数学:教学参考数学:高考数学二轮专题训练4
(浙江专用)高考数学二轮复习 专题四 立体几何 第1讲 空间几何体专题强化训练-人教版高三全册数学试

第1讲空间几何体专题强化训练1.《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点,以AA1为底面矩形的一边,则这样的阳马的个数是( )A.4 B.8C.12 D.16解析:选D.如图,以AA1为底面矩形一边的四边形有AA1C1C、AA1B1B、AA1D1D、AA1E1E这4个,每一个面都有4个顶点,所以阳马的个数为16个.故选D.2.正方体ABCDA1B1C1D1中,E为棱BB1的中点(如图),用过点A,E,C1的平面截去该正方体的上半部分,则剩余几何体的正视图为( )解析:选C.过点A,E,C1的平面与棱DD1相交于点F,且F是棱DD1的中点,截去正方体的上半部分,剩余几何体的直观图如图所示,则其正视图应为选项C.3.某几何体的三视图如图所示(单位:cm),则该几何体的体积是( )A .8 cm 3B .12 cm 3C .323cm 3D .403cm 3解析:选C.由三视图可知,该几何体是由一个正方体和一个正四棱锥构成的组合体.下面是棱长为2 cm 的正方体,体积V 1=2×2×2=8(cm 3);上面是底面边长为2 cm ,高为2 cm 的正四棱锥,体积V 2=13×2×2×2=83(cm 3),所以该几何体的体积V =V 1+V 2=323(cm 3).4.(2019·某某模拟)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体最长的棱长等于( )A .34B .41C .5 2D .215解析:选C.由正视图、侧视图、俯视图的形状,可判断该几何体为三棱锥,形状如图,其中SC ⊥平面ABC ,AC ⊥AB ,所以最长的棱长为SB =5 2.5.(2019·某某十校联考)某几何体的三视图如图所示,则该几何体的体积是( )A .15π2B .8π C.17π2D .9π解析:选B.依题意,题中的几何体是由两个完全相同的圆柱各自用一个不平行于其轴的平面去截后所得的部分拼接而成的组合体(各自截后所得的部分也完全相同),其中一个截后所得的部分的底面半径为1,最短母线长为3、最长母线长为5,将这两个截后所得的部分拼接恰好形成一个底面半径为1,母线长为5+3=8的圆柱,因此题中的几何体的体积为π×12×8=8π,选B.6.如图,圆柱内有一个直三棱柱,三棱柱的底面在圆柱底面内,且底面是正三角形.如果三棱柱的体积为123,圆柱的底面直径与母线长相等,则圆柱的侧面积为( )A .12πB .14πC .16πD .18π解析:选C.设圆柱的底面半径为R ,则三棱柱的底面边长为3R ,由34(3R )2·2R =123,得R =2,S 圆柱侧=2πR ·2R =16π.故选C.7.(2019·某某市第一次模拟)某几何体的三视图如图所示(网格线中每个小正方形的边长为1),则该几何体的表面积为( )A .48B .54C .64D .60解析:选D.根据三视图还原直观图,如图所示,则该几何体的表面积S =6×3+12×6×4+2×12×3×5+12×6×5=60,故选D.8.在封闭的直三棱柱ABC A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A.4πB.9π2C.6πD.32π3解析:选B.由题意可得若V 最大,则球与直三棱柱的部分面相切,若与三个侧面都相切,可求得球的半径为2,球的直径为4,超过直三棱柱的高,所以这个球放不进去,则球可与上下底面相切,此时球的半径R =32,该球的体积最大,V max =43πR 3=4π3×278=9π2.9.(2019·某某八校联考)某几何体是直三棱柱与圆锥的组合体,其直观图和三视图如图所示,正视图为正方形,其中俯视图中椭圆的离心率为( )A.12B.24C.22 D.32解析:选C.依题意得,题中的直三棱柱的底面是等腰直角三角形,设其直角边长为a ,则斜边长为2a ,圆锥的底面半径为22a 、母线长为a ,因此其俯视图中椭圆的长轴长为2a 、短轴长为a ,其离心率e =1-(a2a)2=22,选C. 10.已知圆柱OO 1的底面半径为1,高为π,ABCD 是圆柱的一个轴截面.动点M 从点B 出发沿着圆柱的侧面到达点D ,其距离最短时在侧面留下的曲线Γ如图所示.现将轴截面ABCD 绕着轴OO 1逆时针旋转θ(0<θ≤π)后,边B 1C 1与曲线Γ相交于点P ,设BP 的长度为f (θ),则y =f (θ)的图象大致为( )解析:选A.将圆柱的侧面沿轴截面ABCD 展平,则曲线Γ是展开图形(即矩形)的对角线,根据题意,将轴截面ABCD 绕着轴OO 1逆时针旋转θ(0<θ≤π)后,边B 1C 1与曲线Γ相交于点P ,设BP 的长度为f (θ),则f (θ)应当是一次函数的一段,故选A.11.(2019·某某省重点中学高三12月期末热身联考)某空间几何体的三视图如图所示,则该几何体的体积是________;表面积是________.解析:根据三视图可得,该几何体是长方体中的四棱锥C BB 1D 1D ,由三视图可得:AB =2,BC =2,BB 1=4,VC BB 1D 1D =23×12×2×2×4=163,S C BB 1D 1D =12×2×2+22×4+12×2×4+12×2×4+12×22×18=16+8 2.答案:16316+8 212.(2019·某某市余姚中学期中检测)某几何体的三视图如图所示(单位:cm),则该几何体的体积为________ cm 3,表面积为________cm 2.解析:由三视图可知:该几何体是由一个半球去掉14后得到的几何体.所以该几何体的体积=34×12×43×π×13=π2cm 3.表面积=34×12×4π×12+12×π×12+34×π×12=11π4 cm 2.答案:π211π413.(2019·某某省“五校联盟”质量检测)已知球O 的表面积为25π,长方体的八个顶点都在球O 的球面上,则这个长方体的表面积的最大值等于________.解析:设球的半径为R ,则4πR 2=25π,所以R =52,所以球的直径为2R =5,设长方体的长、宽、高分别为a 、b 、c ,则长方体的表面积S =2ab +2ac +2bc ≤a 2+b 2+a 2+c 2+b 2+c 2=2(a 2+b 2+c 2)=50.答案:5014.(2019·某某省高三考前质量检测)某几何体的三视图如图所示,当xy 取得最大值时,该几何体的体积是____________.解析:分析题意可知,该几何体为如图所示的四棱锥P ABCD ,CD =y2,AB=y ,AC =5,CP =7,BP =x ,所以BP 2=BC 2+CP 2,即x 2=25-y 2+7,x 2+y2=32≥2xy ,则xy ≤16,当且仅当x =y =4时,等号成立.此时该几何体的体积V =13×2+42×3×7=37.答案:3715.(2019·某某市高考数学二模)在正方体ABCD A 1B 1C 1D 1中,E 是AA 1的中点,则异面直线BE 与B 1D 1所成角的余弦值等于________,若正方体棱长为1,则四面体B EB 1D 1的体积为________.解析:取CC 1中点F ,连接D 1F ,B 1F ,则BE 綊D 1F , 所以∠B 1D 1F 为异面直线BE 与B 1D 1所成的角.设正方体棱长为1,则B 1D 1=2,B 1F =D 1F =1+14=52.所以cos ∠B 1D 1F =12B 1D 1D 1F =2252=105. V B EB 1D 1=V D 1BB 1E =13S △BB 1E ·A 1D 1=13×12×1×1×1=16.答案:1051616.已知棱长均为a 的正三棱柱ABC A 1B 1C 1的六个顶点都在半径为216的球面上,则a 的值为________.解析:设O 是球心,D 是等边三角形A 1B 1C 1的中心,则OA 1=216,因为正三棱柱ABC A 1B 1C 1的所有棱长均为a ,所以A 1D =32a ×23=33a ,OD =a 2,故A 1D 2+OD 2=⎝ ⎛⎭⎪⎫33a 2+⎝ ⎛⎭⎪⎫a 22=⎝ ⎛⎭⎪⎫2162,得712a 2=2136,即a 2=1,得a =1. 