角平分线性质的应用

合集下载

三角形角平分线定理

三角形角平分线定理

三角形角平分线定理三角形角平分线定理是指:三角形内一条角的角平分线把这条角分成两个相等角,并且这条角平分线所在的边与三角形外一边的两个对边的比等于被分角的两边的比。

三角形角平分线定理是一个重要且有用的几何定理,它可以帮助我们推导解决许多与三角形相关的问题。

本文将详细介绍三角形角平分线定理以及其应用。

一、三角形角平分线定理的定义与性质三角形角平分线定理可以描述为:设三角形ABC中,AD是角BAC的角平分线,则有以下两个性质成立:1. 角BAD与角DAC的度数相等,即∠BAD = ∠DAC。

2. AB/BC = BD/DC。

角平分线的定义是指一条线段或射线从一个角的顶点出发,将该角分成两个相等的角。

根据角平分线的定义,我们可以得出性质1。

性质2则是说明了角平分线所在边与三角形外一边的两个对边的比例关系。

这个比例关系在解决一些三角形相关问题时非常有用,比如计算未知边长或角度大小等。

二、三角形角平分线定理的证明现在我们来证明三角形角平分线定理中的性质2。

首先,我们假设角BAD = α,角CAD = β,角DAC = α,角BDA = β。

根据正弦定理,我们可以得到以下两个等式:sinα/BD = sinβ/AB (1)sinα/DC = sinβ/AC (2)将(1)除以(2),可以得到:(AB/BD)/(AC/DC) = sinα/sinα = 1由于左边等式的分数形式是BD/DC的比,因此我们可以得出:AB/BC = BD/DC这就证明了三角形角平分线定理中的性质2。

三、三角形角平分线定理的应用三角形角平分线定理有着广泛的应用,特别是在解决与三角形相关的题目时,可以通过应用该定理得到简洁而准确的答案。

以下是三个典型的应用案例:1. 求角平分线所分角的大小已知三角形ABC中,BD为角BAC的角平分线,要求角BAD的大小。

根据三角形角平分线定理的性质1,我们知道角BAD与角DAC的大小相等,即∠BAD = ∠DAC。

初二【数学(人教版)】角的平分线的性质的综合运用

初二【数学(人教版)】角的平分线的性质的综合运用
A
B
C
应用 如图,为了促进当地旅游发展,某地要在
三条公路围成的一块平地上修建一个度假村.要
使这个度假村到三条公路的距离相等,应在何处
修建?
A
分析:
可以从定理1入手
也可以从定理2入手
B
C 总之找角平分线交点
已知△ABC,在它的内部求作一个点O,使其到三
角形三边都相等.
作图:
分别作∠BAC和
A
∠ABC的平分线,
P.求证:点P到三边AB,BC,CA的距离相等.
A
ND
F
M
思路:过点P分别向三角形 各边作垂直,标垂足.
P
由角的平分线的性质得
B
E
C
PD = PE 及 PE = PF.
进而PD = PE = PF.
于是问题得证.
追问 点P在∠BAC的平分线上吗?
这说明三角形的三条角平分线有什么关系?
A
ND
F
M
分析:“双垂距离推角分” 略证:(用已证结论)
两线交于点O,
则点O即为所求.
O
课下可以试试证明.
B
C
发展 已知△ABC,求作一个点O,使其到三角形
三边都相等. A
分析:
(1)根据之前的Biblioteka 研究,在三角形内O1
部,两条角平分线
B
C
的交点符合要求;
(2)在三角形的外部呢? 有相邻两外角的平分线的交点,符合要求吗?
O2 B
A
O1 C
作法:如图 (1)作△ABC两 内角的平分线,其 O3 交点为O1; (2)分别作 △ABC两外角平分 线,其交点分别为 O2,O3,O4.
O4

