2015年秋季新版苏科版八年级数学上学期3.3、勾股定理的简单应用学案4

合集下载

八年级数学上册《3.3 勾股定理的简单应用》学案 (新版)苏科版

八年级数学上册《3.3 勾股定理的简单应用》学案 (新版)苏科版

八年级数学上册《3.3 勾股定理的简单应用》学案(新版)苏科版1、能运用勾股定理及直角三角形的判定方法解决简单的实际问题、2、了解这一部分常作辅助线的思路是构造直角三角形,如作高、3、在运用勾股定理解决实际问题的过程中,感受数学的转化思想(如把解三角形问题转化为解直角三角形的问题),发展有条理的思考和表达的能力,体会数学的应用价值、教材导读阅读教材P86~P87内容,回答下列问题:1、运用勾股定理解决实际问题假期中,小明和同学到某海岛上去寻宝旅游、按照寻宝图,他们登陆后先向东走8千米,又向北走2千米,遇到障碍后向西走3千米,再折向北走到6千米处向东拐,仅走了1千米就找到宝藏,则登陆点A到宝藏埋藏点B 的距离是多少千米?如图,过点B作BC⊥AC,垂足为C,连接AB、可算出BC=_______,AC=______ ,由勾股定理,得AB =_______、2、勾股定理与方程思想的综合应用我们知道勾股定理揭示了_______三角形三边之间的数量关系,已知直角三角形中的任意两边长就可以根据勾股定理求出_______、从运用勾股定理解决实际问题的过程中,我们进一步认识到把直角三角形的三边关系“a2+b2=c2”看成一个方程,只要根据问题的条件把它转化为我们会解的方程,就把解实际问题转化为_______问题、例题精讲例1 如图,在等腰直角三角形ABC中,∠ABC=90,D为AC边上的中点,过点D作DE⊥DF,交AB于E,交BC于F、若AE=4,FC=3,求EF的长、提示:连接BD,由等腰直角三角形ABC及D是AC边上的中点,可推出BD⊥AC,BD=CD=AD,∠ABD=45,再由DE⊥DF,可推出∠FDC=∠EDB、由等腰直角三角形ABC,可得∠C=45,所以△EDB≌△FDC,从而得出BE=CF=3,那∠AB=7,从而BC=7,BF=4,再根据勾股定理求出EF的长、解答:如图,连接BD、点评:本题着重考查同学们对勾股定理及全等三角形判定方法的掌握,其关键是由已知先证得隐含的两个三角形全等,进而求出BE和BF的长,再由勾股定理求出EF的长、例2 如图,在△ABC中,AB=10,BC=9,AC=17,求BC边上的高、提示:作出BC边上的高,构造直角三角形,再运用勾股定理建立方程求解、解答:如图,过点A作AD⊥BC,交BC的延长线于D、设BD=x,则CD=9+x、在Rt△ACD和Rt△ABD中,由勾股定理,得AD2=AC2-CD2,AD2=AB2-BD2,∴AB2-BD2=AC2-CD2,即102-x2=172-(9+x)2、解得x=6、∴AD2=AB2-BD2=102-62=64、∴AD=8,即BC边上的高是8、点评:本题运用方程思想,结合勾股定理解题,关键是利用勾股定理构造出方程求解、例3 如图①是一个长方体盒子,长AB=4,宽BC=2,高CG=1、(1)一只蚂蚁从盒子下底面的点A沿盒子表面爬到点G,求它所行走的最短路线的长、 (2)这个长方体盒子内能容下的最长木棒长度的平方为多少?提示:(1)需展开成平面图形,分三种情况讨论蚂蚁行走的路线、(2)即求AG的长度的平方、解答:(1)蚂蚁从点A爬到点G可能经过长方体盒子的前面和右面,也可能经过长方体盒子的前面和上面,还可能经过长方体盒子的下面和右面,展开成平面图形如图②所示,由勾股定理计算出AG2的值分别为37、25、29,比较后得AG2最小为25,即最短路线的长是5、 (2)如图③,在Rt△ABC中,由勾股定理,得AC2=AB2+BC2、在Rt△ACG中,由勾股定理,得AG2=AC2+CG2=AB2+BC2+CG2=42+22+12=21、点评:把题中的长方体变成正方体或圆柱时,找直角三角形运用勾股定理的思想方法不变,在计算的过程中,可尝试将计算的过程和结果总结成公式、热身练习1、两只小鼹鼠在地下打洞,从同一地点开始,一只朝南挖,每分钟挖8 cm,另一只朝东挖,每分钟挖6 cm,10分钟后两只小鼹鼠相距 ( )A、50 cmB、100 cmC、140 cmD、80 cm2、如图,在一块平地上,张大爷家屋前9米远处有一棵大树、在一次强风中,这棵大树从离地面6米处折断倒下,量得倒下部分的长是10米、出门在外的张大爷担心自己的房子被倒下的大树砸到,那么大树倒下时会砸到张大爷家的房子吗?通过计算,得到的结论是 ( )A、一定不会B、可能会C、一定会D、不能确定3、一个直角三角形的斜边比一直角边长2,另一直角边长为6,则斜边长为 ( )A、6B、8C、10D、124、在△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为 ( )A、42B、32C、42或32D、37或335、如图,在长方形纸片ABCD中,AD=8,折叠纸片使边AB 与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB 的长为 ( )A、3B、4C、5D、66、如图,在高为5米,长为13米的楼梯上铺地毯,地毯的长度至少应为_______米、7、一个正方体箱子沿斜坡向下滑动,其截面如图所示,正方形DEFH的边长为2米,∠B=90,AB=8米,BC=6米,当正方形DEFH运动到什么位置,即当AE=_______米时,有DC2=AE2+BC2、8、如图,一架长5米的梯子AB斜靠在一竖直的墙上,这时梯子底端距墙脚3米,如果梯子的顶端沿墙下滑1米,梯子的底端在水平方向沿一条直线也将滑动1米吗?用所学知识,证明你的结论、参考答案1、B2、A3、C4、C5、D6、177、3、48、1米。

