光电效应测普朗克常量实验报告

合集下载

测普朗克常量实验报告

测普朗克常量实验报告

测普朗克常量实验报告测普朗克常量实验报告引言在物理学领域中,普朗克常量是一个重要的物理常数,用来描述量子力学中的能量和频率之间的关系。

测量普朗克常量的准确值对于理解微观世界的基本规律至关重要。

本实验旨在通过一系列实验步骤,测量普朗克常量的数值,并探讨其中的原理和方法。

实验装置和原理本实验采用了光电效应装置,该装置由光源、光电管和电路系统组成。

光源发出光子,光电管接收光子并产生电子,电路系统测量电子的能量和频率。

根据光电效应原理,当光子的能量大于光电管材料的逸出功时,光电管才能发射出电子。

实验步骤1. 确定实验装置的基本参数:包括光源的波长、光电管的逸出功和电路系统的灵敏度等。

这些参数对于后续的实验数据处理至关重要。

2. 测量光电流与光照强度的关系:通过改变光源的亮度,测量光电管的光电流变化。

根据光电效应原理,光电流与光照强度应呈线性关系。

3. 测量光电流与光源频率的关系:保持光照强度不变,改变光源的频率,测量光电管的光电流变化。

根据普朗克公式E = hf,其中E为光子的能量,h为普朗克常量,f为光源的频率,可以得到光电流与光源频率的关系。

4. 分析实验数据并计算普朗克常量:根据测得的光电流与光照强度、光电流与光源频率的关系,利用线性回归等方法,求得普朗克常量的数值。

实验结果与讨论通过实验测量和数据处理,我们得到了普朗克常量的数值为X。

与理论值相比较,实验结果的误差为Y。

这个误差可能来自于实验仪器的精度限制、实验环境的影响以及实验操作的误差等因素。

然而,尽管实验结果存在一定误差,我们仍然可以得出一些有意义的结论。

首先,实验结果与理论值的接近程度表明了实验方法的可行性和准确性。

其次,通过对实验数据的分析,我们可以验证光电效应原理和普朗克公式的有效性。

此外,本实验还可以扩展到其他相关实验领域。

例如,可以通过改变光电管材料的性质,探究不同材料对光电效应的影响。

另外,可以进一步研究光电效应与波粒二象性的关系,深入理解量子力学的基本原理。

光电效应测普朗克常量实验报告-普朗克常量 光电

光电效应测普朗克常量实验报告-普朗克常量 光电

光电效应测普朗克常量实验报告一、实验题目光电效应测普朗克常数二、实验目的1、通过实验深刻理解爱因斯坦的光电效应理论,了解光电效应的基本规律;2、掌握用光电管进行光电效应研究的方法;3、学习对光电管伏安特性曲线的处理方法,并用以测定普朗克常数。

三、仪器用具ZKY—GD—3光电效应测试仪、汞灯及电源、滤色片(五个)、光阑(两个)、光电管、测试仪四、实验原理1、光电效应与爱因斯坦方程用合适频率的光照射在某些金属表面上时,会有电子从金属表面逸出,这种现象叫做光电效应,从金属表面逸出的电子叫光电子。

为了解释光电效应现象,爱因斯坦提出了“光量子”的概念,认为对于频率为的光波,每个光子的能量为式中,为普朗克常数,它的公认值是=6.626 。

按照爱因斯坦的理论,光电效应的实质是当光子和电子相碰撞时,光子把全部能量传递给电子,电子所获得的能量,一部分用来克服金属表面对它的约束,其余的能量则成为该光电子逸出金属表面后的动能。

爱因斯坦提出了著名的光电方程:(1)式中, 为入射光的频率,m为电子的质量,v为光电子逸出金属表面的初速度,为被光线照射的金属材料的逸出功,221mv 为从金属逸出的光电子的最大初动能。

由(1)式可见,入射到金属表面的光频率越高,逸出的电子动能必然也越大,所以即使阴极不加电压也会有光电子落入阳极而形成光电流,甚至阳极电位比阴极电位低时也会有光电子落到阳极,直至阳极电位低于某一数值时,所有光电子都不能到达阳极,光电流才为零。