第3节 角平分线的性质及应用

第3节  角平分线的性质及应用

第三节角平分线的性质及应用一、课标导航二、核心纲要1.角平分线的性质定理角的平分线上的点到角的两边的距离相等.如下左图所示:∵OC平分∠AOB,CD⊥OA,CE⊥OB,∴CD=CE.注:考查点到线的距离相等时,可以考虑角平分线的性质.2.角平分线的判定定理到角的两边距离相等的点在角的平分线上.如下中图所示:∵CD⊥OA,CE⊥OB,CD=CE,∴OC平分∠AO B.注:用来证明一条线是一个角的平分线.3.角平分线的画法如下右图所示,已知:∠AO B.作法;(1)以O为圆心,适当长为半径作弧,交OA于点M,交OB于点N.(2)分别以M、N为圆心,大于12MN的长为半径作弧,两弧在∠AOB的内部交于点C.(3)作射线O C.∴射线OC即为所求.4.三角形的角平分线三角形的三个内角的角平分线交于一点,且到三边的距离相等.5.与角平分线有关的辅助线模型(1)在角的平分线上取一点向角的两边作垂线.(点垂线,垂两边,线等全等都出现)如下左图所示,过点C作CD⊥OA,CE⊥OB,则CD=CE,△OCD≌△OCE.(2)在角两边截取相等的线段,构造全等三角形.(角分线,分两边,对称全等要记全)如下图所示:在OA、OB上分别截取OD=OE,连接CD、CE,则△OCD≌△OCE.(3)角平分线+垂线,全等必出现.如下右图所示:延长DC交OB于点E,则△OCD≌△OCE.本节重点讲解:两个定理,两个作法(角平分线的作法和与角平分线有关的辅助线).三、全能突破基础演练1.如图12-3-1所示,OA是∠BAC的平分线,OM⊥AC于点M,ON⊥AB于点N,若ON=8cm,则OM长为().A.4cm B.5cm C.6cm D.8cm2.如图12-3-2所示,OP平分∠AOB,P A⊥OA,PB⊥OB,垂足分别为A、B.下列结论中不一定成立的是()A.P A=PB B.PO平分∠APB C.OA=OB D.AB垂直平分OP 3.如图12-3-3所示,AD是△ABC的角平分线,且AB:AC=3:2,则△ABD与△ACD的面积之比为().A.3:2 B.9:4 C.2:3 D.4:94.如图12-3-4所示,在Rt△ABC中,∠C=90°,BD是∠ABC的平分线,交AC于点D,若CD=n,AB=m,则△ABD的面积是.5.如图12-3-5所示,BD是∠ABC的平分线,AB=CB,点P在BD的延长线上,PM⊥AD,PN ⊥CD,垂足分别是点M、N,求证:PM=PN.6.如图12-3-6所示,在四边形ABCD中,BC>AB,AD=DC,DF⊥BC,BD平分∠AB C.(1)求证:∠BAD+∠BCD=180°.(2)若DF=3,BF=6,求四边形ABCD的面积.7.如图12-3-7所示,D、E、F分别是△ABC的三边上的点,CE=BF,△DCE和△DBF的面积相等,求证:AD平分∠BA C.能力提升8.如图12-3-8所示,∠AOB和一条定长线段a,在∠AOB内找一点P,使点P到OA、OB的距离都等于a,作法如下:(1)作OB的垂线NH,使NH=a,点H为垂足;(2)过点N作NM∥OB;(3)作∠AOB的平分线OP,与NM交于点P;(4)点P即为所求.其中(3)的依据是().A.平行线之间的距离处处相等B.到角的两边距离相等的点在角的平分线上C.角的平分线上的点到角的两边的距离相等D.到线段的两个端点距离相等的点在线段的垂直平分线上9.如图12-3-9所示,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S.若AQ=PQ,PR=PS,QD⊥AP,下列结论:①AS=AR;②AP平分∠BAC;③△BRP≌△CSP;④PQ∥AR.其中正确的是().A.①③B.②③C.①②④D.①②③④10.如图12-3-10所示,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()处.A.1 B.2 C.3D.411.