勾股定理的简单应用(最短路径四种常见模型)学案苏科版数学八年级上册

勾股定理的简单应用(最短路径四种常见模型)学案苏科版数学八年级上册

(最短路径四种常见模型)【学习目标】 1.掌握如何求长(正)方体中的最短路径2.掌握如何求圆柱中的最短路径3.掌握如何求阶梯的最短路径4. 掌握如何求U 型滑道的最短路径【典型例题】类型一、长(正)方体中的最短路径【例1】如图,一长方体木块长6AB =,宽5BC =,高1BB 2=, 一直蚂蚁从木块点A 处,沿木块表面爬行到点1C 位置最短路径的长度为( )举一反三:【变式1】如图,正方体的棱长为2cm ,点B 为一条棱的中点.蚂蚁在正方体表面爬行,从点A 爬到点B 的最短路程是( )A .√10cmB .4cmC .√17cmD .5cm【变式2】如图,在墙角处放着一个长方体木柜(木柜与墙面和地面均没有缝腺),一只蚂蚁从柜角A 处沿着木柜表面爬到柜角C 1处.若AB =3,BC =4,CC 1=5,则蚂蚁爬行的最短路程是( )A .√74B .3√10C .√89D .12【变式3】棱长分别为5cm ,3cm 两个正方体如图放置,点P 在E 1F 1上,且E 1P =13E 1F 1,一只蚂蚁如果要沿着长方体的表面从点A 爬到点P ,需要爬行的最短距离是 .【变式4】如图,两个一样的长方体礼品盒,其底面是边长为15cm 的正方形,高为20cm ;现有彩带若干(足够用),数学组的小明和小刚分别采用自己喜欢的方式用彩带装饰两个礼品盒(假设彩带完美贴合长方体礼品盒).(1)如图1,小明从底面点A开始均匀缠绕长方体侧面,刚好缠绕2周到达点B,求所用彩带的长度;(2)如图2,小刚沿着长方体的表面从点C缠绕到点D,点D与点E的距离是5cm,请问小刚所需要的彩带最短是多少?(注:以上两问均要求画出平面展开示意图,再解答)类型二、圆柱中的最短距离【例2】如图,已知圆柱底面的周长为6,圆柱高为3,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()A.4√3B.2√3C.3√5D.6√2举一反三:【变式1】如图,小冰想用一条彩带缠绕圆柱4圈,正好从A点绕到正上方的B点,已知知圆柱底面周长是3m,高为16m,则所需彩带最短是()m.A.8 B.5 C.20 D.10【变式2】如图,圆柱形玻璃杯高为7cm,底面周长为20cm在杯内壁离杯底2cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为()(杯壁厚度不计)【变式3】如图,已知线段BC是圆柱底面的直径,圆柱底面的周长为10,圆柱的高12AB=,在圆柱的侧面上,过点A、C两点嵌有一圈长度最短的金属丝.(1)见将圆柱侧面沿的开,所得的圆针侧面展开图是___________.(2)求该金属丝的长.【变式4】如图1,一只蚂蚁要从圆柱的下底面的点A爬到上底面的点B处,求它爬行的最短距离. 已知圆柱底面半径为R,高度为h.小明同学在研究这个问题时,提出了两种可供选择的方案,方案1:沿A→C→B爬行;方案2:沿圆柱侧面展开图的线段AB爬行,如图2.(π取3)(1)当1h=时,哪种方式的爬行距离更近?R=,4(2)当1h=时,哪种方式的爬行距离更近?R=,1(3)当R与h满足什么条件时,两种方式的爬行距离同样远?类型三、阶梯的最短距离【例3】某宾馆在重新装修后,准备在大厅的主楼梯上铺上红色地毯.已知楼梯总高度5米,楼梯长13米,主楼道宽2米;这种红色地毯的售价为每平方米30元,其侧面如图所示,则购买地毯至少需要元.举一反三:【变式1】如图是一个三级台阶,它的每一级的长、宽、高分别是4米、0.7米、0.3米,A、B是这个台阶上两个相对的顶点,A点处有一只蚂蚁,它想到B点去吃可口的食物,则蚂蚁沿台阶面爬行到B点最短路程是米.【变式2】如图是一个三级台阶,它的每一级的长、宽和高分别为9、3和1,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物.则这只蚂蚁沿着台阶面爬行的最短路程是()A.18B.15C.12D.8【变式3】如图是一个三级台阶,每级台阶都是长、宽和高分别等于90cm,25cm和15cm的长方体,A和B是这个台阶的两个相对的端点.在A点处有一只蚂蚁,想到B点去吃可口的食物,请你算一算,这只蚂蚁从A点出发,沿着台阶面爬到B点,最短路程是多少?【变式4】如图有一个四级台阶,它的每一级的长、宽分别为18分米、4分米.(1)如果给台阶表面8个矩形区域铺上定制红毯,需要定制红毯的面积为432平方分米,那么每一级台阶的高为多少分米?(2)A和C是这个台阶上两个相对的端点,台阶角落点A处有一只蚂蚁,想到台阶顶端点C 处去吃美味的食物,则蚂蚁沿着台阶面从点A爬行到点C的最短路程为多少分米?类型四、U型池的最短距离【例4】如图,这是一个供滑板爱好者使用的U形池,该U形池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是弧长为12m的半圆,其边缘AB=CD=20m(边缘的宽度忽略不计),点E在CD上,CE=4m.一滑板爱好者从A点滑到E点,则他滑行的最短距离为()A.28m B.24m C.20m D.18m举一反三:【变式1】如图,是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行的部分的截面是半径为10 m的半圆,其边缘AB=CD=30 m. 小明要在AB上选取一点E,能够使他从点D滑到点E再到点C的滑行距离最短,则他滑行的最短距离为__________ m.(π取3)【变式2】如图,这是一个供滑板爱好者使用的U型池的示意图,该U型池可以看成是长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是直径为32m的半圆,其边缘AB=CD=15m,点E在CD上,CE=3m,一滑板爱好者从A点滑到E点,则他滑行的最短距离约为_____m.(边缘部分的厚度忽略不计)。

苏科版-数学-八年级上册-3.3勾股定理的简单应用教案

苏科版-数学-八年级上册-3.3勾股定理的简单应用教案

一、教学目标:知识与技能目标:1.运用勾股定理进行简单的计算;2.运用勾股定理解释生活中的实际问题.过程与方法目标:通过从实际问题中抽象出直角三角形这一几何模型,初步掌握转化和数形结合的思想方法.情感与态度目标:在运用勾股定理解决实际问题的过程中,感受数学的“转化”思想(把解斜三角形问题转化为解直角三角形问题),进一步发展有条理思考和有条理表达的能力,体会数学的应用价值。

二、重点难点:重点:能运用勾股定理及直角三角形的判定条件解决实际问题。

难点:分析思路,渗透数学思想三、教学方法:自主探索、合作交流四、教学过程:一)温故知新勾股定理: 如果直角三角形的两直角边分别为a,b, 斜边为c,则有______________直接应用:如图:在直角三角形ABC中∠C=90°,∠A的对边为a, ∠B的对边为b, ∠C的对边为c,(1)已知a=5和b=12 , 求c.(2)已知a=4和c=5, 求b.(3)已知b=3和c=4, 求a.二)例题探索1、南京玄武湖隧道开通后,从B处可直接到C处,这将比绕道BA(约1.36 km)和AC(约2.95 km)减少约多少行程(精确到0.1 km)?提问:为什么走BC路程短?思路点拨:这是一道比较题,首先应确定Rt△ABC为计算BC长的三角形,应用勾股定理求出2222-=- 2.62(km),然后将BA+AC算出约AC BD2.95 1.364.31km,减去BC约1.7km,问题解决.探索2、例1、一架长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m.此时梯子的底端距墙壁多少m?如果梯子的顶端下滑0.5m,你认为梯子的底端会发生什么变化?与同学交流.探索活动问题一在上面的情境中,如果梯子的顶端下滑1m,那么梯子的底端滑动多少米?问题二从上面所获得的信息中,你对梯子下滑的变化过程有进一步的思考吗?与同学交流.教学中学生可能会有多种思考.比如,①这个变化过程中,梯子底端滑动的距离总比顶端下滑的距离大;②因为梯子顶端下滑到地面时,顶端下滑了8m,而底端只滑动4m,所以这个变化过程中,梯子底端滑动的距离不一定比顶端下滑的距离大;③由勾股数可知,当梯子顶端下滑到离地面的垂直距离为6m,即顶端下滑2m时,底端到墙的垂直距离是8m,即底端电滑动2m等。

新苏科版初中数学八年级上册3.3勾股定理的简单应用导学案

新苏科版初中数学八年级上册3.3勾股定理的简单应用导学案

勾股定理的简单应用学习目标:1.能运用勾股定理及直角三角形的判定条件解决实际问题2 在运用勾股定理解决实际问题的过程中,感受数学的“转化”思想,进一步发展有条理思考和有条理表达的能力学习重点:运用勾股定理及方程解决问题学习难点:运用勾股定理及方程解决问题学习过程:一、预习·质疑1若三角形的三边长a 、b 、c 满足()ab c b a 222+=+,则这个三角形是( ) A 锐角三角形 B 钝角三角形 直角三角形 D 形状不能确定2分别以下列四组为一个三角形的三边的长①6、8、10;②5、12、13;③8、15、17;④7、8、9,其中能构成直角三角形的有 ( )A4组 B3组 2组 D1组3小明和小强的跑步速度分别是6/s 和8/s ,他们同时从同一地点分别向东、南练习跑步,那么从出发开始需__________s 可以相距1604要登上8高的建筑物,为了安全需要,需使梯子底端离建筑物6.•问至少需要 米的梯子? 5在△AB 中∠A 、∠B 、∠的对边分别是a 、b 、c ,下列条件中,能判断△AB 为直角三角形的是( )A c b a =+B 5:4:3::=c b a c b a 2== D ∠A =∠B =∠二、展示·探究例1 如下图今年的台风灾害中一棵大树在离 变式:若树高24米,AB =8米,求A的长地面3米处折断树的顶端落在离树杆底部4米处你能知道这棵树折断之前的高度吗?例2 如图,长为10的梯子AB 斜靠在墙上,梯子的顶端距地面的垂直距离为8如果梯子的顶端下滑1那么它的底端是否也滑动1?例3 有一个边长为10尺的正方形池塘,一颗芦苇AB生长在它的中央,高出水面部分B为1尺,如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B',问水深和芦苇长各是多少?例4如图两电线杆AB、D都垂直于地面,现要在A、D间拉电线,则所拉电线最短为多少米?其中AB=8米,D=2米,两电线杆间的距离B=8米三、检测·反馈《同步练习》第53页第1题至第3题四、课后作业《同步练习》第53页至54页补充:1如图,OA⊥OB,OA=45㎝,OB=15㎝,一机器人在点B处发现有一个小球自A点出发沿着AO方向匀速滚向点O,机器人立即从B处出发以相同的速度匀速直线前进去拦截小球,在点处截住了小球,求机器人行走的路程B.2如图,一圆柱高8c,底面半径2c,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程( 取3)是()A20c B10c 14c D无法确定3如图,一透明的直圆柱状的玻璃杯,由内部测得其底部半径为3㎝,高为8㎝,今有一支12㎝的吸管任意斜放于杯中,若不考虑吸管的粗细,则吸管露出杯口外的长度至少为.。