答案:117.(2019·瑞安四校联考)已知底面为正三角形的三棱柱内接于半径为1的球,则此三棱柱的体积的最大值为________.解析:如图,设球心为O ,三棱柱的上、下底面的中心分别为O 1,O 2,底面正三角形的边长为a ,则AO 1=23×32a =33a .由已知得O 1O 2⊥底面, 在Rt △OAO 1中,由勾股定理得OO 1=12-⎝ ⎛⎭⎪⎫33a 2=3·3-a 23,所以V 三棱柱=34a 2×2×3·3-a 23=3a 4-a62,令f (a )=3a 4-a 6(0<a <2), 则f ′(a )=12a 3-6a 5=-6a 3(a 2-2),令f ′(a )=0,解得a = 2.因为当a ∈(0,2)时,f ′(a )>0;当a ∈(2,2)时,f ′(a )<0,所以函数f (a )在(0,2)上单调递增,在(2,2)上单调递减. 所以f (a )在a =2处取得极大值.因为函数f (a )在区间(0,2)上有唯一的极值点,所以a =2也是最大值点.所以(V 三棱柱)max=3×4-82=1. 答案:118.如图,四棱锥P ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD , ∠BAD =∠ABC =90°.(1)证明:直线BC ∥平面PAD ;(2)若△PCD 的面积为27,求四棱锥P ABCD 的体积.解:(1)证明:在平面ABCD 内,因为∠BAD =∠ABC =90°,所以BC ∥AD .又BC ⊄平面PAD ,AD ⊂平面PAD ,故BC ∥平面PAD .(2)取AD 的中点M ,连接PM ,CM .由AB =BC =12AD 及BC ∥AD ,∠ABC =90°得四边形ABCM 为正方形,则CM ⊥AD .因为侧面PAD 为等边三角形且垂直于底面ABCD ,平面PAD ∩平面ABCD =AD ,所以PM ⊥AD ,PM ⊥底面ABCD .因为CM ⊂底面ABCD ,所以PM ⊥CM .设BC =x ,则CM =x ,CD =2x ,PM =3x ,PC =PD =2x . 取CD 的中点N ,连接PN , 则PN ⊥CD ,所以PN =142x . 因为△PCD 的面积为27, 所以12×2x ×142x =27,解得x =-2(舍去)或x =2.于是AB =BC =2,AD =4,PM =2 3. 所以四棱锥P ABCD 的体积V =13×2×(2+4)2×23=4 3.19.如图,在△ABC 中,∠B =π2,AB =BC =2,P 为AB 边上一动点,PD ∥BC 交AC 于点D .现将△PDA 沿PD 翻折至△PDA ′,使平面PDA ′⊥平面PBCD .(1)当棱锥A ′PBCD 的体积最大时,求PA 的长;(2)若P 为AB 的中点,E 为A ′C 的中点,求证:A ′B ⊥DE . 解:(1)设PA =x ,则PA ′=x , 所以V A ′PBCD =13PA ′·S 底面PBCD =13x ⎝ ⎛⎭⎪⎫2-x 22.令f (x )=13x ⎝ ⎛⎭⎪⎫2-x 22=2x 3-x36(0<x <2),则f ′(x )=23-x22.当x 变化时,f ′(x ),f (x )的变化情况如下表:x ⎝⎛⎭⎪⎫0,233233 ⎝ ⎛⎭⎪⎫233,2 f ′(x )0 f (x )单调递增极大值单调递减由上表易知,当PA =x =233时,V A ′PBCD 取最大值.(2)证明:取A ′B 的中点F ,连接EF ,FP . 由已知,得EF 綊12BC 綊PD .所以四边形EFPD 是平行四边形, 所以ED ∥FP .因为△A ′PB 为等腰直角三角形, 所以A ′B ⊥PF .所以A ′B ⊥DE .。
高考数学二轮复习专练四中档大题(四)

中档大题(四)1.(2013·高考陕西卷)有7位歌手(1至7号)参加一场歌唱比赛,由500名大众评委现组别A B C D E人数50 100 150 150 50(1)委,组别A B C D E 人数50 100 150 150 50抽取人数 6抽到的评委中分别任选1人,求这2人都支持1号歌手的概率.2.(2013·高考课标全国卷Ⅱ)如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.(1)证明:BC1∥平面A1CD;(2)设AA1=AC=CB=2,AB=22,求三棱锥C-A1DE的体积.3.(2013·河北省普通高中高三教学质量检测)已知正项数列{a n},{b n}满足a1=3,a2=6,{b n}是等差数列,且对任意正整数n,都有b n,a n,b n+1成等比数列.(1)求数列{b n}的通项公式;(2)设S n=1a1+1a2+…+1a n,试比较2S n与2-b2n+1a n+1的大小.4.(2013·湖北省武汉市高中毕业生调研测试)如图,已知正方形ABCD 的边长为2,AC 与BD 交于点O ,将正方形ABCD 沿对角线BD 折起,得到三棱锥A -BCD .(1)求证:平面AOC ⊥平面BCD ; (2)若三棱锥A -BCD 的体积为63,且∠AOC 是钝角,求AC 的长.5.(2013·高考福建卷)某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:[50,60)、[60,70)、[70,80)、[80,90)、[90,100]分别加以统计,得到如图所示的频率分布直方图.(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率;(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?附:K2=n(ad-bc)2(6.(2013·高考福建卷)如图,在等腰直角△OPQ中,∠POQ=90°,OP=22,点M 在线段PQ上.(1)若OM=5,求PM的长;(2)若点N在线段MQ上,且∠MON=30°,问:当∠POM取何值时,△OMN的面积最小?并求出面积的最小值.答案:1.【解】(1)(2)记从A 12312号歌手;从B 组抽到的6位评委分别为b 1,b 2,b 3,b 4,b 5,b 6,其中b 1,b 2支持1号歌手,从{a 1,a 2,a 3}和{b 1,b 2,b 3,b 4,b 5,b 6}中各抽取1人的所有结果如图:由树状图知所有结果共18种,其中2人都支持1号歌手的有a 1b 1,a 1b 2,a 2b 1,a 2b 2共4种,故所求概率P =418=29. 2.【解】(1)证明:连接AC 1交A 1C 于点F ,则F 为AC 1的中点.又D 是AB 的中点,连接DF ,则BC 1∥DF .因为DF ⊂平面A 1CD ,BC 1⊄平面A 1CD ,所以BC 1∥平面A 1CD .(2)因为ABC -A 1B 1C 1是直三棱柱,所以AA 1⊥CD .由已知AC =CB ,D 为AB 的中点,所以CD ⊥AB .又AA 1∩AB =A ,于是CD ⊥平面ABB 1A 1.由AA 1=AC =CB =2,AB =22得∠ACB =90°,CD =2,A 1D =6,DE =3,A 1E =3,故A 1D 2+DE 2=A 1E 2,即DE ⊥A 1D .所以V 三棱锥C -A 1DE =13×12×6×3×2=1. 3.【解】(1)∵对任意正整数n ,都有b n ,a n ,b n +1成等比数列,且{a n },{b n }都为正项数列,∴a n =b n b n +1(n ∈N *).可得a 1=b 1b 2=3,a 2=b 2b 3=6,又{b n }是等差数列,∴b 1+b 3=2b 2,解得b 1=2,b 2=322. ∴b n =22(n +1)(n ∈N *). (2)由(1)可得a n =b n b n +1=(n +1)(n +2)2, 则1a n =2(n +1)(n +2)=2(1n +1-1n +2), ∴S n =2[(12-13)+(13-14)+…+(1n +1-1n +2)] =1-2n +2,∴2S n =2-4n +2,又2-b 2n +1a n +1=2-n +2n +3,∴2S n -(2-b 2n +1a n +1)=n +2n +3-4n +2=n 2-8(n +2)(n +3). ∴当n =1,2时,2S n <2-b 2n +1a n +1;当n ≥3时,2S n >2-b 2n +1a n +1. 