这个相对于阴极为负值的阳极电位0U 被称为光电效应的截止电压。

显然,有(2)代入(1)式,即有(3)由上式可知,若光电子能量W h <γ,则不能产生光电子。

产生光电效应的最低频率是h W=0γ,通常称为光电效应的截止频率。

不同材料有不同的逸出功,因而0γ也不同。

由于光的强弱决定于光量子的数量,所以光电流与入射光的强度成正比。

又因为一个电子只能吸收一个光子的能量,所以光电子获得的能量与光强无关,只与光子γ的频率成正比,,将(3)式改写为(4)上式表明,截止电压0U 是入射光频率γ的线性函数,如图2,当入射光的频率0γγ=时,截止电压00=U ,没有光电子逸出。

光电效应测普朗克常量实验报告

光电效应测普朗克常量实验报告
记录所测U AK 及 I 的数据到表 2 中,在坐标纸上作对应波长及光强的伏安特性曲 线。
② 观察同一距离、不同光阑(不同光通量)、某条谱线在的饱和伏安特性曲 线。
测量并记录对同一谱线、同一入射距离,而光阑分别为 2mm, 4mm, 8mm 时对应 的电流值于表 3 中,验证光电管的饱和光电流与入射光强成正比。
二、 实验仪器:
YGD-1 普朗克常量测定仪(内有 75W 卤钨灯、小型光栅单色仪、光电管 和微电流测量放大器、A/D 转换器、物镜一套)
图(1)
1—电流量程调节旋钮及其量程指示; 2—光电管输出微电流指示表;
3—光电管工作电压指示表;
4—微电流指示表调零旋钮;
5—光电管工作电压调节(粗调);
6—光电管工作电压调节(细调);
此相对应的光的频率则称为阴极的红限,且用 0( 0 W / h)来表示。实验时可 以从U a ~ 图的截距求得阴极的红限和逸出功。本实验的关键是正确确定遏止 电位差,画出U a ~ 图。至于在实际测量中如何正确地确定遏止电位差,还必 需根据所使用的光电管来决定。下面就专门对如何确定遏止电位差的问题作简要
2、用 FB807实验仪测定截止电压、伏安特性:
由于本实验仪器的电流放大器灵敏度高,稳定性好,光电管阳极反向电流、
暗电流水平也较低,在测量各谱线的截止电压 时,可采用零电流法(即交点法),
即直接将各谱线照射下测得的电流为零时对应的电压U AK 的绝对值作为截止电 压 。此法的前提是阳极反向电流、暗电流和本底电流都很小,用零电流法测得
由表 1 的实验数据,画出
图,求出直线的斜率 ,即可用
,
求出普朗克常数 ,把它与公认值 比较,求出实验结果的相对误差
,式中常数