如图12-3-11所示,在△ABC中,AC=BC,∠ACB=90°,AD平分∠BAC,BE⊥AD交AC 的延长线于F,E为垂足.则结论:①AD=BF;②CF=CD;③AC+CD=AB;④BE=CF;⑤BF=2BE,其中正确结论的个数是().A.1 B.2 C.3 D.412.如图12-3-12所示,已知AB平行CD,∠CAB,∠ACD的平分线交于点O,OE⊥AC,且OE=2,则两平行线AB、CD之间的距离等于.13.(1)如图12-3-13所示,△ABC的三边AB、BC、CA长分别是20、30、40,三条角平分线将△ABC分成三个三角形,则S△ABO:S△BCO:S△CAO等于.(2)如图12-3-14所示,已知△ABC的周长是18cm,OB、OC分别平分∠ABC和∠ACB,OD ⊥BC于点D,若△ABC的面积为54cm2,则OD= .14.如图12-3-15所示,∠B=∠C=90°,M是BC中点,AM平分∠DAB,求证:DM平分∠AD C.15.如图12-3-16所示,在河中有座水文观测台O,它到河岸以及河上大桥AB的距离相等,一水文数据记录员站在台上,发现桥上有辆漂亮的彩车,从桥头A走到桥头B,问记录员的视线转过多大角度?16.如图12-3-17所示,在△ABC中,PB、PC分别是△ABC的外角的平分线,求证:∠1=∠2.17.已知,如图12-3-18所示,在△ABC和△DCE中,BC=AC,DC=EC,∠ACB=∠DCE,B、C、E三点在一条直线上,A、B、C、D、E、F、G、O为“公交停靠点”,甲公共汽车从A站出发,按照A、F、G、E、C、F的顺序达到F站,乙公共汽车从B哦出发,按照BOFDGDF的顺序达到F站,(1)如果甲乙两公共汽车分别从AB站出发,在各站耽误的时间相同,两车的速度也相同,试问哪一辆公共汽车先达到指定站点?为什么?(2)求证:①∠AFB=∠CDE;②CF平分∠BFE.18.如图12-3-19所示,在△ABC中,BD是∠ABC的平分线,AD⊥BD,垂足为点D,(1)求证:∠2=∠1+∠C;(2)若ED∥BC,∠ABD=28°,求∠ADE的度数.19.如图12-3-20所示,在△ABC中,AB>AC,∠1=∠2,P为AD上任意一点.求证:AB-AC>PB-P C.20.如图12-3-21所示,在△ABC中,AD是∠BAC的外角平分线,P是AD上异于点A的任意一点,试比较PB+PC与AB+AC的大小,并说明理由.中考链接21.(2011·浙江衢州)如图12-3-22所示,OP平分∠MON,P A⊥ON于点A,点Q是射线OM 上的一个动点,若P A=2,则PQ的最小值为().A.1 B.2 C.3 D.422.(2010·青海西宁)八(1)班同学上数学活动课,利用角尺平分一个角(如图12-3-23所示)设计了如下方案:(I)∠AOB是一个任意角,将角尺的直角顶点P介于射线OA、OB之间,移动角尺使角尺两边相同的刻度与M、N重合,即PM=PN,过角尺顶点P的射线OP就是∠AOB的平分线.(II)∠AOB是一个任意角,在边OA、OB上分别取OM=ON,将角尺的直角顶点P介于射线OA、OB之间,移动角尺使角尺两边相同的刻度与M、N重合,即PM=PN,过角尺顶点P 的射线OP就是∠AOB的平分线.(1)方案(I)、方案(II)是否可行?若可行,请证明;若不可行,请说明理由.(2)在方案(I)PM=PN的情况下,继续移动角尺,同时使PM⊥OA,PN⊥O B.此方案是否可行?请说明理由.巅峰突破23.如图12-3-24所示,在Rt△ABC中,∠ACB=90°,∠CAB=60°,∠ACB的平分线与∠ABC 的外角平分线交于点E,则∠AEB=().A.50° B.45° C.40°D.35°24.如图12-3-25所示,在△ABC中,AC=BC,∠ACB=90°,D是AC上一点,且AE垂直BD的延长线于E,AE=12BD,求证:BD是∠ABC的平分线.。