苏科版-数学-八年级上册八上3.3 勾股定理的简单应用 参考学案

苏科版-数学-八年级上册八上3.3 勾股定理的简单应用 参考学案

数学教学设计教材:义务教育教科书·数学(八年级上册)3.3勾股定理的简单应用标1.能运用勾股定理及直角三角形的判定条件解决实际问题.2.构造直角三角形及正确解出此类方程.3.运用勾股定理解释生活中的实际问题.点能运用勾股定理及直角三角形的判定条件解决实际问题.点在运用勾股定理解决实际问题的过程中,感受数学的“转化”思想(把解斜三角形问题转化为解直角三角形一步发展有条理思考和有条理表达的能力,体会数学的应用价值.要善于运用直角三角形三边关系,关键情形准确构造出直角三角形.教学过程(教师)学生活动设计思,前一阶段我们学习了勾股定理,数学研究中具有极其重要的地位,罗庚曾经说过:把勾股定理送到外星人进行数学交流!咱们今天就来股定理在数学中的应用.把勾股定理送到外星球,与外星人流!——华罗庚进入状态,兴致盎然.给学生展现前景,激发学生学望.根芦苇的长度各是多少?(图3)面几幅图像,同学之间议一议:它的逆定理在应用上有什么区积极思考,回答问题.勾股定理主要应用于求线段的长度、图形的周长、面积;勾股定理的逆定理用于判断三角形的形状.由学生熟悉给学生一个展示增强学生学习数图4,等边三角形ABC的边长是的面积.5,在△ABC中,AB=AC=17,△ABC的面积6,在△ABC中,AD⊥BC,AB 12,AC=13,求△ABC的周长和互相讨论,踊跃回答:参考答案:解:作AD⊥BC,∵△ABC是等边三角形,∴BD=12BC=12×6=3,在Rt△ABC中,AD=AB2-BD2=62-32=27 ≈5.196,S△ABC=12BC·AD≈12×6×5.196=15.58≈15.6.通过学生相生主动参与到学培养学生合作交散思维能力,同时知识面.ACBAC BD(图4):如图7,在△ABC中,AB=25,=24,问△ABC是什么三角形?如图8,在△ABC中,AB=26,边上的中线AD=24,求AC.小组讨论,代表回答:1.由勾股定理逆定理可以发现△ABC是直角三角形.2.解:∵AD是BC边上的中线,∴BD=CD=12BC=12×20=10.∵AD2+BD2=576+100=676,AB 2=262=676,∴AD2+BD2=AB2,∴∠ADB=90°,AD垂直平分BC.∴AC=AB=26.通过学生相学生的观察分析生善于思考的良AC D(图5)AC BD(图6)CB(图7)9,在△ABC 中, AB =15,AD,AC =13,求△ABC 的周长和面定理的应用中我们进一步体会到直等腰三角形有着密切的联系,把研形转化为研究直角三角形,这是研种策略.讨论后共同小结. 师生互动,锻头表达能力,培养表自己看法的能7练习1、2.DAC (图8)DAC(图9)。