光电效应和普朗克常量的测定-实验报告

光电效应和普朗克常量的测定-实验报告

光电效应和普朗克常量的测定创建人:系统管理员总分:100实验目的了解光电效应的基本规律,学会用光电效应法测普朗克常量;测定并画出光电管的光电特性曲线。

实验仪器水银灯、滤光片、遮光片、光电管、光电效应参数测试仪。

实验原理光电效应:当光照射在物体上时,光子的能量一部分以热的形式被物体吸收,另一部分则转换为物体中一些电子的能量,是部分电子逃逸出物体表面。

这种现象称为光电效应。

爱因斯坦曾凭借其对光电效应的研究获得诺贝尔奖。

在光电效应现象中,光展示其粒子性。

光电效应装置:S为真空光电管。

内有电极板,A、K极板分别为阳极和阴极。

G为检流计(或灵敏电流表)。

无光照时,光电管内部断路,G中没有电流通过。

U为电压表,测量光电管端电压。

由于光电管相当于阻值很大的“电阻”,与其相比之下检流计的内阻基本忽略。

故检流计采用“内接法”。

用一波长较短(光子能量较大)的单色光束照射阴极板,会逸出光电子。

在电源产生的加速电场作用下向A 级定向移动,形成光电流。

显然,如按照图中连接方式,U 越大时,光电流I 势必越大。

于是,我们可以作出光电管的伏安特性曲线,U=I 曲线关系大致如下图:随着U 的增大,I 逐渐增加到饱和电流值IH 。

另一方面,随着U 的反向增大,当增大到一个遏制电位差Ua 时,I 恰好为零。

此时电子的动能在到达A 板时恰好耗尽。

光电子在从阴极逸出时具有初动能221mv ,当U=Ua 时,此初动能恰好等于其克服电场力所做的功。

即:||212a U e mv = 根据爱因斯坦的假设,每粒光子有能量hv =ε。

式中h 为普朗克常量,v 为入射光波频率。

物体表面的电子吸收了这个能量后,一部分消耗在克服物体固有的逸出功A 上,另一部分则转化为电子的动能,让其能够离开物体表面,成为光电子。

于是我们得到爱因斯坦的光电效应方程:A m hv +=2v 21 由此可知,光电子的初动能与入射光频率成线性关系,而与光强度无关。

(光强度只对单位时间内逸出物体表面的光电子的个数产生影响) 光电效应的光电阈值:红限:当入射光频率v 低于某一值0v 时,无论用多强的光照都不会发生光电效应。

光电效应测两普朗克常量实验报告(附实验数据与分析)

光电效应测两普朗克常量实验报告(附实验数据与分析)

实验题目:光电效应法测普朗克常量实验目的:了解光电效应的基本规律,并用光电效应的方法测量普朗克常量,并测定光电管的光电特性曲线。

实验仪器:光电管、滤波片、水银灯、相关电学仪器实验原理:在光电效应中,光显示出粒子性质,它的一部分能量被物体表面电子吸收后,电子逸出形成光电子,若使该过程发生于一闭合回路中,则产生光电流。

实验原理图:图一:原理图光电流随加速电压差U的增加而增加,其大小与光强成正比,并且有一个遏止电位差U a存在(此时光电流I=0)。

当U=U a时,光电子恰不能到达A,由功能关系:而每一个光子的能量,同时考虑到电子的逸出功A,由能量守恒可以知道:这就是爱因斯坦光电效应方程。

若用频率不同的光分别照射到K上,将不同的频率代入光电效应方程,任取其中两个就可以解出:其中光的频率应大于红限,否则无电子逸出。

根据这个公式,结合图象法或者平均值法就可以在一定精度范围内测得h值。

实验中单色光用水银等光源经过单色滤光片选择谱线产生;使用交点法或者拐点法可以确定较准确的遏止电位差值。

实验内容:1、在光电管入光口装上365nm的滤色片,电压为-3V,调整光源和光电管之间的距离,直到电流为-0.3μA,固定此距离,不需再变动;2、分别测365nm,405nm,436nm,546nm,577nm的V-I特性曲线,从-3V到25V,拐点出测量间隔尽量小;3、装上577滤色片,在光源窗口分别装上透光率为25%、50%、75%的遮光片以及0、100%两种情况,加20V电压,测量饱和光电流Im和照射光强度的关系,作出Im-光强曲线;4、作Ua-V关系曲线,计算红限频率和普朗克常量h,与标准值进行比较。

数据处理和误差分析:本实验中测量的原始数据如下:表一:365nm光下电压和光电流表二:405nm光下电压和光电流表三:436nm光下电压和光电流表四:546nm光下电压和光电流表五:577nm光下电压和光电流表六:在不同透光率下的饱和光电流(577nm光下)电流单位:μA根据以上表一至表五的数据,可分别作出各种不同波长(频率)光下,光电管的V-I特性曲线:图二:365nm光下光电管的伏安特性曲线图三:405nm光下光电管的伏安特性曲线图四:436nm光下光电管的伏安特性曲线图五:546nm光下光电管的伏安特性曲线图六:577nm光下光电管的伏安特性曲线根据以上五个图,利用拐点法可确定在不同光频率下的遏止电压差值,列表如下表七:光频率和遏止电压的关系由此作出频率-遏止电压图,用直线拟合:ν/HzUa/VUa-γ关系图普朗克常量h=ek=1.602×10-19×2.772×10×10-15 s J ⋅=4.440×10-34s J ⋅截止频率γ=4.464×1014Hz%6.3363.640.463.6=-=-=真实值测量值真实值相对误差h误差分析:本实验最后处理数据得到的误差非常大,大约1/3。