[数学]-必考点05 角平分线的性质与判定-【题型·技巧培优系列】2022-2023学年八年级数学上

[数学]-必考点05 角平分线的性质与判定-【题型·技巧培优系列】2022-2023学年八年级数学上
◆◆题型五与角的平分线有关的探究题
11.(2021秋•朝阳期中)在△ABC中,D是BC边上的点(不与点B、C重合),连接AD.
(1)如图1,当点D是BC边上的中点时,S△ABD:S△ACD=;
(2)如图2,当AD是∠BAC的平分线时,若AB=m,AC=n,求S△ABD:S△ACD的值(用含m,n的代数式表示);
③∠BAC=2∠BPC;④S△PAC=S△MAP+S△NCP.其中正确结论序号是.
7.(2021秋•松桃县期末)如图:已知BD=CD,BF⊥AC,CE⊥AB,求证:点D在∠BAC的平分线上.
◆◆题型三角的平分线的性质与判定的综合应用
8.(2021秋•鹿邑县月考)如图,在△ABC中,∠ABC的平分线与△ABC的外角∠ACE的平分线交于点P,PD⊥AC于点D,PH⊥BA,交BA的延长线于点H.
(3)如图3,AD平分∠BAC,延长AD到E,使得AD=DE,连接BE,如果AC=2,AB=4,S△BDE=6,那么S△ABC=.
1.(2022春•六盘水期末)如图,BD为∠ABC的角平分线,DE⊥BC于点E,AB=5,DE=2,则△ABD的面积是( )
A.5B.7C.7.5D.10
2.(2022•雁塔区模拟)如图,AB∥CD,BP和CP分别平分∠ABC和∠BCD,AD过点P且与AB垂直.若AD=8,BC=10,则△BCP的面积为( )
A.△ABC三条高线的交点处
B.△ABC三条中线的交点处
C.△ABC三条角平分线的交点处
D.△ABC三边垂直平分线的交点处
【例题20】(2022春•兰州期末)某镇要在三条公路围成的一块三角形平地内修建一个砂石场,如图,要使这个砂石场到三条公路的距离相等,则可供选择的地址( )
A.仅有一处B.有四处C.有七处D.有无数处

