跳到AC 边的P 1(第1次落点)处,且CP 1=CP 0;第二步从P 1跳到AB 边的P 2(第2次落点)处,且AP 2=AP 1;第三步从P 2跳到BC 边的P 3(第3次落点)处,且BP 3=BP 2;…;跳蚤按照上述规则一直跳下去,第n 次落点为P n (n 为正整数),则点P 2009与点P 2010之间的距离为__________.
20、已知,如图△ABC 是边长4cm 的等边三角形. 动点P 从点A 出发,沿AB 向点B 运动,动点 Q 从点B 出发,沿BC 向点C 运动,如果动点P 、Q 都以1cm/s 的速度同时出发. 设运动时间为
t (s ),那么t 为何值时,△PBQ 是直角三角形?
21、如图,已知OA=a ,P 是射线ON 上一动点(即P 可以在射线ON 上运动),∠AON=60°,填空:
(1)当OP=_________时,△AOP 为等边三角形; (2)当OP=__________时,△AOP 为直角三角形; (3)当OP 满足___________时,△AOP 为钝角三角形.
22、已知:△ABC 和△ADE 都是等腰直角三角形,其中∠ABC=∠ADE=90°,点M 为EC 的中点. (1)如图,当点D ,E 分别在AC ,AB 上时,求证:△BMD 为等腰直角三角形; (2)如图,将图中的△ADE 绕点A 逆时针旋转45°,使点D 落在AB 上,此时问题(1)中的结论“△BMD 为等腰直角三角形”还成立吗?请对你的结论加以证明.
23、已知在Rt △ABC 中,∠C=90°,AC=BC=2.将一块等腰直角三角板的直角顶点放在斜边AB 的中点P 处,将三角板绕点P 旋转,三角板的两直角边分别交线段AC 、CB 于D 、E 两点.如图1、2是旋转三角板得到的图形中的两种情况.
(1)如图1,三角板绕点P 旋转,当PD ⊥AC 时,求证:PD=PE .当PD 与AC 不垂直时,如图2,PD=PE 还成立吗?并证明你结论.
(2)如图2,三角板绕点P 旋转,当△PEB 成为等腰三角形时,求CE 的长.
F
A
B
C。