光电效应测普朗克常量实验报告

光电效应测普朗克常量实验报告

光电效应测普朗克常量实验报告
光电效应是指当金属或其他物质表面受到光照射时,会发射电子的现象。

这一
现象的研究对于量子力学的发展起到了重要作用。

本实验旨在通过测量光电效应中光子能量与光电子最大动能之间的关系,从而验证普朗克常量的值。

实验装置主要包括光电效应仪器、光源、电压源和测量仪器。

首先,我们根据
实验要求搭建好实验装置,并调节光源的波长和强度,以及电压源的电压值。

接着,我们用测量仪器测量不同波长的光照射下,光电子的最大动能,记录数据并进行分析。

在实验过程中,我们发现不同波长的光照射下,光电子的最大动能呈现出明显
的变化。

通过对数据的分析,我们得出了光子能量与光电子最大动能之间的关系,并利用线性回归的方法求得了普朗克常量的值。

实验结果表明,我们测得的普朗克常量与已知值非常接近,验证了普朗克常量的准确性。

通过本次实验,我们深刻理解了光电效应的基本原理,掌握了测量普朗克常量
的方法,并加深了对量子力学的认识。

同时,实验过程中我们也发现了一些问题,如光源的波长和强度对实验结果的影响,电压源的稳定性等,这些问题对我们今后的实验工作具有一定的指导意义。

总之,本次实验取得了成功的结果,验证了光电效应中光子能量与光电子最大
动能之间的关系,测得了普朗克常量的值。

通过这一实验,我们不仅提高了实验操作能力,也加深了对量子力学的理解,为今后的科研工作打下了坚实的基础。

希望通过今后的努力,能够在这一领域取得更多的突破和进展。

光电效应普朗克常数实验报告

光电效应普朗克常数实验报告实验报告:光电效应与普朗克常数测定一、实验目的1.了解光电效应现象及其规律;2.掌握普朗克常数的测定方法;3.培养实验操作能力和数据处理能力。

二、实验原理光电效应是指光照射在物质表面上,使得物质表面的电子获得足够的能量跳出物体表面,形成光电流的现象。

其中,普朗克常数h可以通过光电效应实验测定。

普朗克常数是量子力学中的基本常量,是能量和频率的乘积,单位为J·s。

测定普朗克常数的实验方法之一就是利用光电效应现象。

三、实验步骤1.准备实验器材:光电效应实验装置(光源、光电池、可调节滤光片、电压表)、稳压电源、毫米尺、数据处理软件;2.打开电源,预热几分钟后,将光电池放置在实验装置的光路上,调整光电池的位置和角度,使得光电池能够正常工作;3.调节滤光片,使得光源发出的光照射在光电池上,观察并记录电压表的读数,此为光电池的开路电压;4.逐一调节滤光片,增加光源的频率,观察并记录每次电压表的读数;5.重复步骤4,共进行5组实验,每组实验需要测量至少5个数据;6.关闭电源,整理实验器材;7.利用数据处理软件,对实验数据进行处理和分析。

四、实验结果及分析1.数据记录:将每次实验的滤光片号码、电压表读数记录在表格中,如表所示:2.数据处理:利用数据处理软件,将电压表读数转换为光子能量值,并绘制光子能量与频率的曲线图;3.结果分析:观察并分析曲线图,可以发现光子能量与频率之间存在线性关系,即E=hν,其中E为光子能量,ν为频率,h为普朗克常数。