角平分线用法

角平分线用法

角平分线用法
角平分线是指从一个角的顶点引出一条射线,把这个角分成两个完全相同的角。

角平分线具有以下性质和用法:
1. 角平分线上的点到角的两边的距离相等。

2. 角平分线将角分成两个相等的角。

3. 如果一个角的内角平分线与外角平分线相交,那么它们所形成的角等于该角的一半。

角平分线的主要用法包括:
1. 求解角度或边长:利用角平分线的性质,可以通过已知角和角平分线上的点到角两边的距离,求解出未知的角度或边长。

2. 证明几何关系:通过角平分线的性质,可以证明两个角相等、两条线段相等或平行等几何关系。

3. 构建等腰三角形:如果从角平分线上的一点向角的两边作垂线,可以构建出两个等腰三角形。

4. 求解三角形问题:在三角形中,如果已知一个角的平分线和该角的对边,可以利用角平分线的性质求解出其他边长或角度。

角平分线在几何证明和计算中有着广泛的应用,通过灵活运用角平分线的性质和用法,可以解决许多几何问题。

角平分线性质定理之应用

角平分线性质定理之应用

角平分线性质定理之应用三角形的角平分线是三角形的主要线段之一,它在几何的计算或证明中,起着“桥梁”的作用.那么如何利用三角形的角平分线解题呢?下面举例说明. 一、由角平分线的性质联想两线段相等例1 如图1,AB >AC ,∠A 的平分线与BC 的垂直平分线相交于D ,自D 作DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F .求证:BE=CF证明 连结DB ,DC .∵D 在∠A 的平分线上,∴DE=DF . ∵D 在BC 的垂直平分线上,∴BD=DC . 又∠BED=∠CFD=90°,∴Rt △BDE ≌Rt △CDF ,∴BE=CF . 二、由角平分线的轴对称性构造全等三角形例2 如图2,BC >AB ,BD 平分∠ABC ,且AD=DC 求证:∠A+∠C=180°.证明 延长BA 至F ,使BF=BC .由BD 平分∠ABC 在△FBD 与△CBD 中,BF=BC ∠ABD=∠CBD BD=BD ∴△FBD ≌△CBD ,∴∠C=∠F ,DF=CD=AD ,∠F=DAF , ∴∠A+∠C=∠BAD+∠DAF=180°.三、过角平分线上一点作一边的平行线,构成等腰三角形例3 已知:如图3,∠ABC 的平分线BF 与∠ACB 的平分线CF 相交于点F ,过F 作DE ∥BC ,交AB 于D ,交AC 于E ,求证:BD+CE=DE .证明:∵BF 是∠ABC 的平分线 ∴∠DBF=∠CBF 又∵DE ∥BC ∴∠DFB=∠CBF ∴∠DBF=∠DFB∴BD=FD ,同理CE=FE . ∴BD+CE=DF+FE=DE . 四、实际生活中的应用例4 如图4,有三条公路1l 、2l 、3l 两两相交,要选择一地点建一座加油站,是加油站到三条公路的距离相等,应如何选择建加油站的地址?这样的位置有几种选择?解析:分别作△ABC 两内角的平分线,它们相交于一点,根据角平分线的性质知,这个点到三条公路的距离相等;或者分别作△ABC 相邻两外角的平分线,它们的交点到三条公路的距离也相等,这样点共有三个,所以建加油站的位置共有4种选择.图4。