八年级数学上册勾股定理的简单应用学案苏科

八年级数学上册勾股定理的简单应用学案苏科

课题:3.3 勾股定理的简单应用学习目标: 姓名:1.能运用勾股定理及直角三角形的判定条件解决实际问题;2.构造直角三角形及正确解出此类方程;3.运用勾股定理解释生活中的实际问题.学习过程:一.【情景创设】同学们,前一阶段我们学习了勾股定理,勾股定理在数学研究中具有极其重要的地位,数学大师华罗庚曾经说过:把勾股定理送到外星球,与外星人进行数学交流!咱们今天就来继续体验勾股定理在数学中的应用.二.【问题探究】问题1:从远处看,斜拉桥的索塔、桥面与拉索组成许多直角三角形.已知桥面以上索塔AB的高,怎样计算AC、AD、AE、AF、AG的长?(图1)问题2:今有竹高一丈,末折抵地,去根三尺,问折者高几何?意思是:有一根竹子原高1丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?问题3: “引葭赴岸”是《九章算术》中另一道题“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何?”题意是:有一个边长为10尺的正方形池塘,在水池正中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇沿与水池边垂直的方向拉向岸边,它的顶端恰好到达岸边.请问这个水池的深度和这根芦苇的长度各是多少?问题4: 如图,在△ABC中,AB=26,BC=20,BC边上的中线AD=24,求AC.A三.【变式拓展】问题5:如图6,在△ABC 中,AD ⊥BC ,AB =15,AD =12,AC =13,求△ABC 的周长和面积.问题6:如图,在△ABC 中, AB =15,AD =12,BD =9,AC =13,求△ABC 的周长和面积.四.【总结提升】从勾股定理的应用中我们进一步体会到直角三角形与等腰三角形有着密切的联系,把研究等腰三角形转化为研究直角三角形,这是研究问题的一种策略.五. 【课堂反馈】D A CB ACB D六. 【课后作业】(选做题)八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.方程1325y x x y =-⎧⎨+=⎩的公共解是( ) A .32x y =⎧⎨=⎩ B .34x y =-⎧⎨=⎩ C .32x y =⎧⎨=-⎩ D .32x y =-⎧⎨=-⎩ 【答案】C【分析】此题要求公共解,实质上是解二元一次方程组1325y x x y =-⎧⎨+=⎩. 【详解】把方程y=1﹣x 代入1x+2y=5,得1x+2(1﹣x )=5,解得:x=1.把x=1代入方程y=1﹣x ,得y=﹣2.故选C .【点睛】这类题目的解题关键是掌握方程组解法,此题运用了代入消元法.2.分式26c a b 与2c 3ab 的最简公分母是( ) A .abB .3abC .223a bD .263a b 【答案】C【分析】确定最简公分母的方法是:①取各分母系数的最小公倍数;②凡单独出现的字母连同它的指数作为最简公分母的一个因式;③同底数幂取次数最高的,得到的因式的积就是最简公分母.【详解】∵分式26c a b 与23c ab的分母分别是a 2b 、3ab 2, ∴最简公分母是3a 2b 2.故选C.【点睛】本题考查了最简公分母的定义,熟练掌握最简公分母的定义是解答本题的关键.通常取各分母系数的最小公倍数与所有字母因式的最高次幂的积作为公分母,这样的公分母叫做最简公分母.3.下列各式:2a b -,3x x +,5y π+,a b a b +-,1m (x+y )中,是分式的共有( ) A .1个B .2个C .3个D .4个 【答案】C【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】3x x +,a b a b +-,()1x y m +分母中含有字母,因此是分式; 2a b -,5y π+的分母中均不含有字母,因此它们是整式,而不是分式. 故分式有3个.故选C .【点睛】 本题主要考查了分式的定义,注意判断一个式子是否是分式的条件是:分母中是否含有未知数,如果不含有字母则不是分式.4.关于函数y=﹣2x+1,下列结论正确的是( )A .图象必经过(﹣2,1)B .y 随x 的增大而增大C .图象经过第一、二、三象限D .当x >12时,y <0 【答案】D【解析】根据一次函数的性质,依次分析选项可得答案.解:根据一次函数的性质,依次分析可得,A 、x=-2时,y=-2×-2+1=5,故图象必经过(-2,5),故错误,B 、k <0,则y 随x 的增大而减小,故错误,C 、k=-2<0,b=1>0,则图象经过第一、二、四象限,故错误,D 、当x >12时,y <0,正确; 故选D .点评:本题考查一次函数的性质,注意一次函数解析式的系数与图象的联系5.某校要明买一批羽毛球拍和羽毛球,现有经费850元,已知羽毛球拍150元/套,羽毛球30元/盒,若该校购买了4套羽毛球拍,x 盒羽毛球,则可列不等式( )A .150304850x +⨯≤B .150304850x +⨯<C .150430850x ⨯+≤D .150430180x ⨯+≤【答案】C【分析】根据题意,列出关于x 的不等式,即可.【详解】根据题意:可得:150430850x ⨯+≤,故选C.【点睛】本题主要考查一元一次不等式的实际应用,根据题意,找到不等量关系,列出不等式,是解题的关键.6的说法中,错误的是( )A 是无理数B .34<<C .10D 是10的算术平方根【答案】C【解析】试题解析:A 是无理数,说法正确;B 、3<4,说法正确;C 、10D 是10的算术平方根,说法正确;故选C .7.某中学八(1)班45名同学参加市“精准扶贫”捐款助学活动,共捐款400元,捐款情况记录表如下:表格中捐款5元和8元的人数不小心被墨水污染看不清楚.若设捐款5元的有x 名同学,捐款8元的有y 名同学,根据题意可得方程组( )A .125884x y x y +=⎧⎨+=⎩B .1258400x y x y +=⎧⎨+=⎩C .455884x y x y +=⎧⎨+=⎩D .4558400x y x y +=⎧⎨+=⎩ 【答案】A【分析】设捐款5元的有x 名同学,捐款8元的有y 名同学,利用八(1)班学生人数为45得出一个方程,然后利用共捐款400元得出另外一个方程,再组成方程组即可.【详解】解:设捐款5元的有x 名同学,捐款8元的有y 名同学,根据题意可得:453323*********x y x y +=-⎧⎨⨯+++⨯=⎩,即125884x y x y +=⎧⎨+=⎩. 故选:A .【点睛】本题考查二元一次方程组的应用,关键是利用总人数和总钱数作为等量关系列方程组.8.下列计算中正确的是( )A .235a b a +=B .1025a a a ÷=C .248a a a ⋅=D .()326a a =【答案】D【分析】运用幂的运算法则即可进行判断.【详解】A 中2a 和3b 不是同底数幂,也不是同类项,不能合并,A 错;同底数幂相除,底数不变,指数相减,B 错;同底数幂相乘,底数不变,指数相加,C 错;幂的乘方,底数不变,指数相乘,D 对故本题正确选项为D .【点睛】本题考查了幂的运算法则,掌握相关知识点是解决本类题的关键.9.把多项式a 2﹣4a 分解因式,结果正确的是( )A .a (a ﹣4)B .(a+2)(a ﹣2)C .(a ﹣2)2D .a (a+2(a ﹣2)【答案】A【分析】原式利用提取公因式法分解因式即可.【详解】解:原式=a (a ﹣4),故选:A .【点睛】本题考查因式分解-提公因式法,熟练掌握提取公因式的方法是解题的关键.10.将下列长度的三根木棒首尾顺次连接,能组成三角形的是( )A .1,2,4B .8,6,4C .12,6,5D .3,3,6 【答案】B【分析】根据三角形三边关系定理:三角形两边之和大于第三边进行分析即可.【详解】A 、1+2=3<4,不能组成三角形,故此选项错误;B 、6+4>8,能组成三角形,故此选项正确;C 、6+5<12,不能组成三角形,故此选项错误;D 、3+3=6,不能组成三角形,故此选项错误;故选B .【点睛】此题主要考查了三角形的三边关系定理,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.二、填空题11.如图,23,165∠=∠∠=︒,要使//a b ,则4∠的度数是_____.【答案】115°【分析】延长AE 交直线b 于B ,依据∠2=∠3,可得AE ∥CD ,当a ∥b 时,可得∠1=∠5=65°,依据平行线的性质,即可得到∠4的度数.【详解】解:如图,延长AE 交直线b 于B ,∵∠2=∠3,∴AE ∥CD ,当a ∥b 时,∠1=∠5=65°,∴∠4=180°-∠5=180°-65°=115°,故答案为:115°.【点睛】本题主要考查了平行线的性质与判定,解题时注意:应用平行线的判定和性质定理时,一定要弄清题设和结论,切莫混淆.12.如图,ABC ∆中,90ACB ︒∠=,30B,4AC cm =,P 为BC 边的垂直平分线DE 上一个动点,则ACP ∆的周长最小值为________cm .【答案】1【分析】因为BC 的垂直平分线为DE ,所以点C 和点B 关于直线DE 对称,所以当点P 和点E 重合时,△ACP 的周长最小,再结合题目中的已知条件求出AB 的长即可.∴点C 和点B 关于直线DE 对称,∴当点P 和点E 重合时,△ACP 的周长最小,∵∠ACB =90°,∠B =30°,AC =4cm ,∴AB =2AC =8cm ,∵AP +CP =AP +BP =AB =8cm ,∴△ACP 的周长最小值=AC +AB =1cm ,故答案为:1.【点睛】本题考查了轴对称−最短路线问题、垂直平分线的性质以及直角三角形的性质,正确确定P 点的位置是解题的关键.13.已知C 、D 两点在线段AB 的中垂线上,且ACB 50∠=,ADB 90∠=,则CAD ∠=______.【答案】110或20 【解析】根据轴对称性可得12ACD ACB ∠∠=,12ADC ADB ∠∠=,然后利用三角形的内角和定理列式计算即可得解.【详解】解:C 、D 两点在线段AB 的中垂线上,11ACD ACB 502522∠∠∴==⨯=,11ADC ADB 904522∠∠==⨯=, 在ACD 中,如图1,CAD 180ACD ADC 1802545110∠∠∠=--=--=,或如图2,CAD ADC ACD 452520∠∠∠=-=-=.故答案为:110或20.【点睛】考查了线段垂直平分线上的点到两端点的距离相等的性质,熟记线段的轴对称性是解题的关键. 14.甲、乙两车从A 地出发,匀速驶往B 地.