4.【解】(1)证明:∵四边形ABCD 是正方形,∴BD ⊥AO ,BO ⊥CO .折起后仍有BD ⊥AO ,BD ⊥CO ,AO ∩CO =O ,∴BD ⊥平面AOC .∵BD ⊂平面BCD ,∴平面AOC ⊥平面BCD .(2)由(1)知BD ⊥平面AOC ,∴V A BCD =13S △AOC ·BD ,又V A BCD =63, ∴13×12OA ·OC ·sin ∠AOC ·BD =63, 即13×12×2×2×sin ∠AOC ×22=63, ∴sin ∠AOC =32, ∵∠AOC 是钝角,∴∠AOC =120°. 在△AOC 中,由余弦定理,得AC 2=OA 2+OC 2-2·OA ·OC ·cos ∠AOC=(2)2+(2)2-2×2×2×cos 120°=6,∴AC = 6.5.【解】(1)由已知得,样本中有25周岁以上组工人60名,25周岁以下组工人40名.所以,样本中日平均生产件数不足60件的工人中,25周岁以上组工人有60×0.05=3(人),记为A 1,A 2,A 3;25周岁以下组工人有40×0.05=2(人),记为B 1,B 2.从中随机抽取2名工人,所有的可能结果共有10种,它们是:(A 1,A 2),(A 1,A 3),(A 2,A 3),(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2).其中,至少有1名“25周岁以下组”工人的可能结果共有7种,它们是:(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2).故所求的概率P =710. (2)由频率分布直方图可知,在抽取的100名工人中,“25周岁以上组”中的生产能手60×0.25=15(人),“25周岁以下组”中的生产能手40×0.375=15(人),据此可得2×2列联表如下:所以得K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d )=100×(15×25-15×45)260×40×30×70=2514≈1.79. 因为1.79<2.706,所以没有90%的把握认为“生产能手与工人所在的年龄组有关”.6.【解】(1)在△OMP 中,∠OPM =45°,OM =5,OP =22,由余弦定理得,OM 2=OP 2+MP 2-2OP ·MP ·cos 45°,得MP 2-4MP +3=0,解得MP =1或MP =3.(2)设∠POM =α,0°≤α≤60°,在△OMP 中,由正弦定理,得OM sin ∠OPM =OP sin ∠OMP,所以OM =OP sin 45°sin (45°+α), 同理ON =OP sin 45°sin (75°+α). 故S △OMN =12·OM ·ON ·sin ∠MON =14×OP 2sin 245°sin (45°+α)sin (75°+α)=1sin (45°+α)sin (45°+α+30°)=1sin (45°+α)⎣⎡⎦⎤32sin (45°+α)+12cos (45°+α) =132sin 2(45°+α)+12sin (45°+α)cos (45°+α) =134[1-cos (90°+2α)]+14sin (90°+2α) =134+34sin 2α+14cos 2α =134+12sin (2α+30°). 因为0°≤α≤60°,30°≤2α+30°≤150°,所以当α=30°时,sin(2α+30°)的最大值为1,此时△OMN 的面积取到最小值,即∠POM =30°时,△OMN 的面积的最小值为8-4 3.。
2022版优化方案高考数学(浙江版·文科)二轮专题复习练习:专题4 立体几何第1讲 Word版含答案

[A卷]1.(2021·宁波市高三模拟) 用一个平行于水平面的平面去截球,得到如图所示的几何体,则它的俯视图是()解析:选B.由题意知,用平行于水平面的平面去截球所得的底面圆是看不见的,所以在俯视图中该部分应当是虚线圆,结合选项可知选B.2.下列命题中,错误的是()A.圆柱的轴截面是过母线的截面中面积最大的一个B.用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台C.圆台的全部平行于底面的截面都是圆D.圆锥全部的轴截面都是全等的等腰三角形解析:选B.依据棱台的定义,用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台.3.(2021·台州市高三调考)一个空间几何体的三视图如图所示,其体积为()A.16B.32C.48 D.96解析:选A.由题意作出直观图P-ABCD如图所示,则该几何体是一个四棱锥,底面是一个直角梯形,其面积为12×(2+4)×4=12,高为4,因此其体积V=13×12×4=16.4.(2021·高考全国卷Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1 B.2C.4 D.8解析:选B.如图,该几何体是一个半球与一个半圆柱的组合体,球的半径为r,圆柱的底面半径为r,高为2r,则表面积S=12×4πr2+πr2+4r2+πr·2r=(5π+4)r2.又S=16+20π,所以(5π+4)r2=16+20π,所以r2=4,r=2,故选B.5.如图是一个体积为10的空间几何体的三视图,则图中x的值为()A.2 B.3C.4 D.5解析:选A.依据给定的三视图可知,该几何体对应的直观图是一个长方体和四棱锥的组合体,所以几何体的体积V=3×2×1+13×3×2×x=10,解得x=2.故选A.6. 如图,水平放置的三棱柱的侧棱长为1,且侧棱AA1⊥平面A1B1C1,正视图是边长为1的正方形,俯视图为一个等边三角形,则该三棱柱的侧视图的面积为()A.2 3 B. 3C.32D.1解析:选C.由直观图、正视图以及俯视图可知,侧视图是宽为32,长为1的长方形,所以面积S=32×1=32.故选C.7.一平面截一球得到直径为2 5 cm的圆面,球心到这个平面的距离是2 cm,则该球的体积是() A.12πcm3B.36πcm3C.646πcm3D.108πcm3解析:选B.由于球心和截面圆心的连线垂直于截面,由勾股定理得,球半径R=22+(5)2=3,故球的体积为43πR3=36π(cm3).8.(2021·石家庄市第一次模拟)一个几何体的三视图如图所示,则该几何体的体积是()A.64B.72C.80D.112解析:选B.由三视图可知该几何体是一个组合体,下面是一个棱长为4的正方体;上面是一个三棱锥,三棱锥的高为3.故所求体积为43+13×12×4×4×3=72.9.已知某组合体的正视图与侧视图相同(其中AB=AC,四边形BCDE为矩形),则该组合体的俯视图可以是________(把正确的图的序号都填上).解析:几何体由四棱锥与四棱柱组成时,得①正确;几何体由四棱锥与圆柱组成时,得②正确;几何体由圆锥与圆柱组成时,得③正确;几何体由圆锥与四棱柱组成时,得④正确.答案:①②③④10.把一个圆锥截成圆台,已知圆台的上、下底面半径的比是1∶4,母线长是10 cm,则圆锥的母线长为________ cm.解析:作出圆锥的轴截面如图,设SA=y,O′A′=x,利用平行线截线段成比例,得SA′∶SA=O′A′∶OA,则(y-10)∶y=x∶4x,解得y=403.所以圆锥的母线长为403cm.答案:40311.(2022·高考课标全国卷Ⅱ改编)正三棱柱ABC-A1B1C1的底面边长为2,侧棱长为 3,D为BC中点,则三棱锥AB1DC1的体积为________.解析:由题意可知AD⊥BC,由面面垂直的性质定理可得AD⊥平面DB1C1,又AD=2sin 60°=3,所以V AB1DC1=13AD·S△B1DC1=13×3×12×2×3=1,故选C.答案:112.