角平分线与中线的性质与应用

角平分线与中线的性质与应用角平分线和中线是几何学中的两个重要概念,它们在解决各种几何问题中起着重要的作用。

本文将介绍角平分线和中线的性质,并探讨它们的应用。

角平分线的性质角平分线是指把一个角平分成两个相等的角的线段。

具体来说,当一条线段与另一条线段相交,并且从交点出发分别到达这两条线段的两个端点时,若两段线段的长度相等,则这条线段就是角平分线。

角平分线的性质有以下几点:1. 角的两个相邻边上的所有角平分线相交于一个点,这个点称为角的内心。

2. 角的内心到角的三条边的距离是相等的,即内心到各边的距离相等。

3. 角的内心所在的直径将圆分成两个等分,内心到圆上任意一点的距离相等。

中线的性质中线是指连接一个三角形的两个顶点与中点的线段。

具体来说,当一条线段连接一个三角形的两个顶点,并与对边的中点相交时,这条线段就是中线。

中线的性质有以下几点:1. 一个三角形有三条中线,它们的三个交点构成一个新的三角形,这个新构成的三角形称为原三角形的中心三角形。

2. 中心三角形的三个顶点分别是原三角形的三个中点。

3. 中心三角形的每一条边与原三角形的对边平行且长度是对边长度的一半。

角平分线和中线的应用角平分线和中线在几何学中有广泛的应用,特别是在三角形的形状和性质研究中有重要的作用。

应用一:角平分线的应用1. 利用角平分线可以构造出一个正多边形。

例如,利用角平分线可以在一个给定的角内构造出一个等边三角形。

2. 角平分线可以用于解决角度相关的几何问题,例如求角度的大小或证明两个角相等。

应用二:中线的应用1. 三角形的三条中线交于一点,这个点称为三角形的重心。

重心有很多有趣的性质,例如,以重心为顶点的三角形的面积是原三角形面积的2/3。

2. 利用中线可以求解三角形的各边长。

例如,当已知一个三角形的一条边和它所对的角的平分线时,可以利用中线的性质求出另外两条边的长度。

总结角平分线和中线是几何学中重要的概念,它们具有特定的性质和应用。

角平分线的定义及性质应用

角平分线的定义及性质应用角平分线是指从一个角的顶点到其两边上任意一点的线段,将这个角分成两个大小相等的角。

角平分线具有一些重要的性质和应用。

首先,角平分线的定义是从一个角的顶点出发,将这个角分成两个相等的角。

这意味着角平分线与角的两边所夹的角度大小是相等的。

这是角平分线最基本的性质之一。

其次,角平分线具有对称性。

如果一个角的平分线通过其顶点并交于角的另一边上的一个点,那么这个交点将把角分成两个大小相等的角。

同样地,这个交点也可以看作是这个角的另一个平分线通过其顶点并交于另一边上的一个点。

这个交点将角分成两部分,而这两部分的大小是相等的。

此外,角平分线还具有一些其他的重要性质和应用。

以下是其中的一些:1. 角平分线相交于角的内部:角平分线必定在角的内部相交。

这是因为在平面几何中,两点之间的直线是最短的路径,所以角平分线将角分成两部分时必须通过角的内部。

2. 角平分线垂直于角的边:如果一个角的平分线与角的一条边相交,那么它与这条边所夹的角是垂直的。

也就是说,平分线和边的交点处的两个相邻角度是垂直的。

这是一个很有用的性质,可以用来构造垂直角、垂直平分线和垂直双准线等几何图形。

3. 角平分线的长度相等:如果一个角的两条平分线相交,那么它们的长度是相等的。

换句话说,一个角的两条平分线与该角两条边的交点之间的距离是相等的。

这可以通过解析几何或使用三角函数来证明。

4. 角平分线被分成一定比例的线段:如果两个角的平分线相交于一个点,并且它们分别与这两个角的另外一条边相交于不同的点,那么这个交点将把角平分线分成一定比例的线段。

这个性质可以用于求解角平分线上的长度比例,从而解决几何问题。

5. 角平分线和三角形内心:在一个三角形中,三条角的平分线交于一点,这个点称为三角形的内心。

内心是三角形内接圆的圆心,角平分线与三角形内接圆的切点均相交于角的顶点。

内心的存在和性质可以用角平分线来证明。

综上所述,角平分线具有分割角度、对称性、相交于角的内部、垂直于角的边、长度相等、被分成一定比例的线段等性质。

三角形的角平分线应用利用角平分线解决实际问题

三角形的角平分线应用利用角平分线解决实际问题三角形的角平分线应用——利用角平分线解决实际问题三角形是几何学中的基本图形之一,而角平分线是三角形研究中的一个重要概念和应用技巧。

利用角平分线可以解决许多实际问题,包括测量、建筑、导航、工程设计等多个领域。

本文将介绍角平分线的定义与性质,并重点讨论其在实际问题中的应用。

一、角平分线的定义与性质在三角形ABC中,如果线段AD是∠BAC的平分线,则称线段AD为∠BAC的角平分线。

角平分线的定义是基于角的平分概念,即将一个角分为两个相等的角。

角平分线具有以下性质:1. 角平分线将一个角分为两个相等的角,即∠BAD = ∠DAC。

2. 角平分线平分对应的弧,即弧BD = CD。

3. 角平分线与三角形的另外两边相交于不同的点,即BD不等于CD。

二、角平分线在实际问题中的应用1. 土地测量在土地测量中,利用角平分线可以测量无法直接测量的距离。

例如,对于一个无法直接测量的山坡高度AB,我们可以先找到平面上一个位置C,使得∠ABC=∠ACB=45°,然后测量AC的长度,再应用三角函数关系计算出AB的长度。