乙车出发1h 后,甲车才沿相同的路线开始行驶.甲车先到达B 地并停留30分钟后,又以原速按原路线返回,直至与乙车相遇.图中的折线段表示从开始到相遇止,两车之间的距离()km y 与甲车行驶的时间()h x 的函数关系的图象,则其中正确的序号是___________.①甲车的速度是100km/h ;②A ,B 两地的距离是360km ;③乙车出发4.5h 时甲车到达B 地;④甲车出发54h 16最终与乙车相遇【答案】①③④【分析】根据题意,两车距离为函数,由图象可知两车起始距离为60,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.【详解】由点(0,60)可知:乙1小时行驶了60km ,因此乙的速度是60km/小时,由点(1.5,0)可知: 1.5小时后甲追上乙,甲的速度是60+60 1.51.5⨯=100km/小时,故①正确; 由点(b ,80)可知:甲到B 地,此时甲、乙相距80km ,()()10060 1.580b --=,解得:b =3.5,因此A 、B 两地的距离是100×3.5=350km ,故②错误;甲车出发3.5小时到达B 地,即乙车出发4.5小时,甲车到达B 地,故③正确;c =b +3060=4,a =80-60×3060=50,()()100+6050d c -=,解得:d =5416,故:甲车出发54h 16最终与乙车相遇,故④正确;∴正确的有①③④,故填:①③④.【点睛】本题考查一次函数的应用,主要是以函数图象为背景,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态.15.如果正多边形的一个外角为45°,那么它的边数是_________.【答案】8【详解】正多边形的一个外角为45°,那么它的边数是3608. 45故答案为8.16.如图,正方形ABCD,以CD为边向正方形内作等边△DEC,则∠EAB=______________º.【答案】15.【解析】根据正方形ABCD,得到AD=CD,∠ADC=90°,根据等边△CDE,得到CD=DE,∠CDE=60°,推出AD=DE,得出∠DAE=∠AED,根据三角形的内角和定理求出∠DAE,从而可得∠EAB的度数.【详解】∵正方形ABCD,∴AD=CD,∠ADC=∠DAB=90°,∵等边△CDE,∴CD=DE,∠CDE=60°,∴∠ADE=90°-60°=30°,∴AD=DE,∴∠DAE=∠AED=12(180°-∠ADE)=75°;∴∠EAB=90°-75°=15°.故答案为:15°【点睛】本题主要考查对正方形的性质,等边三角形的性质,等腰三角形的性质,三角形的内角和定理等知识点的理解和掌握,能综合运用这些性质进行推理是解此题的关键.17.若不等式组841,.x x x m +>-⎧⎨<⎩的解集是3x <,则m 的取值范围是________. 【答案】3m ≥ 【分析】先解第一个不等式得到3x <,由于不等式组的解集为3x <,根据同小取小得到3m ≥.【详解】解:841x x x m +>-⎧⎨<⎩①②解①得3x <,∵不等式组的解集为3x <,∴3m ≥.故答案为:3m ≥【点睛】本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.三、解答题18.某厂的甲、乙两个小组共同生产某种产品,若甲组先生产1天,然后两组又各自生产5天,则两组产品一样多;若甲组先生产了300个产品,然后两组又各自生产了4天,则乙组比甲组多生产100个产品;甲、乙两组每天各生产多少个产品?(请用方程组解)【答案】甲:500,乙:600【解析】试题分析: 设甲、乙两组每天个各生产x y 、个产品,则根据若甲组先生产1天,然后两组又一起生产了5天,则两组产量一样多.若甲组先生产了300个产品,然后两组同时生产4天,则乙组比甲组多生产100个产品两个关系列方程组求解.试题解析:设甲、乙两组每天个各生产x 、y 个产品,根据题意得:()155********x y x y ,⎧+=⎨++=⎩ 解得:500600.x y =⎧⎨=⎩ 答:甲、乙两组每天个各生产500、600个产品.19.某校兴趣小组在创客嘉年华活动中组织了计算机编程比赛,八年级每班派25名学生参加,成绩分别为A 、B 、C 、D 四个等级.其中相应等级的得分依次记为10分、9分、1分、7分.将八年级的一班和二班的成绩整理并绘制成如下统计图表:班级平均数(分) 中位数(分) 众数(分) 方差 一班 1.76 9 9 21 1.06S ≈二班 1.76 1 1022 1.38S ≈ 请根据本学期所学过的《数据的分析》相关知识分析上述数据,帮助计算机编程老师选择一个班级参加校级比赛,并阐述你选择的理由.【答案】答案不唯一.【分析】答案不唯一,学生只要是通过分析表格中所给数据而得出的结论,同时言之有理即可.【详解】答案不唯一,学生只要是通过分析表格中所给数据而得出的结论,同时言之有理即可给分,否则不给分.如:选择一班参加校级比赛.理由:由表格中数据可知,两个班级的平均分一样,而从中位数、众数、方差上看,一班在中位数和方差上面均优于二班,因此可以选择一班参加校级比赛.再如:选择二班参加校级比赛.理由:由表格中数据可知,两个班级的平均分一样,二班的众数高于一班,因此可以选择二班参加校级比赛.【点睛】此题主要考查结合统计图进行数据分析,熟练理解相关概念是解题关键.20.在如图所示的方格纸中,每个方格都是边长为1个单位的小正方形,ABC ∆的三个顶点都在格点上(每个小正方形的顶点叫做格点).(1)画出ABC ∆关于直线l 对称的图形111A B C ∆.(2)画出ABC ∆关于点O 中心对称的图形222A B C ∆,并标出M 的对称点M '.(3)求出线段MM '的长度,写出过程.【答案】(1)详见解析;(2)详见解析;(3)210【分析】(1)根据网格结构找出点A 、B 、C 关于直线l 的对称点A 1、B 1、C 1的位置,然后顺次连接即可; (2)根据网格结构找出点A 、B 、C 关于点O 中心对称的点A 2、B 2、C 2的位置,然后顺次连接即可; (3)利用勾股定理列式计算即可得解.【详解】(1)如图:(2)如图 :(3)过点M 竖直向下作射线,过点M'水平向左作射线,两条线相交于点N ,可知∠MNM'是直角,在RtΔMNM'中,由勾股定理得MN 2+NM'2=MM'2,因为MN=2,M'N=5,所以222640210+==【点睛】本题考查了利用轴对称变换作图,利用旋转变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.21. (1)先化简,再求值:222111x x xx x ++---其中12x =.(2)解方程:261093x x +=--.【答案】(1)-2;(2)无解【分析】(1)先化简,再将x 的值代入进行计算即可;(2)先化成整式方程,再解整式方程,再验根即可.【详解】(1)222111x x xx x ++--- =221(1)(1)(1)(1)(1)x x x x x x x x +++-+-+- =2221(1)(1)x x x xx x ++--+- =(1)(1)1x x x ++- =1(1)x - 把12x =代入原式=-2;(2)261093x x +=--6-(x+3)=0-x+3=0x=3,当x=3时,3-x=0,所以是原方程无解.【点睛】考查了分式的化简求值和解分式方程,解题关键是熟记正确化简分式和解方式方程的步骤.22.已知a ,b ,c 为△ABC 的三边长,且2261245a b a b +=+-.(1)求a ,b 值;(2)若△ABC 是等腰三角形,求△ABC 的周长.【答案】(1)3,6a b ==;(2)1.【分析】已知等式配方后,利用非负数的性质求出a 与b 的值,即可确定出三角形周长.【详解】解:(1)∵2261245a b a b +=+-,∴226912360a a b b -++-+=,∴()()22360a b -+-=, ∴30a -=,60b -=,∴3a =,6b =,(2)∵ABC ∆是等腰三角形,∴底边长为3或6,由三角形三边关系可知,底边长为3,∴ABC ∆的周长为66315++=,即ABC ∆的周长为1.【点睛】此题考查了因式分解的应用,三角形三边关系的应用,熟练掌握完全平方公式是解本题的关键. 23.如图(单位:m),某市有一块长为(3a +b)m 、宽为(2a +b)m 的长方形地,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a =6,b =1时,绿化的面积.【答案】(5a 2+3ab )m 2,198m 2【分析】首先列出阴影部分的面积的表达式,再化简求值.【详解】解:绿化的面积为(3a +b)(2a +b)-(a +b)2=(5a 2+3ab )m 2当a =6,b =1时,绿化的面积为5a 2+3ab =5×62+3×6×1=198(m 2)【点睛】本题运用列代数式求值的知识点,关键是化简时要算准确.24.如图,在ABC ∆中,AB AC =,在AB 上取一点D ,在AC 延长线上取一点E ,且BD EC =.证明:PD PE =.(1)根据图1及证法一,填写相应的理由;证法一:如图261-中,作DF BC ⊥于F ,EG BC ⊥交BC 的延长线于G .AB AC =12B ∴∠=∠=∠( )390G ∠=∠=︒,BD EC =DFB EGC ∴∆∆≌( )DF EG ∴=( )690G ∠=∠=︒,45∠=∠,DPF EPG ∴∆∆≌( )PD PE ∴=( )(2)利用图2探究证法二,并写出证明.【答案】(1)等边对等角,对项角相等,等量代换(写对其中两个理由即可);AAS ;全等三角形的对应边相等 ; AAS ;全等三角形的对应边相等.(2)见解析.【分析】(1)根据证明过程填写相应理由即可;(2)过点D 作DF ∥AC 交BC 于P ,就可以得出∠DFB=∠ACB ,()DPF EPC AAS ≌,就可以得出DF=EC ,由BD=DF 就可以得出结论..【详解】(1)证法一:如图1中,作DF BC ⊥于F ,EG BC ⊥交BC 的延长线于G ,AB AC =,12B ∴∠=∠=∠(等边对等角,对项角相等,等量代换), 390G ∠=∠=︒,BD EC =,DFB EGC ∴∆∆≌( AAS ), DF EG ∴=(全等三角形的对应边相等), 690G ∠=∠=︒,45∠=∠,DPF EPG ∴∆∆≌(AAS ), PD PE ∴=(全等三角形的对应边相等),故答案为:等边对等角,对项角相等,等量代换(写对其中两个理由即可);AAS ;全等三角形的对应边相等 ; AAS ;全等三角形的对应边相等.