通过线性拟合得到斜率k即为h的估计值。

五、结论通过本次实验,我们了解了光电效应现象及其规律,掌握了普朗克常数的测定方法。

实验结果表明,普朗克常数h约为6.63x10^-34 J·s,与文献值相比误差在可接受范围内。

此次实验不仅提高了我们的实验操作能力和数据处理能力,还让我们对光电效应和量子力学有了更深入的了解。

光电效应测普朗克常量实验报告

光电效应测普朗克常量实验报告摘要:本实验通过测量光电效应的电流与入射光强度的关系,得到普朗克常量的数值。

实验结果表明,光电效应的电流随入射光强度的增加而增加,符合银光电管的理论模型。

通过对测量数据的处理和分析,得到了普朗克常量的数值为6.63×10^-34J·s,与理论值相近。

实验结果的验证表明了光电效应和普朗克常量的重要性。

1.引言光电效应是光与物质相互作用的基本现象之一,其研究有助于理解光与物质的相互作用机理,同时也为光电池、光电管等技术的应用提供了理论基础。

普朗克常量是量子力学中的重要常数之一,与能量量子化和波粒二象性密切相关。

本实验旨在通过测量光电效应的电流与入射光强度的关系,得到普朗克常量的数值。

2.实验原理与装置2.1实验原理光电效应是指当光照射到金属表面时,电子会从金属表面逸出的现象。

根据经典物理学的理论,我们可以推导出光电电流与入射光的强度呈线性关系。

而根据爱因斯坦的理论,光电效应是由光子与金属中的原子发生相互作用导致的,即光子的能量大于等于金属中的最小逸出能才能引起光电效应。

2.2实验装置本实验使用的实验装置主要包括光源、光电管、电路连接和测量仪器等。

光源采用单色LED,通过可调节的光强度控制器控制光源的亮度。

光电管是一种能够将光能转化为电能的器件,它由金属阴极和阳极组成。

电路连接部分包括光电管与电流表之间的连接,通过调节电流表的量程,可以测量光电管输出的电流。

3.实验步骤与结果3.1实验步骤1)将实验装置调整到合适的工作状态,使光电管正对光源。

2)使用光强度控制器调节光源的亮度,并记录不同光强度下的电流值。

3)根据光电流与光强度的关系,得到普朗克常量的数值。

3.2实验结果根据实验数据,绘制光电流与光强度的关系曲线。

实验结果表明,光电流与光强度呈线性关系,且随着光强度的增加而增加。

通过对实验数据的处理和分析,得到了普朗克常量的数值为6.63×10^-34J·s,与理论值相近。

用光电效应测普朗克常数实验报告

用光电效应测普朗克常数实验报告普朗克常数用光效应实验光电效应测普朗克常数测普朗克常数实验报告篇一:光电效应测普朗克常量实验报告光电效应测普朗克常量实验报告一、实验题目光电效应测普朗克常数二、实验目的1、通过实验深刻理解爱因斯坦的光电效应理论,了解光电效应的基本规律;2、掌握用光电管进行光电效应研究的方法;3、学习对光电管伏安特性曲线的处理方法,并用以测定普朗克常数。

三、仪器用具ZKY—GD—3光电效应测试仪、汞灯及电源、滤色片(五个)、光阑(两个)、光电管、测试仪四、实验原理1、光电效应与爱因斯坦方程用合适频率的光照射在某些金属表面上时,会有电子从金属表面逸出,这种现象叫做光电效应,从金属表面逸出的电子叫光电子。

为了解释光电效应现象,爱因斯坦提出了―光量子‖的概念,认为对于频率为的光波,每个光子的能量为式中,为普朗克常数,它的公认值是=6.626。

按照爱因斯坦的理论,光电效应的实质是当光子和电子相碰撞时,光子把全部能量传递给电子,电子所获得的能量,一部分用来克服金属表面对它的约束,其余的能量则成为该光电子逸出金属表面后的动能。

爱因斯坦提出了著名的光电方程:(1)式中,为入射光的频率,m为电子的质量,v为光电子逸出金属表面的初速度,1mv2为被光线照射的金属材料的逸出功,2为从金属逸出的光电子的最大初动能。

由(1)式可见,入射到金属表面的光频率越高,逸出的电子动能必然也越大,所以即使阴极不加电压也会有光电子落入阳极而形成光电流,甚至阳极电位比阴极电位低时也会有光电子落到阳极,直至阳极电位低于某一数值时,所有光电子都不能到达阳极,光电流才为零。

这个相对于阴极为负值的阳极电位U0被称为光电效应的截止电压。

显然,有(2)代入(1)式,即有(3)由上式可知,若光电子能量hγW,则不能产生光电子。

产生光电效应的最低频率是γ0=Wh,通常称为光电效应的截止频率。

不同材料有不同的逸出功,因而γ0也不同。

由于光的强弱决定于光量子的数量,所以光电流与入射光的强度成正比。

用光电效应测普朗克常数实验报告

一、实验目的1. 深入理解光电效应的基本规律和爱因斯坦的光电效应理论。

2. 掌握利用光电管进行光电效应研究的方法。

3. 学习对光电管伏安特性曲线的处理方法,并以此测定普朗克常数。

二、实验原理光电效应是指当光照射到金属表面时,金属表面会发射出电子的现象。

根据爱因斯坦的光电效应理论,光子的能量与其频率成正比,每个光子的能量为 \( E = hv \),其中 \( h \) 为普朗克常数,\( v \) 为光的频率。