一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如图所示,则该四棱锥的侧面积为________,体积为________.解析:由题意可知该四棱锥为正四棱锥,底面边长为2,高为2,侧面上的斜高为22+12=5,所以S 侧=4×⎝⎛⎭⎫12×2×5=45,V=13×22×2=83.答案:458313.(2021·南昌市第一次模拟)如图,在正四棱柱ABCD -A 1B 1C 1D 1中,点P 是平面A 1B 1C 1D 1内一点,则三棱锥P -BCD 的正视图与侧视图的面积之比为________.解析:依据题意,三棱锥P -BCD 的正视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高,侧视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高,故三棱锥P -BCD 的正视图与侧视图的面积之比为1∶1. 答案:1∶114.如图是某空间几何体的三视图,则该几何体的体积为________.解析:由三视图可知,该几何体是棱长为2,2,1的长方体挖去一个半径为1的半球,所以长方体的体积为2×2×1=4,半球的体积为12×43π×13=2π3,所以该几何体的体积是4-2π3.答案:4-2π315.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1EDF的体积为________.解析:由于B 1C ∥平面ADD 1A 1,所以F 到平面ADD 1A 1的距离d 为定值1,△D 1DE 的面积为12D 1D ·AD =12,所以V D 1EDF =V F D 1DE =13S △D 1DE ·d =13×12×1=16.答案:16[B 卷]1.一个锥体的正视图和侧视图如图所示,下面选项中,不行能是该锥体的俯视图的是( )解析:选C.依据三视图中“正俯长一样,侧俯宽一样,正侧高一样”的规律,C 选项的侧视图宽为32,不符合题意,故选C.2.(2021·邢台市摸底考试)已知一个几何体的三视图是三个全等的边长为1的正方形,如图所示,则该几何体的体积为( )A.16 B.13 C.23D .56解析:选D.依题意得,题中的几何体是从棱长为1的正方体ABCD -A ′B ′C ′D ′中截去三棱锥A ′ABD 后剩余的部分,因此该几何体的体积等于13-13×⎝⎛⎭⎫12×12×1=56,故选D. 3.(2022·高考湖南卷)一块石材表示的几何体的三视图如图所示.将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )A .1B .2C .3D .4解析:选B.由三视图可知该几何体是一个直三棱柱,如图所示.由题意知,当打磨成的球的大圆恰好与三棱柱底面直角三角形的内切圆相同时,该球的半径最大,故其半径r =12×(6+8-10)=2.因此选B.4.(2021·高考山东卷)在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.2π3 B .4π3 C.5π3D .2π 解析:选C.过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,如图所示,该几何体的体积为V =V 圆柱-V 圆锥=π·AB 2·BC -13·π·CE 2·DE =π×12×2-13π×12×1=5π3,故选C.5.(2021·郑州市第一次质量猜测)某三棱锥的三视图如图所示,且三个三角形均为直角三角形,则xy 的最大值为( )A .32B .327C .64D .647解析:选C.依题意,题中的几何体是三棱锥P -ABC (如图所示), 其中底面ABC 是直角三角形,AB ⊥BC ,P A ⊥平面ABC , BC =27,P A 2+y 2=102,(27)2+P A 2=x 2,因此xy =x 102-[x 2-(27)2]=x128-x 2≤x 2+(128-x 2)2=64,当且仅当x 2=128-x 2,即x =8时取等号,因此xy 的最大值是64,故选C.6.(2021·山西省第三次四校联考)在半径为10的球面上有A ,B ,C 三点,假如AB =83,∠ACB =60°,则球心O 到平面ABC 的距离为( )A .2B .4C .6D .8解析:选C.设A ,B ,C 三点所在圆的半径为r ,圆心为P .由于∠ACB =60°,所以∠APB =120°.在等腰三角形ABP 中,AP =43sin 60°=8,所以r =8,所以球心O 到平面ABC 的距离为102-82=6,故选C.7.如图是一个几何体的三视图,则该几何体的表面积是( )A .5+ 3B .5+2 3C .4+2 2D .4+2 3解析:选A.该几何体的直观图如图.表面积S =1×1+12×1×1×2+2×12×(1+2)×1+12×6×2=5+3,所以选A.8.在三棱锥P -ABC 中,P A ⊥平面ABC ,AC ⊥BC ,D 为侧棱PC 上的一点,它的正视图和侧视图如图所示,则下列命题正确的是( )A .AD ⊥平面PBC ,且三棱锥D -ABC 的体积为83B .BD ⊥平面P AC ,且三棱锥D -ABC 的体积为83C .AD ⊥平面PBC ,且三棱锥D -ABC 的体积为163D .BD ⊥平面P AC ,且三棱锥D -ABC 的体积为163解析:选C.由正视图可知,P A =AC ,且点D 为线段PC 的中点,所以AD ⊥PC .由侧视图可知,BC =4.由于P A ⊥平面ABC ,所以P A ⊥BC .又由于BC ⊥AC ,且AC ∩P A =A ,所以BC ⊥平面P AC ,所以BC ⊥AD .又由于AD ⊥PC ,且PC ∩BC =C ,所以可得AD ⊥平面PBC ,V D ABC =13×12×P A ×S △ABC =163.9.某几何体的正视图与俯视图如图所示,若俯视图中的多边形为正六边形,则该几何体的侧视图的面积为________.解析:侧视图由一个矩形和一个等腰三角形构成,矩形的长为3,宽为2,面积为3×2=6.等腰三角形的底边为3,高为3,其面积为12×3×3=32,所以侧视图的面积为6+32=152.答案:15210.(2021·洛阳市高三班级统考)如图是某几何体的三视图,则该几何体的外接球的表面积为( )解析:由三视图知,该几何体可以由一个长方体截去一个角后得到,该长方体的长、宽、高分别为5、4、3,所以其外接球半径R 满足2R =42+32+52=52,所以该几何体的外接球的表面积为S =4πR 2=4π×⎝⎛⎭⎫5222=50π.答案:50π 11.(2021·绍兴市高三诊断性测试)若某几何体的三视图如图所示,则该几何体的体积为________,最长的侧棱长为________.解析:依据三视图及有关数据还原该几何体,得该几何体是底面为直角梯形的四棱锥P -ABCD ,如图,过点P 作PH ⊥AD 于点H ,连接CH .底面面积S 1=(1+2)×12=32,V =13×32×1=12,最长的侧棱长为PB = 3.答案:12312.设甲、乙两个圆柱的底面积分别为S 1,S 2,体积分别为V 1,V 2,若它们的侧面积相等,且S 1S 2=94,则V 1V 2的值是________. 解析:设两个圆柱的底面半径和高分别为r 1,r 2和h 1,h 2,由S 1S 2=94,得πr 21πr 22=94,则r 1r 2=32.由圆柱的侧面积相等,得2πr 1h 1=2πr 2h 2,即r 1h 1=r 2h 2,则h 1h 2=23,所以V 1V 2=πr 21h 1πr 22h 2=32.答案:3213.(2021·洛阳市统考)已知点A ,B ,C ,D 均在球O 上,AB =BC =6,AC =23,若三棱锥D -ABC 体积的最大值为3,则球O 的表面积为________.解析:由题意可得,∠ABC =π2,△ABC 的外接圆半径r =3,当三棱锥的体积最大时,V D ABC =13S △ABC ·h (h为D 到底面ABC 的距离),即3=13×12×6×6h ⇒h =3,即R +R 2-r 2=3(R 为外接球半径),解得R =2,所以球O 的表面积为4π×22=16π.