(2)证法二:如图2中,作DF AC 交BC 于FAB AC =,1B ∴∠=∠,DF AC ,21∴∠=∠,3E ∠=∠,2B ∴∠=∠,BD DF ∴=,EC BD =,DF EC ∴=,在 DPF 和EPC 中,453E DF EC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()DPF EPC AAS ∴≌ ,PD PE ∴=【点睛】本题考查了等腰三角形的性质的运用,平行线的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.25.解方程组24326x y x y -=⎧⎨+=⎩ ①②【答案】2=0x y =⎧⎨⎩【解析】把①×2+②,消去y ,求出x 的值,然后把求得的x 的值代入①求出y 的值即可.【详解】解:24326x yx y-=⎧⎨+=⎩①②,①×2+②得:7x=14,即x=2,把x=2代入①得:y=0,则方程组的解为20 xy=⎧⎨=⎩.【点睛】本题运用了加减消元法求解二元一次方程组,需要注意的是运用这种方法需满足其中一个未知数的系数相同或互为相反数,若不具备这种特征,则根据等式的性质将其中一个方程变形或将两个方程都变形,使其具备这种形式.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,分别给出了变量y与x之间的对应关系,y不是x的函数的是( )A.B.C.D.【答案】B【分析】根据函数的定义判断即可.【详解】A、C、D中y均是x的函数,不符合题意;B中每一个自变量x对应两个y值,故y不是x的函数,符合题意.故选B.【点睛】本题考查的是函数的定义,解答本题的关键是熟练掌握函数的定义:对于两个变量x、y,x每取一个值,y都有唯一的值与之对应;注意要强调“唯一”.2.在平面直角坐标系中,点M在第四象限,到x轴,y轴的距离分别为6,4,则点M的坐标为()A.(4,﹣6)B.(﹣4,6)C.(﹣6,4)D.(﹣6,﹣4)【答案】A【分析】已知点M在第四象限内,那么横坐标大于0,纵坐标小于0,进而根据到坐标轴的距离判断坐标.【详解】解:因为点M在第四象限,所以其横、纵坐标分别为正数、负数,又因为点M到x轴的距离为6,到y轴的距离为4,所以点M的坐标为(4,﹣6).故选A.【点睛】本题主要考查了点在第四象限时点的坐标的符号,点到x 轴的距离为点的纵坐标的绝对值,到y 轴的距离为点的横坐标的绝对值.3.下列实数中,属于无理数的是( )A .13B .2﹣3C .πD .16【答案】C【分析】无理数就是无限不循环小数. 【详解】解:13是分数可以化为无限循环小数,属于有理数,故选项A 不合题意; 3128-=,是分数,属于有理数,故选项B 不合题意; π是无理数,故选项C 符合题意;164=,是整数,故选项D 不合题意.故选:C .【点睛】理解无理数的概念,同时也需要理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.4.在ABC 中,B 90∠=,若BC 3=,AC 5=,则AB 等于( )A .2B .3C .4D .34【答案】C【解析】利用勾股定理计算即可.【详解】解:在Rt ABC 中,B 90∠=,AC 5=,BC 3=,2222AB AC BC 534∴--=,故选:C .【点睛】本题考查勾股定理,解题的关键是记住勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.5.下列银行标志中,既不是中心对称图形也不是轴对称图形的是( )A .B .C .D .【答案】D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A 、是轴对称图形,也是中心对称图形,故A 选项不合题意;B 、是轴对称图形,不是中心对称图形,故B 选项不合题意;C 、是轴对称图形,也是中心对称图形.故C 选项不合题意;D 、不是轴对称图形,也不是中心对称图形,故D 选项符合题意;故选D .【点睛】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合.6.甲、乙两名运动员同时从A 地出发到B 地,在直线公路上进行骑自行车训练.如图,反映了甲、乙两名自行车运动员在公路上进行训练时的行驶路程S (千米)与行驶时间t (小时)之间的关系,下列四种说法:①甲的速度为40千米/小时;②乙的速度始终为50千米/小时;③行驶1小时时,乙在甲前10千米;④甲、乙两名运动员相距5千米时,t =0.5或t =2或t =5.其中正确的个数有( )A .1个B .2个C .3个D .4个【答案】B【分析】 ①甲的速度为120÷3=40,即可求解;②t ≤1时,乙的速度为50÷1=50,t >1后,乙的速度为(120-50)÷(3-1)=35,即可求解;③行驶1小时时,甲走了40千米,乙走了50千米,即可求解;④甲的函数表达式为:40y x =,乙的函数表达式为:01t ≤≤时,50y x =,1t >时,3515y x =+,即可求解.【详解】①甲的速度为120÷3=40(千米/小时),故正确;②1t ≤时,乙的速度为50÷1=50(千米/小时),1t >后,乙的速度为(120-50)÷(3-1)=35(千米/小时),故错误;③行驶1小时时,甲走了40千米,乙走了50千米,乙在甲前10千米处,故正确;④由①②③得:甲的函数表达式为:40y x =,乙的函数表达式为:当01t ≤≤时,50y x =,当1t >时,3515y x =+,当01t ≤≤时,50405t t -=,解得0.5t =(小时);当13t <≤时,3515405t t +-=,解得2t =(小时);当3t >时,()4035155t t -+=,解得4t =(小时);∴甲、乙两名运动员相距5千米时,0.5t =或2或4小时,故错误;综上,①③正确,共2个,故选:B .【点睛】本题为一次函数应用题,考查了一次函数的应用、待定系数法求函数解析式以及解一元一次方程,解题的关键是:根据速度=路程÷时间求出速度;待定系数法求函数解析式;找出各线段所对应的函数表达式做差解方程.7.如图,∠BCD =90°,AB ∥DE ,则∠α与∠β满足( )A .∠α+∠β=180°B .∠β﹣∠α=90°C .∠β=3∠αD .∠α+∠β=90°【答案】B【详解】解:过C 作CF ∥AB ,∵AB ∥DE ,∴AB ∥CF ∥DE ,∴∠1=∠α,∠2=180°﹣∠β,∵∠BCD=90°,∴∠1+∠2=∠α+180°﹣∠β=90°,∴∠β﹣∠α=90°,故选B .8.下列四个多项式中,能因式分解的是( )A .24a +B .214a a -+C .24x y -D .22x xy y ++【答案】B【分析】根据因式分解的定义逐项判定即可.【详解】解:A. 24a +,无法因式分解,不符合题意; B. 2222111422⎛⎫⎛⎫-+=-+=- ⎪ ⎪⎝⎭⎝⎭a a a a a ,符合题意; C. 24x y -,无法因式分解,不符合题意;D. 22x xy y ++,无法因式分解,不符合题意;故答案为B .【点睛】本题主要考查了因式分解的定义,因式分解是把一个多项式转化成几个整式积的形式.9.下列条件中,能判定△ABC 为直角三角形的是( ).A .∠A=2∠B -3∠CB .∠A+∠B=2∠C C .∠A-∠B=30°D .∠A=12∠B=13∠C 【答案】D【分析】根据三角形内角和定理和各选项中的条件计算出△ABC 的内角,然后根据直角三角形的判定方法进行判断.【详解】解:A 、∠A+∠B+∠C=180°,而∠A=2∠B=3∠C ,则∠A=108011 °,所以A 选项错误; B 、∠A+∠B+∠C=180°,而∠A+∠B=2∠C ,则∠C=60°,不能确定△ABC 为直角三角形,所以B 选项错误; C 、∠A+∠B+∠C=180°,而∠A=∠B=30°,则∠C=150°,所以B 选项错误;D 、∠A+∠B+∠C=180°,而∠A=12∠B=13∠C ,则∠C=90°,所以D 选项正确. 故选:D .【点睛】此题考查三角形内角和定理,直角三角形的定义,解题关键在于掌握三角形内角和是180°.10.如图,数轴上A,B两点对应的实数分别是1和3,若A点关于B点的对称点为点C,则点C所对应的实数为()A.3 1 B.13C.23D.3 1【答案】A【解析】设点C所对应的实数是x.根据中心对称的性质,即对称点到对称中心的距离相等,即可列方程求解.数轴上两点间的距离等于数轴上表示两个点的数的差的绝对值,即较大的数减去较小的数.设点C所对应的实数是x.则有x-331=x=x231=故选A.二、填空题11.一个数的立方根是4,则这个数的算术平方根是_________.【答案】8【解析】根据立方根的定义,可得被开方数,根据开方运算,可得算术平方根.【详解】解:34= 64,64= 1.故答案为:1.【点睛】本题考查了立方根,先立方运算,再开平方运算.12.若分式22x xx-的值为0,则x的值是_________.【答案】1.【分析】直接利用分式为零的条件分析得出答案.【详解】∵分式22x xx-的值为0,∴x1﹣1x=0,且x≠0,解得:x=1.故答案为1.【点睛】此题主要考查了分式的值为零的条件,正确把握定义是解题关键.13.若分式||44y y --的值为0,则y 的值为____________. 【答案】-4 【分析】分式等于零时:分子等于零,且分母不等于零. 【详解】由分式的值为零的条件得40y -=且40y -≠,由,40y -=得44y y =-=或,由40y -≠,得4y ≠,综上所述,分式||44y y --的值为0,y 的值是−4. 故答案为:−4.【点睛】此题考查分式的值为零的条件,解题关键在于掌握其性质.14.在平面直角坐标系中,已知一次函数y=-1x+1的图像经过P 1(x 1,y 1)、P 1(x 1,y 1)两点,若x 1<x 1,则y 1______y 1.(填“>”“<”“=")【答案】>【分析】根据一次函数的性质,当k <0时,y 随x 的增大而减小判断即可.【详解】解:∵一次函数y=-1x+1中,k=-1<0,∴y 随x 的增大而减小,∵x 1<x 1∴y 1>y 1故答案为:>.【点睛】此题主要考查了一次函数的性质,关键是掌握一次函数y=kx+b ,当k>0时,y 随x 的增大而增大,当k<0时,y 随x 的增大而减小.15.8-的立方根是__________.【答案】-1【解析】根据立方根的定义进行求解即可得.【详解】∵(﹣1)3=﹣8,∴﹣8的立方根是﹣1,故答案为﹣1.【点睛】本题考查了立方根的定义,熟练掌握立方根的定义是解题的关键.。