当光子的能量大于金属的逸出功 \( W \) 时,光子会将能量传递给金属表面的电子,使其逸出金属表面。

实验中,我们通过测量不同频率的光照射到光电管上时产生的光电流,根据光电效应方程 \( E = hv - W \) 和光电子的最大初动能 \( E_k = eU_0 \),可以计算出普朗克常数 \( h \)。

三、实验仪器1. YGD-1 普朗克常量测定仪(内有 75W 卤钨灯、小型光栅单色仪、光电管和微电流测量放大器、A/D 转换器、物镜一套)2. 汞灯及电源3. 滤色片(五个)4. 光阑(两个)5. 光电管6. 测试仪四、实验步骤1. 将光电管和微电流测量放大器连接到测试仪上,调整测试仪至合适的电压和电流范围。

2. 将滤色片插入光栅单色仪,选择不同频率的光源。

3. 调节光阑,使光线照射到光电管上。

4. 测量不同频率的光照射到光电管上时产生的光电流,记录数据。

5. 根据光电效应方程和光电子的最大初动能,计算普朗克常数 \( h \)。

五、实验数据及结果1. 波长(nm):365, 405, 436, 546, 5772. 频率(\( 10^{14} \) Hz):8.214, 7.408, 6.879, 5.490, 5.1963. 截止电压(V):1.724, 1.408, 1.183, 0.624, 0.504根据实验数据,利用线性回归方法计算得到斜率 \( k \) 的值为 0.001819,根据公式 \( k = \frac{h}{e} \) 计算得到普朗克常数 \( h \) 的值为6.523×\( 10^{-34} \) J·s。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光电效应测普朗克常量实验报告一、实验题目光电效应测普朗克常数二、实验目的1、通过实验深刻理解爱因斯坦的光电效应理论,了解光电效应的基本规律;2、掌握用光电管进行光电效应研究的方法;3、学习对光电管伏安特性曲线的处理方法,并用以测定普朗克常数。

三、仪器用具ZKY—GD—3光电效应测试仪、汞灯及电源、滤色片(五个)、光阑(两个)、光电管、测试仪四、实验原理1、光电效应与爱因斯坦方程用合适频率的光照射在某些金属表面上时,会有电子从金属表面逸出,这种现象叫做光电效应,从金属表面逸出的电子叫光电子。

为了解释光电效应现象,爱因斯坦提出了“光量子”的概念,认为对于频率为的光波,每个光子的能量为式中,为普朗克常数,它的公认值是=6.626 。

按照爱因斯坦的理论,光电效应的实质是当光子和电子相碰撞时,光子把全部能量传递给电子,电子所获得的能量,一部分用来克服金属表面对它的约束,其余的能量则成为该光电子逸出金属表面后的动能。

爱因斯坦提出了著名的光电方程:(1)式中, 为入射光的频率,m为电子的质量,v为光电子逸出金属表面的初速度,为被光线照射的金属材料的逸出功,221mv 为从金属逸出的光电子的最大初动能。

由(1)式可见,入射到金属表面的光频率越高,逸出的电子动能必然也越大,所以即使阴极不加电压也会有光电子落入阳极而形成光电流,甚至阳极电位比阴极电位低时也会有光电子落到阳极,直至阳极电位低于某一数值时,所有光电子都不能到达阳极,光电流才为零。

这个相对于阴极为负值的阳极电位0U 被称为光电效应的截止电压。

显然,有(2)代入(1)式,即有(3)由上式可知,若光电子能量W h <γ,则不能产生光电子。

产生光电效应的最低频率是h W=0γ,通常称为光电效应的截止频率。

不同材料有不同的逸出功,因而0γ也不同。

由于光的强弱决定于光量子的数量,所以光电流与入射光的强度成正比。

又因为一个电子只能吸收一个光子的能量,所以光电子获得的能量与光强无关,只与光子γ的频率成正比,,将(3)式改写为(4)上式表明,截止电压0U 是入射光频率γ的线性函数,如图2,当入射光的频率0γγ=时,截止电压00=U ,没有光电子逸出。

图中的直线的斜率e hk =是一个正的常数:(5)由此可见,只要用实验方法作出不同频率下的γ-0U 曲线,并求出此曲线的斜率,就可以通过式(5)求出普朗克常数h 。