答案:16π 14.(2021·杭州市联谊学校高三其次次联考)一个等腰直角三角形的三个顶点分别在正三棱柱ABC -A 1B 1C 1的三条侧棱上,已知正三棱柱的底面边长为2,则该三角形的斜边长为________.解析:如图,在正三棱柱ABC -A 1B 1C 1中,△ABC 为正三角形,边长为2,△DEF 为等腰直角三角形,DF 为斜边,设DF 的长为x ,则DE =EF =22x ,作DG ⊥BB 1,GH ⊥CC 1,EI ⊥CC 1,垂足分别为G ,H ,I ,则EG =DE 2-DG 2=x 22-4,FI =EF 2-EI 2=x 22-4,FH =FI +HI =FI +EG=2x 22-4.连接DH ,在Rt △DHF 中,DF 2=DH 2+FH 2,即x 2=4+⎝⎛⎭⎫2x 22-42,解得x =23,即该三角形的斜边长为2 3.答案:2 3 15.(2021·浙江省名校新高考联盟第一次联考)如图,ABEDFC 为多面体,平面ABED 与平面ACFD 垂直,点O 在线段AD 上,OA =1,OD =2,△OAB ,△OAC ,△ODE ,△ODF 都是正三角形,则BC =________,四棱锥F-OBED的体积为________.解析:取AO的中点M,连接CM,BM,由△OAB,△OAC是正三角形,OA=1,可知CM⊥AO,BM⊥AO,且BM=CM=32,又平面ABED⊥平面ACFD,所以CM⊥平面ABED,所以CM⊥BM,故BC=62.过点F作FQ⊥OD于点Q,由于平面ABED⊥平面ACFD,所以FQ⊥平面ABED,FQ就是四棱锥F-OBED的高.易知FQ=3,又S△OBE=12×1×2×32=32,S△OED=12×2×2×32=3,所以S四边形OBED=32+3=332,故V四棱锥F-OBED=13×332×3=32.答案:6232。
2022年高考数学二轮复习强化训练 4三角函数的图象与性质

强化训练4 三角函数的图象与性质——小题备考一、单项选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.已知函数f (x )=sin ωx -cos ωx (ω∈R )的最小正周期为π,则实数ω=( ) A .2 B .-2 C .±2 D .±12.函数y =f (x )的图象向左平移π4个单位,然后横坐标变为原来的2倍,纵坐标不变得到函数y =2sin 2x 图象,则f (x )的表达式为( )A .2cos 4xB .-2cos xC .-2sin 4xD .2sin x3.古希腊人早在公元前就知道,七弦琴发出不同的声音,是由于弦长度的不同.数学家傅里叶(公元1768年~1830年)关于三角函数的研究告诉我们:人类的声音,小提琴的奏鸣,动物的叫声——都可以归结为一些简单声音的组合,而简单声音是可以用三角函数描述的.已知描述百灵鸟的叫声时用到如图所示的三角函数图象,图象的解析式是f (x )=A sin (ωx +φ)(ω>0,0<φ<π),则( )A .ω=3,φ=π6B .ω=6,φ=π3C .ω=3,φ=π4D .ω=6,φ=5π64.已知函数f ()x =sin ωx +cos ωx ()ω>0 的最小正周期为π,则该函数的图象( )A .关于点⎝⎛⎭⎫π3,0 对称B .关于直线x =π8 对称 C .关于点⎝⎛⎭⎫π8,0 对称 D .关于直线x =π3对称 5.已知函数f ()x =cos ()ωx +φ ⎝⎛⎭⎫ω>0,||φ<π2 的图象如图所示,为了得到y =cos ωx 的图象,只需把y =f ()x 的图象上所有点( )A.向左平移π12 个单位长度B .向右平移π12 个单位长度C .向左平移π6 个单位长度D .向右平移π6个单位长度6.[2021·辽宁沈阳三模]已知函数f (x )=A sin (ωx +φ)(A >0,ω>0,-π2 <φ<π2)的部分图象如图所示,B ,D 两点为函数f (x )图象上的一个最高点和一个最低点,直线BC ,DE 与x 轴垂直,四边形BCDE 为边长为4的正方形,则( )A .f (x )=2sin ⎝⎛⎭⎫π4x -π4 B. f (x )=2sin ⎝⎛⎭⎫π4x +π4 C .f (x )=3 sin ⎝⎛⎭⎫π4x +3π4 D. f (x )=3 sin ⎝⎛⎭⎫π4x -3π47.将函数f (x )=sin ωx (其中ω>0)的图象向右平移π4个单位长度,所得图象关于直线x=π对称,则ω的最小值是( )A .13B .1C .53D .238.已知函数g (x )=3 sin (ωx +φ),g (x )图象上每一点的横坐标缩短到原来的12,得到f (x )的图象,f (x )的部分图象如图所示,若AB → ·BC → =||AB→ 2,则ω等于( )A .π12B .π6C .π4D .π2二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多个符合题目要求,全部选对得5分,部分选对得2分,选错或多选得0分)9.[2021·河北秦皇岛二模]已知函数f (x )=cos ωx -3 sin ωx (ω>0)的部分图象如图所示,则下列选项正确的是( )A .ω=2B .函数f (x )的单调增区间为⎣⎡⎦⎤k π-7π12,k π-π12 (k ∈Z )C .函数f (x )的图象关于⎝⎛⎭⎫7π12,0 中心对称D .函数f (x )的图象可由y =2cos ωx 图象向右平移π6 个单位长度得到10. [2021·石家庄二模]设函数f (x )=sin ⎝⎛⎭⎫2x -π3 的图象为曲线E ,则( ) A .将曲线y =sin 2x 向右平移π3个单位长度,与曲线E 重合B .将曲线y =sin ⎝⎛⎭⎫x -π3 上各点的横坐标缩短到原来的12 ,纵坐标不变,与曲线E 重合C .⎝⎛⎭⎫-π12,0 是曲线E 的一个对称中心 D .若x 1≠x 2,且f ()x 1 =f ()x 2 =0,则||x 1-x 2 的最小值为π211.[2021·广东大联考]将函数f (x )=sin (ωx +π6 )(ω∈N *)的图象向右平移π6个单位后得到函数y =g (x )的图象,若f (x )的所有对称中心与g (x )的所有对称中心重合,则ω可以为( )A .3B .6C .9D .1212.[2021·山东德州二模]已知函数f (x )=A cos (x +φ)+1(A >0,|φ|<π2),若函数y =|f (x )|的部分图象如图所示,则下列说法正确的是( )A .函数f (x )的图象关于直线x =π6 对称B .函数f (x )的图象关于点⎝⎛⎭⎫-5π6,1 对称 C .将函数y =2sin x +1的图象向左平移5π6个单位可得函数f (x )的图象D .函数f (x )在区间⎣⎡⎦⎤-π2,0 上的值域为[3 +1,3] 三、填空题(本题共4小题,每小题5分,共20分)13.[2021·广东大联考]写出一个最小正周期为2的偶函数f (x )=__________.14.已知函数y =sin (2x +φ)⎝⎛⎭⎫-π2<φ<π2 的图象关于直线x =π3对称,则φ的值是________.15.若函数y =cos x 的图象沿x 轴向右平移π3个单位,再将图象上的每个点的纵坐标不变,将横坐标缩小为原来的12 ,则新图象对应的函数解析式是________________.16.将函数y =sin ⎝⎛⎭⎫2x +π6 的图象向右平移π3个单位长度,再向上平移1个单位长度,得到g (x )的图象.若g (x 1)g (x 2)=4,且x 1,x 2∈[-2π,2π],则g (x )=________,x 1-2x 2的最大值为________.1.解析:因为f ()x =sin ωx -cos ωx =2 sin ⎝⎛⎭⎫ωx -π4 , 所以f (x )的最小正周期T =2π||ω =π,解得ω=±2.故选C. 答案:C2.解析:函数y =f (x )的图象向左平移π4个单位,然后横坐标变为原来的2倍,得到f ⎝⎛⎭⎫x 2+π4 ,即f ⎝⎛⎭⎫x 2+π4 =2sin 2x =2sin ⎣⎡⎦⎤4⎝⎛⎭⎫x 2+π4-π , ∴f ()x =2sin ()4x -π =-2sin 4x , 故选C. 