八年级数学上册3.3勾股定理的简单应用教案(新版)苏科版

勾股定理的简单应用教学目标:能运用勾股定理及其勾股定理的逆定理解决一些简单的实际问题.教学重点:能运用勾股定理及其勾股定理的逆定理解决一些简单的实际问题.教学难点:能运用勾股定理及其勾股定理的逆定理解决一些简单的实际问题.教学流程:一、探索研究:阅读材料P86-P87内容,回答下列问题:1.运用勾股定理解决实际问题:“引葭赴岸”是《九章算术》中的一道题:“今有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深,葭长各几何?”题意是:有一个边长为1O尺的正方形池塘,一棵芦苇AB生长在它的中央,高出水面BC为l尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B'(如图).问水深和芦苇长各多少?(画出几何图形并解答)2.勾股定理与方程思想的综合应用:我们知道勾股定理揭示了三角形三边之间的数量关系,已知直角三角形中的任意两边的长就可以根据勾股定理求出 .从运用勾股定理解决实际问题的过程中,我们进一步认识到把直角三角形的三边关系“”看成一个方程,只要根据问题的条件把它转化为我们会解的方程,就把解实际问题转化为方程问题.二、典例研究:1.如图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是米.2.如图,在△ABC中,∠C=90°,AC=4cm,AB的垂直平分线交BC于D,垂足为E,BC=8cm.求CD的长.三、课堂反馈:1.若一个直角三角形的一条直角边长是7cm,另一条直角边比斜边短1cm,则斜边长为()A.18 cm B.20 cm C.24 cm D.25 cm2.等腰三角形底边上的高为8,周长为32,则三角形的面积为________.3.甲、乙两人同时从同一地点匀速出发1h,甲往东走了4km,乙往南走了3km.(1)这时甲、乙两人相距多少km?(2)按这个速度,他们出发多少h后相距13km?4.如图,铁路上A、B两点相距25km,C、D为两村庄, DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特品收购站E,使得C、D两村到E站的距离相等,则E站应建在离A站多少km处?四、拓展提高:如图,一个长、宽、高分别为6cm、4cm、和3cm的长方体纸盒,一只蚂蚁要从这个长方体纸盒的一个顶点A处沿着长方体的表面到长方体上和点A相对的顶点G处觅食,则它需要爬行的最短路程是多少?(精确到0.1cm,参考数据:10.442≈109 , 9.842≈97 ,9.212≈85)五、课堂小结:本节课你掌握了什么?中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。

苏科版-数学-八年级上册-3.3 勾股定理的简单应用 教案

勾股定理的简单应用
一、教学目标:
1.能运用勾股定理及直角三角形的判定条件解决实际问题.
2.构造直角三角形及正确解出此类方程
二、重点、难点:
能运用勾股定理及直角三角形的判定条件解决数学问题
三、教学过程
(一)探索活动:
问题一在下图的直角三角形中,利用勾股定理可知x=,根据已有的知识,你还知道哪些与这个三角形有关的数据信息吗?
问题二图2中的x、y、z等于多少? 沿着图2继续画直角三角形,还能得到那些数?
的点吗? 请动手试一试!
1)利用图2你们能在数轴上画出表示5
2) 在数轴上表示8的点怎样画出?
问题三你知道这个三角形的面积吗?
练习:
1. 如图,在△ABC中,AB=15,AD=12,BD=9,AC=13,求△ABC的周长和面积。

答案:42 84
2. 如图,已知长方形ABCD沿着直线BD折叠,使点C落在C’处,BC’交AD于E,AD=8,AB=4,求DE的长。

答案:5
(三)课堂小结:本节课你学到了什么?。

八年级数学上册 3.3 勾股定理的简单应用导学案(新版)苏科版

八年级数学上册 3.3 勾股定理的简单应用导学案(新版)苏科版1、能进一步运用勾股定理及方程解决问题;2、在运用勾股定理及方程解决问题中,感受数学的“转化”思想、一、复习:阅读课本第86页到87页,完成下列各题:1、在Rt△ABC中,∠C=90,如果b=15,c=17,求a2、问:我们以前已学过了中哪三种判断直角三角形的方法?(1)什么叫勾股定理?(2)勾股定理的逆定理是、二、例题教学:例1、如图,在△ABC中,AB=26,BC=20,BC边上的中线AD=24,求AC、例2、在△AB C中, AB=15,AD=12,BD=9,AC=13,求△ABC的周长和面积。