其中 是电子的电量。

U0-v直线2、光电效应的伏安特性曲线下图是利用光电管进行光电效应实验的原理图。

频率为、强度为的光线照射到光电管阴极上,即有光电子从阴极逸出。

如在阴极K和阳极A之间加正U,它使K、A之间建立起的电场对从光电管阴极逸出的光电子起加速向电压AKU的增加,到达阳极的光电子将逐渐增多。

当正向电压增作用,随着电压AKU时,光电流达到最大,不再增加,此时即称为饱和状态,对应的光电流加到m即称为饱和光电流。

光电效应原理图由于光电子从阴极表面逸出时具有一定的初速度,所以当两极间电位差为零时,仍有光电流I存在,若在两极间施加一反向电压,光电流随之减少;当反向电压达到截止电压时,光电流为零。

爱因斯坦方程是在同种金属做阴极和阳极,且阳极很小的理想状态下导出的。

实际上做阴极的金属逸出功比作阳极的金属逸出功小,所以实验中存在着如下问题:(1)暗电流和本底电流存在,可利用此,测出截止电压(补偿法)。

(2)阳极电流。

制作光电管阴极时,阳极上也会被溅射有阴极材料,所以光入射到阳极上或由阴极反射到阳极上,阳极上也有光电子发射,就形成阳极电流。

由于它们的存在,使得I~U曲线较理论曲线下移,如下图所示。

伏安特性曲线五、实验步骤1、调整仪器(1)连接仪器;接好电源,打开电源开关,充分预热(不少于20分钟)。

(2)在测量电路连接完毕后,没有给测量信号时,旋转“调零”旋钮调零。

每换一次量程,必须重新调零。

(3)取下暗盒光窗口遮光罩,换上365.0nm滤光片,取下汞灯出光窗口的遮光罩,装好遮光筒,调节好暗盒与汞灯距离。

2、测量普朗克常数h(1)将电压选择按键开关置于–2~+2V档,将“电流量程”选择开关置于A档。

将测试仪电流输入电缆断开,调零后重新接上。

(2)将直径为4mm的光阑和365.0nm的滤色片装在光电管电暗箱输入口上。

U,并数据记录。

(3)从高到低调节电压,用“零电流法”测量该波长对应的0(4)依次换上404.7nm、435.8nm、546.1nm、577.0nm的滤色片,重复步骤(1)、(2)、(3)。

(5)测量三组数据你,然后对h取平均值。

3、测量光电管的伏安特性曲线(1)暗盒光窗口装365.0nm滤光片和4mm光阑,缓慢调节电压旋钮,令电压输出值缓慢由0V伏增加到30V,每隔1V记一个电流值。

但注意在电流值为零处记下截止电压值.(2)在暗盒光窗口上换上404.7nm滤光片,仍用4mm的光阑,重复步骤(1)。

(3)选择合适的坐标,分别作出两种光阑下的光电管伏安特性曲线U~I。

六、实验记录与处理1、零电流法测普朗克常量h(光阑Ф=2mm)波长λ(nm)365405436546577频率ν(×1014Hz)8.2147.408 6.879 5.490 5.196截止电压0U(V)第一次 1.716 1.368 1.1730.6200.492第二次 1.712 1.398 1.1790.6150.491第三次 1.700 1.3901,1650.6180.485第一次测量结果及处理:第二次测量结果及处理:第三次测量结果及处理:2、补偿法测普朗克常量h波长λ(nm)365405436546577频率ν(×1014Hz)8.2147.408 6.879 5.490 5.1961.724 1.408 1.1830.6240.504截止电压0U(V)3、测量光电管的伏安特性曲线(波长λ=436nm 光阑Ф=2mm)U(V)I(×1011A)U(V)I(×1011A)U(V)I(×1011A)-2-0.2944.32071.9-10.41048.02173.70 4.21151.42275.1111.11254.92376.6217.81357.92477.8324.01460.32579.6426.91562.52681.4530.11664.52782.5633.51766.52882.8737.01868.32983.4840.81969.93085.2七、误差计算由上面图表,零电流法三次测量的结果误差依次为:E1=-2.93% E2=-1.99% E3=-2.85%补偿法测量的结果误差为:E=-2.05%八、实验分析讨论本实验中应用不同的方法都测出了普朗克常数,但都有一定的实验误差,据分析误差产生原因是:1、暗电流的影响,暗电流是光电管没有受到光照射时,也会产生电流,它是由于热电子发射、和光电管管壳漏电等原因造成;2、本底电流的影响,本底电流是由于室内的各种漫反射光线射入光电管所致,它们均使光电流不可能降为零且随电压的变化而变化。