答案:C3.解析:由图象知,T =2⎝⎛⎭⎫1112π-712π =2π3, ∴2πω =2π3,则ω=3. 又A sin ⎝⎛⎭⎫3×7π12+φ =0,sin ⎝⎛⎭⎫74π+φ =0, ∴74π+φ=2k π(k ∈Z ), 由φ∈(0,π),得φ=π4.故选C. 答案:C4.解析:∵函数f ()x =sin ωx +cos ωx =2 sin ⎝⎛⎭⎫ωx +π4 ()ω>0 的最小正周期为2πω=π,∴ω=2,∴f ()x =2 sin ⎝⎛⎭⎫2x +π4 , 令x =π3 ,求得f ()x =sin 11π12 ≠0,且f ()x 不是最值,故A 、D 错误;令x =π8 ,求得f ()x =2 ,为最大值,故函数f ()x 的图象关于直线x =π8对称,故B正确,C 错误;故选B. 答案:B5.解析:由图象可知:T 4 =7π12 -π3 =π4 ⇒T =π,则ω=2πT=2,所以f ()x =cos ()2x +φ ,将点⎝⎛⎭⎫π3,0 代入解析式可得cos ⎝⎛⎭⎫2π3+φ =0, 由图象可知:2π3 +φ=π2 +k π,k ∈Z ,又||φ <π2 ,所以令k =0,φ=-π6所以f ()x =cos ⎝⎛⎭⎫2x -π6 ,只需将函数f ()x =cos ⎝⎛⎭⎫2x -π6 向左平移π12个单位长度 则可得到y =cos 2x 的图象, 故选A. 答案:A6.解析:由题意有A =2,T =2πω =8,可得ω=π4,有f (x )=2sin ⎝⎛⎭⎫π4x +φ ,f (0)=2sin φ=2 ,有sin φ=22 ,又由-π2 <φ<π2 ,得φ=π4,有f (x )=2sin ⎝⎛⎭⎫π4x +π4 . 故选B. 答案:B7.解析:函数f (x )=sin ωx (其中ω>0)的图象向右平移π4个单位长度,可得y =sinω⎝⎛⎭⎫x -π4 , 因为平移后的函数图象关于直线x =π对称,所以ω⎝⎛⎭⎫π-π4 =π2 +k π()k ∈Z ,则ω=23 +43k ()k ∈Z , 又ω>0,所以ω的最小值是23.故选D. 答案:D8.解析:根据AB → ·BC → =||AB → 2⇒||AB → ||BC → cos ()180°-∠ABC =||AB→ 2 ⇒-2cos ∠ABC =1,可得cos ∠ABC =-12,故∠ABC =120°,所以AD =6,故g (x )的周期为24,所以2πω =24,ω=π12,故选A. 答案:A9.解析:f (x )=cos ωx -3 sin ωx =2cos ⎝⎛⎭⎫ωx +π3 , 由图象得:3T4 =π3 -⎝⎛⎭⎫-5π12 =3π4, 故T =π=2πω,故ω=2,故A 正确;令2k π-π≤2x +π3 ≤2k π得:k π-2π3 ≤x ≤k π-π6,故函数f (x )的单调递增区间是⎣⎡⎦⎤k π-2π3,k π-π6 (k ∈Z ),故B 错误; ∵f ⎝⎛⎭⎫7π12 =0,故C 正确;∵f (x )的图象可由y =2cos ωx 图象向左平移π6个单位长度得到,故D 错误;故选AC. 答案:AC10.解析:A :曲线y =sin 2x 向右平移π3个单位长度,得到函数y =sin 2⎝⎛⎭⎫x -π3 =sin ⎝⎛⎭⎫2x -2π3 =sin ⎝⎛⎭⎫2x -π+π3 =-sin ⎝⎛⎭⎫2x +π3 , 显然该函数的图象与曲线E 不重合,故A 不正确;B :由曲线y =sin ⎝⎛⎭⎫x -π3 上各点的横坐标缩短到原来的12,纵坐标不变,可得y =sin ⎝⎛⎭⎫2x -π3 ,故B 正确;C :因为f ⎝⎛⎭⎫-π12 =sin ⎝⎛⎭⎫-π6-π3 =-1≠0,所以点⎝⎛⎭⎫-π12,0 不是该函数的对称中心,故C 不正确;D :由f (x )=sin ⎝⎛⎭⎫2x -π3 =0,可得2x -π3 =k π(k ∈Z )⇒x =k π2 +π6(k ∈Z ), 因为f ()x 1 =f ()x 2 =0,所以x 1=k 1π2 +π6 (k 1∈Z ),x 2=k 2π2 +π6(k 2∈Z ),所以||x 1-x 2 =π2||k 1-k 2 ,因为x 1≠x 2,k 1,k 2∈Z ,所以||k 1-k 2 的最小值为1,即||x 1-x 2 的最小值为π2,故D 正确,故选BD. 答案:BD11.解析:将函数f (x )=sin ⎝⎛⎭⎫ωx +π6 (ω∈N *)的图象向右平移π6个单位后得到函数y =g (x )=sin ⎝⎛⎭⎫ωx -ωπ6+π6 的图象, 若f (x )的所有对称中心与g (x )的所有对称中心重合, 故f (x )的图象和g (x )的图象相差半个周期的整数倍, ∴π6 =k ·12 ·2πω =k ·πω ,即ω=6k ,k ∈Z , 则ω可等于6,12, 故选BD. 答案:BD12.解析:结合函数 y =|f (x )|的图象易知,函数f (x )的最大值3,最小值为-1, 则A =2,f (x )=2cos (x +φ)+1,代入点(0,2),则2cos φ+1=2,cos φ=12 ,因为|φ|<π2 ,所以φ=π3,f (x )=2cos ⎝⎛⎭⎫x +π3 +1, x +π3 =k π(k ∈Z ),即x =-π3 +k π(k ∈Z ),函数f (x )关于x =-π3+k π(k ∈Z )对称,A 不符合题意;x +π3 =π2 +k π(k ∈Z ),即x =π6+k π(k ∈Z ),函数f (x )关于点⎝⎛⎭⎫π6+k π,1 (k ∈Z )对称,B 符合题意;函数y =2sin x +1的图象向左平移5π6个单位,得出f (x )=2sin ⎝⎛⎭⎫x +5π6 +1=2sin ⎝⎛⎭⎫x +π3+π2 +1=2cos ⎝⎛⎭⎫x +π3 +1,C 符合题意; 当x ∈⎣⎡⎦⎤-π2,0 时,x +π3 ∈⎣⎡⎦⎤-π6,π3 ,cos ⎝⎛⎭⎫x +π3 ∈⎣⎡⎦⎤12,1 ,f (x )∈[2,3],D 不符合题意.故选BC. 答案:BC13.解析:根据题意,要求函数是最小正周期为2的偶函数, 可以联想余弦函数, 则f (x )=cos (πx ), 答案:cos (πx )(答案不唯一)14.解析:由函数y =sin (2x +φ)⎝⎛⎭⎫-π2<φ<π2 的图象关于直线x =π3对称,得sin ⎝⎛⎭⎫2π3+φ =±1.因为-π2 <φ<π2 ,所以π6 <2π3 +φ<7π6 ,则2π3 +φ=π2 ,φ=-π6. 答案:-π615.解析:函数y =cos x 的图象沿x 轴向右平移π3个单位,得到的图象的对应函数的解析式为y =cos ⎝⎛⎭⎫x -π3 ,再将该图象上的每个点的纵坐标不变,将横坐标缩小为原来的12,得到新图象对应的函数解析式是y =cos ⎝⎛⎭⎫2x -π3 .答案:y =cos ⎝⎛⎭⎫2x -π3 16.解析:将函数y =sin ⎝⎛⎭⎫2x +π6 的图象向右平移π3 个单位长度,再向上平移1个单位长度,得到g (x )=sin ⎝⎛⎭⎫2x -2π3+π6 +1=-cos 2x +1的图象,故g (x )的最大值为2,最小值为0,若g (x 1)g (x 2)=4,则g (x 1)=g (x 2)=2,即cos 2x 1=cos 2x 2=-1.又x 1,x 2∈[-2π,2π],∴2x 1,2x 2∈[-4π,4π],要使x 1-2x 2取得最大值,则应有2x 1=3π,2x 2=-3π,此时x 1-2x 2的最大值为3π2 +3π=9π2.答案:-cos 2x +1 9π2。
2022年高考数学二轮考点复习专题四 解析几何第2课时 圆锥曲线中的定点、定值问题

圆锥曲线中的定值问题 【典例 2】(16 分)(2021·新高考Ⅰ卷)在平面直角坐标系 xOy 中,已知点 F1(- 17 , 0),F2( 17 ,0),点 M 满足|MF1|-|MF2|=2,记 M 的轨迹为 C. (1)求 C 的方程; (2)设点 T 在直线 x=21 上,过 T 的两条直线分别交 C 于 A,B 两点和 P,Q 两点,且 |TA|·|TB|=|TP|·|TQ|,求直线 AB 的斜率与直线 PQ 的斜率之和.