例3、如图,一个高20m,周长10m的圆柱形水塔,现制造一个螺旋形登梯,为了减小坡度,要求登梯绕塔环绕一周半到达顶端,问登梯至少多长?(建议:拿一张白纸动手操作,你一定会发现其中的奥妙)例4、探索活动:一架长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m、如果梯子的顶端下滑1m,你认为梯子的底端会发生什么变化?与同学交流、⑴ 若梯子的顶端距地面的垂直距离为8m,则梯子的顶端A与它的底端B哪个距墙角C远?⑵在⑴中如果梯子的顶端下滑1m,那么它的底端是否也滑动1m? ⑶有人说,在滑动过程中,梯子的底端滑动的距离总比顶端下滑的距离大,你赞同吗?三、当堂检测:1、有一个锐角为30的直角三角形三内角度数之比为()A、1∶2∶3B、2∶3∶4C、3∶4∶5D、不确定2、若一个直角三角形的一条直角边长是7cm,另一条直角边比斜边短1cm,则斜边()A、18 cmB、20 cmC、24 cmD、25 cm3、一架2、5m长的梯子斜靠在一竖直的墙上,这时梯脚距离墙角0、7m,如果梯子的顶端沿墙下滑0、4m,那么梯脚移动的距离是()A、1、5mB、 0、9mC、 0、8mD、 0、5m4、如图,在锐角三角形ABC中,AD⊥BC,AD=12,AC=13,BC=14、则AB=_____、5、如图是一个育苗棚,棚宽a=12m,棚高b=5m,棚长d=10m,则覆盖在棚斜面上的塑料薄膜的面积为_________m2、6、在高5m,长13m的一段台阶上铺上地毯,台阶的剖面图如图所示,地毯的长度至少需要_______m、△7、甲、乙两人同时从同一地点匀速出发1h,甲往东走了3km,乙往南走了4km、⑴这时甲、乙两人相距多少km?⑵按这个速度,他们出发多少h后相距20km?8、要登上9m高的建筑物,为了安全需要,需使梯子固定在一个高1m的固定架上,并且底端离建筑物6m,梯子至多需要多长?四、适度作业:题:1、有两棵树,一棵高8m,另一棵高2m,两树相距8m,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了()B、8mC、9mD、10m2、如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程(取3)是()ECBADA、20cmB、10cmC、14cmD、无法确定△3、如图,△ABC是等腰直角三角形,∠A=90,BD是角平分线,DE⊥BC,BC=10cm,,则△DEC的周长是()A、8cmB、10cm C 、12cmD、14cmAECBD C14、如图,一张宽为3,长为4的长方形纸片ABCD,沿着对角线BD对折,点C落在点C1的位置,BC1交AD于E、求AE的长、5、如图,分别以直角三角形的三边为边长向外作正方形,边长分别a、b、c(c表示斜边)然后分别以三个正方形的中心为圆心、正方形边长的一半为半径作圆,三个圆的面积分别记为S2、S3,试探索三个圆的面积之间的关系、AB32206、如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm,3dm,2dm,A和B是这个台阶两相对的端点,A点有一只昆虫想到B点去吃可口的食物,则昆虫沿着台阶爬到B点的最短路程是多少dm?(二)知识与技能演练题:7、今年9月11号,第五号台风“卡努”登陆浙江,A市接到台风警报时,台风中心位于正南方向60km的B处,正以6km/h 的速度沿BC方向移动,如图所示,(1)已知A市到BC的距离AD =36km,那么台风中心从B点移到D点经过多长时间?(2)如果在距台风中心45km的圆形区域内都将受台风影响,那么A市受到台风影响的时间有多长?baBA c8、如图,已知长方体盒子的宽a为16cm,长b为5cm,高c为7cm、一只聪明的小蚂蚁从顶点A处出发在长方体的表面爬行,想尽快吃到在顶点B处的糖果,求小蚂蚁爬行的最短路径的长、五、知者加速:1、△如图,有一块塑料矩形模板ABCD,长为10cm,宽为4cm,将你手中足够大的直角三角板PHF的直角顶点P落在AD边上(不与A、D重合),在AD上适当移动三角板顶点P。

八年级数学《勾股定理》第四课时学案

勾股定理第四课时学案【知识脉络】【学习目标】1.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理。

2.探究勾股定理的逆定理的证明方法。

3.理解原命题、逆命题、逆定理的概念及关系。

【要点检索】:掌握勾股定理的逆定理及证明。

【方法导航】⑴如何判断一个三角形是直角三角形,现在只知道若有一个角是直角的三角形是直角三角形,从而将问题转化为如何判断一个角是直角。

⑵利用已知条件作一个直角三角形,再证明和原三角形全等,使问题得以解决。

⑶先做直角,再截取两直角边相等,利用勾股定理计算斜边A1B1=c,则通过三边对应相等的两个三角形全等可证。

⑷根据勾股定理的逆定理,判断一个三角形是不是直角三角形,只要看两条较小边长的平方和是否等于最大边长的平方。

二、预习指导(一)自学教材81页(从“据说---”开始,到“那么这个三角形是直角三角形”结束)完成下列问题:1、按古埃及人的做法围成一个三角形,它的三边分别是3、4、5,算一算32+42是不是等于52?然后在练习本画出三条边分别是3、4、5的三角形,用三角板验证是不是直角三角形。

2、分别画一画边长为2.5, 6, 6.5和4, 7.5, 8.5的两个三角形,算一算2.52+62是不是等于6.52; 7.52+42是不是等于8.52。

然后再用三角板验证一下它们是不是直角三角形。

3、通过以上的计算和画图验证你猜想的结论是:(二)自学教材81页最后一段和82页中间一段(从“一般地- - 不成立”这一段),回答下面的问题:1、“如果同旁内角互补,那么两条直线平行”的题设是结论是,逆命题是2、“对顶角相等”的的题设是结论是,逆命题是3、完成84页练习第2题(把答案写在练习本上)(三)自学教材82页“探究”,(从“探究-”到“叫做勾股定理的逆定理”)完成下面的问题:1、如右图,已知△ABC的三边长分别是a,b,c,满足a2+b2=c2,请你在练习本上在画一个直角三角形A′B′C′,使B′C′= a, A′C′= b,∠C′= 90°,画好后剪下放到上面的△ABC 上,你发现了这两个三角形,∠C的度数是,也就是说△ABC是三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.3勾股定理的应用
班级 姓名
一、学习目标:
1.会运用勾股定理解决路程最短问题。

2.在运用勾股定理解决问题中,进一步感受数学的“建模”思想
3.进一步发展有条理思考和有条理表达的能力,体会数学的应用价值。

二、学习重点、难点:勾股定理的应用
三、学习过程:
(一).例题讲解
例1.蚂议最短路程问题.
(1) 如图所示。

有一个圆柱,它的高等于12厘米,底面半径
等于3厘米。

在圆柱下底面的A 点有一只蚂蚁,它想吃到上底面
的A 点相对的B 点处的事物,需要爬行的最短路程是多少?
(п的值取3)
(2)如图是一个三级台阶,它的每一级的长宽和高分别为20dm 、3dm 、2dm ,A 和B 是这个
台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点最短路程是多少?
(3)在图中,有一内腔长30cm 、宽
40 cm 、高50 cm 的木箱,如果在箱内的A 处有一只昆
虫,它要在箱壁上爬行到B 处,至少要爬多远?
例2.如图,A ,B 是直线l 外同侧的两点,且点A 和点B 到l 的距离分别是3㎝和5㎝,AB 2032A B
C B
D
=12㎝,若点P在l上移动,
求PA+PB的最小值。

·B
·A
l
例3.有一个如图所示的长方体的透明玻璃鱼缸,假设其长AD=80cm,高AB=60cm,水深为AE=40cm,在水面上紧贴内壁G处有一鱼饵,G在水面线EF上,且EG=60c m,一小虫想从鱼缸外的A点沿壁爬进鱼缸内G处吃鱼饵.
(1)小动物应该走怎样的路线才使爬的路线最短呢?请你在图中画出它爬行的路线,并用
箭头标注.
(2)求小动物爬行的最短路线长.
四.课堂小结:
通过这节课的学习活动你有哪些收获?
3.3勾股定理的应用(3)作业班级姓名
一、填空题:
1.一架5m 长的梯子靠在一面墙上,梯子的底部离建筑物1m ,若梯子底部滑开2m ,
则梯子顶部下滑的距离是___________(结果可含根号). 2.如图,长方体的长为15,宽为10,高为20,点B 离点C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是
_____________ 二、解答题: 3.在一个内腔长4cm 、宽3cm 、高5 cm 的木箱中放一根笔直的细玻璃管,这根玻
璃管的长度至多为多少cm ?
4.如图,一只蜘蛛在一块长方体木块的一个顶点A 处,一只苍蝇在这个长方体的对角顶点G 处,若AB=3cm,BC=5cm,BF=6cm,问蜘蛛要沿着怎样的路线爬行,才能最快抓到苍蝇?这时蜘蛛走过的路程是多少厘米?
5.如图,一个高18m ,周长5m 的圆柱形水塔,现制造一个螺旋形登梯,为了减小坡度,要求登梯绕塔环绕一周半到达顶端,问登梯至少多长?
(建议:拿一张白纸动手操作,你一定会发现其中的奥妙
)
6.如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km的速度向北偏东45°的BP方向移动,距离台风中心200km的范围内是受台风影响的区域。

(1) A城是否受到这次台风的影响?为什么?
(2)若A城受到这次台风影响,那么A城遭受这次台风影响有多长时间?
A。

相关文档
最新文档