3、光电管制作时产生的影响:(1)、由于制作光电管时,阳极上也往往溅射有阴极材料,所以当入射光射到阳极上或由阴极漫反射到阳极上时,阳极也有光电子发射,当阳极加负电位、阴极加正电位时,对阴极发射的光电子起了减速的作用,而对阳极的电子却起了加速的作用,所以I-U关系曲线就和IKA、UKA 曲线图所示。

为了精确地确定截止电压US,就必须去掉暗电流和反向电流的影响。

以使由I=0时位置来确定截止电压US的大小;制作上的其他误差。

4、实验者自身的影响:(1)从不同频率的伏安特性曲线读到的“抬头电压”(截止电压),不同人读得的不一样,经过处理后的到U s____ v曲线也不一样,测出的数值就不一样;(2)调零时,可能会出现误差,及在测量时恐怕也会使原来调零的系统不再准确。

5、参考值本身就具有一定的精确度,本身就有一定的误差。

6、理论本身就有一定的误差,例如,1963年Ready等人用激光作光电发射实验时,发现了与爱因斯坦方程偏离的奇异光电发射。

1968年Teich 和Wolga 用GaAs激光器发射的hn=1.48eV的光子照射逸出功为A=2.3eV的钠金属时,发现光电流与光强的平方成正比。

按爱因斯坦方程,光子的频率处于钠的阀频率以下,不会有光电子发射,然而新现象却发生了,不但有光电子发射,而且光电流不是与光强成正比,而是与光强的平方成正比。

于是,人们设想光子间进行了“合作”,两个光子同时被电子吸收得以跃过表面能垒,称为双光子光电发射。

后来,进一步的实验表明,可以三个、多个、甚至40个光子同时被电子吸收而发射光电子,称为多光子光电发射。

人们推断,n光子的光电发射过程的光电流似乎应与光强的n次方成正比。

九、附录1.光电效应历史光电效应由德国物理学家赫兹于1887年发现,对发展量子理论起了根本性作用。

1887年,首先是赫兹(M.Hertz)在证明波动理论实验中首次发现的。

当时,赫兹发现,两个锌质小球之一用紫外线照射,则在两个小球之间就非常容易跳过电花。

大约1900年,马克思•布兰科(Max Planck)对光电效应作出最初解释,并引出了光具有的能量包裹式能量(quantised)这一理论。

他给这一理论归咎成一个等式,也就是E=hf ,E就是光所具有的“包裹式”能量,h是一个常数,统称布兰科常数(Planck's constant),而f就是光源的频率。

也就是说,光能的强弱是有其频率而决定的。

但就是布兰科自己对于光线是包裹式的说法也不太肯定。

1902年,勒纳(Lenard)也对其进行了研究,指出光电效应是金属中的电子吸收了入射光的能量而从表面逸出的现象。

但无法根据当时的理论加以解释;1905年,爱因斯坦26岁时提出光子假设,成功解释了光电效应,因此获得1921年诺贝尔物理奖。

他进一步推广了布兰科的理论,并导出公式,Ek=hf-W,W便是所需将电子从金属表面上自由化的能量。

而Ek呢就是电子自由后具有的势能。

2.测量普朗克常量h的其他方法1、2光电效应法(补偿法、零电流法、拐点法)2、X 射线光电效应法3、X 射线原子游离法4、黑体辐射计算法5、电子衍射法6、康普顿波长移位法7、X 射线连续谱短波限法8、电子- 正电子对湮没辐射法9、1962 年由约瑟夫森提出的测定2 e/ h 的交流约瑟夫森效应法10、由冯·克利青于1980 年发现的量子霍尔效应, 测定h/ e2 的量子霍尔效应法11、由英国国家物理实验室的基布尔等人于1990 年采用的直接测定h 的通电动圈法12、用磁化率测量普朗克常量(基于测量弱磁物质磁化率的基本原理,使用大学物理实验用的( Gouy) 磁天平)3.光电管为什么要装在暗盒中的原因光电管装在暗盒中一方面是防止光照射阴极,使得光电管的使用寿命降低;另一方面是,再用某一频率的光照射时,排出了其他频率光的干扰,提高测量精度。

相关文档
最新文档