=(n2+1k212)-(116+k21 ) ,……10 分
设 PQ:y-n=k2x-12 , 同理|TP|·|TQ|=(n2+1k222)-(116+k22 ) ,
因为|TA|·|TB|=|TP|·|TQ|,
所以k112+-k1216
=k122+-k2216
,1+k21
17 -16
=1+k22
17 -16
所以 Δ=(4kt)2-8(2k2+1)(t2-2)=8[2(2k2+1)-t2]>0.设 A(x1,y1),B(x2,y2),
则 x1+x2=-2k42+kt 1
2(t2-2) ,x1x2= 2k2+1
,
所以 y1+y2=k(x1+x2)+2t=2k22+t 1 .
因为四边形 OAPB 是平行四边形, 所以O→P =O→A +O→B =(x1+x2,y1+y2)=(-2k42k+t 1 ,2k22+t 1 ),则 P(-2k42k+t 1 ,
第2课时 圆锥曲线中的定点、定值问题
圆锥曲线中的定点问题 【典例 1】(2021·滨州一模)已知点 A(0,-1),B(0,1),动点 P 满足|P→B ||A→B |=P→A ·B→A . 记点 P 的轨迹为曲线 C. (1)求 C 的方程; (2)设 D 为直线 y=-2 上的动点,过 D 作 C 的两条切线,切点分别是 E,F.证明:直 线 EF 过定点.
高考数学(理科)二轮专题:第二篇专题四第1讲 概率、随机变量及其分布列

专题四 概率与统计第1讲 概率、随机变量及其分布列(限时45分钟,满分96分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2019·株洲二模)如图,在边长为1的正方形内有不规则图形Ω,由电脑随机从正方形中抽取10 000个点,若落在图形Ω内和图形Ω外的豆子分别为3 335,6 665,则图形Ω面积的估计值为A.13B.12C.14D.16解析 设图形Ω 的面积为S ,∵由电脑随机从正方形中抽取10 000个点,落在图形Ω内和图形Ω外的豆子分别为3 335,6 665,∴S 1=3 33510 000≈13,∴S ≈13.故选A. 答案 A2.(2019·潍坊模拟)四色猜想是世界三大数学猜想之一,1976年数学家阿佩尔与哈肯证明,称为四色定理.其内容是:“任意一张平面地图只用四种颜色就能使具有共同边界的国家涂上不同的颜色.”用数学语言表示为“将平面任意地细分为不相重叠的区域,每一个区域总可以用1,2,3,4四个数字之一标记,而不会使相邻的两个区域得到相同的数字.”如图,网格纸上小正方形的边长为1,粗实线围成的各区域上分别标有数字1,2,3,4的四色地图符合四色定理,区域A 和区域B 标记的数字丢失.若在该四色地图上随机取一点,则恰好取在标记为1的区域的概率所有可能值中,最大的是A.115B.110C.13D.1130解析 A ,B 只能有一个可能为1,题目求最大,令B 为1,则总数有30个,1号有10个,则概率为13.故选C.答案 C3.(2019·浙江衢州五校联考)随机变量的分布列如下:若E (X )=13,则D (X )的值是A.19B.29C.49D.59解析 由题设可得a +b =23,b -a =13⇒a =16,b =12,所以由数学期望的计算公式可得 E (X 2)=0×13+1×23=23,(E (X ))2=19,所以由随机变量的方差公式可得 D (X )=E (X 2)-(E (X ))2=59.故选D.答案 D4.(2019·河北省级示范校联合体联考)袋子中有四个小球,分别写有“和、平、世、界”四个字,有放回地从中任取一个小球,直到“和”“平”两个字都取到就停止,用随机模拟的方法估计恰好在第三次停止的概率.利用电脑随机产生0到3之间取整数值的随机数,分别用0,1,2,3代表“和、平、世、界”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下24个随机数组:232 321 230 023 123 021 132 220 011 203 331 100 231 130 133 231 031 320 122 103 233 221 020 132 由此可以估计,恰好第三次就停止的概率为 A.18B.14C.16D.524解析 由题意可知,满足条件的随机数组中,前两次抽取的数中必须包含0或1,且0与1不能同时出现,出现0就不能出现1,反之亦然,第三次必须出现前面两个数字中没有出现的1或0,可得符合条件的数组只有3组:021,130,031,故所求概率为P =324=18.故选A.答案 A5.(2019·郑州一模)魔法箱中装有6张卡片,上面分别写着如下六个定义域为R 的函数:f 1(x )=2x ,f 2(x )=2x,f 3(x )=x 2,f 4(x )=sin x ,f 5(x )=cos x ,f 6(x )=1-2x1+2x,现从魔法箱中任取2张卡片,将卡片上的函数相乘得到一个新函数,所得新函数为奇函数的概率是A.25B.35C.12D.13解析 首先结合f (-x )+f (x )与0的关系,判断该六个函数的奇偶性,结合题意可知1,4,6为奇函数,3,5为偶函数,2为非奇非偶函数,从6张卡片抽取2张,有C 26=15种,而任取2张卡片得到的新函数为奇函数,说明该两个函数为一奇一偶函数,故有3×2=6种,结合古典概型计算公式,相除得25.故选A.答案 A6.(2019·辽阳期末)一批排球中正品有m 个,次品有n 个,m +n =10(m ≥n ),从这批排球中每次随机取一个,有放回地抽取10次,X 表示抽到的次品个数.若D (X )=21,从这批排球中随机抽取两个,则至少有一个正品的概率p =A.4445B.1415C.79D.1315解析 依题意可得X ~B ⎝⎛⎭⎫10,n10, 则DX =10×n10×⎝⎛⎭⎫1-n 10=21, 又m ≥n ,则n ≤5,从而n =3, 则p =1-C 23C 210=1415.故选B.答案 B7.(2019·济南期末)如图,在△ABC 中,∠C =90°,BC =2,AC =3,三角形内的空白部分由三个半径均为1的扇形构成,向△ABC 内随机投掷一点,则该点落在阴影部分的概率为A.π6B .1-π6C.π4D .1-π4解析 由题意,题目符合几何概型,在△ABC 中,∠C =90°,BC =2,AC =3,面积为12×BC ×AC =3,阴影部分的面积为:三角形面积-12圆面积=3-π2,所以点落在阴影部分的概率为3-π23=1-π6.故选B.答案 B8.(2019·贵州重点中学联考)有一种“三角形”能够像圆一样,当作轮子用.这种神奇的三角形,就是以19世纪德国工程师勒洛的名字命名的勒洛三角形.这种三角形常出现在制造业中(例如图1中的扫地机器人).三个等半径的圆两两互相经过圆心,三个圆相交的部分就是勒洛三角形,如图2所示.