2. 建筑设计在建筑设计中,角平分线可以用于确定建筑物各个部分的位置和角度。

例如,在设计一个房间的角度时,可以利用角平分线来确保每个角都是相等的,使得房间看起来更加对称美观。

3. 导航在导航中,利用角平分线可以确定方向和位置。

例如,当我们只知道自己位于两个已知地点A和B之间的某一点C时,可以通过找到∠ACB的角平分线来确定自己的准确位置。

4. 工程设计在工程设计中,角平分线可以应用于测量和定位。

例如,在道路设计中,可以利用∠ACB的角平分线来确保道路的曲率和转弯度合理,从而保证交通的安全和流畅。

5. 几何问题解决角平分线也可以应用于解决一些几何问题,例如确定三角形的中位线、垂心、外心等特殊点的位置。

综上所述,三角形的角平分线在实际问题中具有广泛的应用。

通过研究角平分线的性质和应用技巧,可以帮助我们更好地理解和解决与三角形相关的实际问题,提升我们的数学思维能力和几何应用能力。

角平分线的性质与应用

角平分线的性质与应用角平分线是指将一个角平分成两个相等的角的线段。

在几何学中,研究角平分线的性质与应用有助于解决各种角相关的问题。

本文将探讨角平分线的性质以及它们在几何学中的应用。

一、角平分线的性质1. 定理1:角平分线将角分成两个相等的角。

证明:设角AOB为已知角,AC是角AOB的平分线。

假设角CAC'和角C'AB是不等的,即角CAC'≠角C'AB。

因为角CAC'和角C'AB之和等于角AOB,即角CAC'+角C'AB=角AOB。

又因为角CAC'和角C'AB是不等的,所以它们的和必然小于角AOB,产生矛盾。

因此,角CAC'和角C'AB必然相等。

2. 定理2:如果一个角的两条平分线相交于一个点,则该点在角的内部,并且到角的各边距离相等。

证明:设角AOB为已知角,AC和BD是角AOB的两条平分线,交于点E。

我们分别证明点E在角AOB的内部以及到角的各边距离相等:a) 点E在角AOB的内部的证明:假设点E在角AOB的外部,我们取点F在射线EB上,使得EF = EC。

在△AFC中,角AFC =角AFC’ +角C’FA =角 ABD +角 BDA =90°。

另一方面,在△BFD中,角BFD=角BFD’+角DFB=角ABD’+角DBA=90°。

因此,角AFC和角BFD之和等于180°,即角AFCB为一直线,这与假设矛盾。

因此,点E在角AOB的内部。

b) 到角的各边距离相等的证明:由定理1可知,∠ACB =∠DCB。

又因为∠AEC和∠BEC分别是角ACB的两个相等的角,所以∠AEC=∠BEC。

由于∠AEB是锐角,所以点E到射线AB上的点的距离相等。

二、角平分线的应用角平分线在几何学中有广泛的应用,下面介绍几种常见的应用情况:1. 求角平分线的长度:已知一个角的两条边长以及夹角的大小,可以利用三角函数求出角平分线的长度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

角平分线性质的应用
一、 角平分线的性质
1、 2、
二、基本图形
1、如图,OC 评分∠ACB
2、如图,AD 是△ABC 的角平分线
二、应用举例
1、如图,∠AOB=300,OC 平分∠AOB ,DP//OB ,PH ⊥OB ,PD=6,求OD 和PH 的长
O
O
O
O
C
C
2、已知:△ABC 中,O 是两内角角平分线的交点,过点O 作EF//BC 交AB 于E ,交AC 于F,BE=3 CF=4,求线段EF 的长?
3、已知:如图所示,BD 是∠ABC 的角平分线,ED=CD ,求证:∠BED+∠C=1800
4、已知:如图,△ABC 中,AD 是△ABC 的角平分线,且∠C=2∠B ,判断:线段AC 、CD 与AB 的数量关系,并说明理由。

C
5、如图所示,AB //CD ,BE 平分∠ABC ,CE 平分∠BCD ,点E 在AD 上,求证:BC=AB+CD
6、如图,AB=2AC ∠1=∠2 DA=DB 求证:DC ⊥AC
7、在△ABC 中AB>AC AD 为∠BAC 的平分线,M 为AD 上任意一点,求证:BM-CM=AB-AC
D B
C
C
8、已知,CE 、AD 是△ABC 的角平分线,∠B=600求证:AC=AE+CD
9、已知:D 是△ABC 的∠BAC 的外角平分线AD 上任意一点,连接BD 、DC 求证:BD+CD>AB+AC
D C。

相关文档
最新文档