现从图2中的勒洛三角形内部随机取一点,则此点取自阴影部分的概率为A.2π-334π-23 B.23π3-3C.32π-23D.2π-332π-23解析 设圆半径为R ,如图,易得△ABC 的面积为12·32R 2=34R 2,阴影部分面积为3·60πR 2360-3·34R 2=2π-334R 2,勒洛三角形的面积为2π-334R 2+34R 2=π-32R 2,若从勒洛三角形内部随机取一点, 则此点取自阴影部分的概率为P =阴影部分面积勒洛三角形面积=2π-334R 2π-32R 2=2π-332π-23.故选D.答案 D二、填空题(本大题共4小题,每小题5分,共20分)9.一个盒子装有3个红球和2个蓝球(小球除颜色外其他均相同),从盒子中一次性随机取出3个小球后,再将小球放回.重复50次这样的实验.记“取出的3个小球中有2个红球,1个蓝球”发生的次数为ξ,则ξ的方差是________.解析 由题意知ξ~B (n ,p ),其中n =50,p =C 23C 12C 35=610=35,∴D (ξ)=50×35×25=12.答案 1210.(2019·淮南二模)关于圆周率π的近似值,数学发展史上出现过很多有创意的求法,其中可以通过随机数实验来估计π的近似值.为此,李老师组织100名同学进行数学实验教学,要求每位同学随机写下一个实数对(x ,y ),其中0<x <1,0<y <1,经统计数字x 、y 与1可以构成钝角三角形三边的实数对(x ,y )为28个,由此估计π的近似值是________(用分数表示).解析 实数对(x ,y )落在区域⎩⎨⎧0<x <10<y <1的频率为0.28,又设A 表示“实数对(x ,y )满足⎩⎨⎧0<x <10<y <1且能与1构成钝角三角形”,则A 中对应的基本事件如图阴影部分所示:其面积为π4-12,故P (A )=π4-12≈0.28,所以π≈7825.答案782511.(2019·长春外国语学校月考)已知直线l 过点(-1,0),l 与圆C :(x -1)2+y 2=3相交于A 、B 两点,则弦长|AB |≥2的概率为________.解析 显然直线l 的斜率存在, 设直线方程为y =k (x +1), 代入(x -1)2+y 2=3中得, (k 2+1)x 2+2(k 2-1)x +k 2-2=0, ∵l 与⊙C 相交于A 、B 两点, ∴Δ=4(k 2-1)2-4(k 2+1)(k 2-2)>0, ∴k 2<3,∴-3<k <3,又当弦长|AB |≥2时,∵圆半径r =3, ∴圆心到直线的距离d ≤2,即|2k |1+k2≤2, ∴k 2≤1,∴-1≤k ≤1.由几何概型知,事件M :“直线l 与圆C 相交弦长|AB |≥2”的概率 P (M )=1-(-1)3-(-3)=33.答案3312.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为________.解析 设种子发芽为事件A ,种子成长为幼苗为事件B (发芽又成活为幼苗). 依题意P (B |A )=0.8,P (A )=0.9. 根据条件概率公式P (AB )=P (B |A )·P (A )=0.8×0.9=0.72, 即这粒种子能成长为幼苗的概率为0.72. 答案 0.72三、解答题(本大题共3小题,每小题12分,共36分)13.(2019·湖南三湘名校二联)某种产品的质量以其质量指标值来衡量,质量指标值越大表明质量越好,记其质量指标值为k ,当k ≥85时,产品为一等品;当75≤k <85时,产品为二等品;当70≤k <75时,产品为三等品.现有甲、乙两条生产线,各生产了100件该产品,测量每件产品的质量指标值,得到下面的试验结果.(以下均视频率为概率)甲生产线生产的产品的质量指标值的频数分布表:乙生产线生产的产品的质量指标值的频数分布表:(1)若从乙生产线生产的产品中有放回地随机抽取3件,求至少抽到2件三等品的概率; (2)若该产品的利润率y 与质量指标值k 满足关系y =⎩⎪⎨⎪⎧t ,k ≥855t 2,75≤k <85t 2,70≤k <75,其中0<t <15,从长期来看,哪条生产线生产的产品的平均利润率更高?请说明理由.解析 (1)由题意知,从乙生产线生产的产品中随机抽取一次抽中三等品的概率为110,所以至少抽到2件三等品的概率P =C 23×⎝⎛⎭⎫1102×910+⎝⎛⎭⎫1103=7250.(2)甲生产线生产的产品的利润分布列为所以E (y 甲)=0.6t +2t 2,乙生产线生产的产品的利润分布列为所以 E (y 乙)=0.5t +2.1t 2, 因为0<t <15,所以E (y 乙)-E (y 甲)=0.1t 2-0.1t =0.1t (t -1)<0,所以从长期来看,甲生产线生产的产品平均利润率较大.14.(2019·佛山禅城区二调)研究机构培育一种新型水稻品种,首批培育幼苗2 000株,株长均介于185 mm ~235 mm ,从中随机抽取100株对株长进行统计分析,得到如下频率分布直方图(1)求样本平均株长x -和样本方差s 2(同一组数据用该区间的中点值代替);(2)假设幼苗的株长X 服从正态分布N (μ,σ2),其中μ近似为样本平均数x -,σ2近似为样本方差s 2,试估计2 000株幼苗的株长位于区间(201,219)的株数;(3)在第(2)问的条件下,选取株长在区间(201,219)内的幼苗进入育种试验阶段,若每株幼苗开花的概率为34,开花后结穗的概率为23,设最终结穗的幼苗株数为ξ,求ξ的数学期望.附:83≈9;若X ~N (μ,σ2),则P (μ-σ<X <μ+σ)=0.683; P (μ-2σ<X <μ+2σ)=0.954;P (μ-3σ<X <μ+3σ)=0.997解析 (1)x -=190×0.02+200×0.315+210×0.35+220×0.275+230×0.04=210, s 2=202×0.02+102×0.315+102×0.275+202×0.04=83.(2)由(1)知, μ=x -=210,σ=83≈9, ∴P (201<X <219)=P (210-9<X <210+9)=0.683, 2 000×0.683=1 366∴2 000株幼苗的株长位于区间(201,219)的株数大约是1 366.(3)由题意,进入育种试验阶段的幼苗数1 366,每株幼苗最终结穗的概率P =12,则ξ-B ⎝⎛⎭⎫1 366,12, 所以E (ξ)=1 366×12=683.15.(2019·河北示范高中联合体联考)某工厂共有男女员工500人,现从中抽取100位员工对他们每月完成合格产品的件数统计如下:(1)其中每月完成合格产品的件数不少于3 200件的员工被评为“生产能手”.由以上统计数据填写下面的2×2列联表,并判断是否有95%的把握认为“生产能手”与性别有关?(2)为提高员工劳动的积极性,工厂实行累进计件工资制:规定每月完成合格产品的件数在定额2 600件以内的,计件单价为1元;超出(0,200]件的部分,累进计件单价为1.2元;超出(200,400]件的部分,累进计件单价为1.3元;超出400件以上的部分,累进计件单价为1.4元.将这4段的频率视为相应的概率,在该厂男员工中随机选取1人,女员工中随机选取2人进行工资调查,设实得计件工资(实得计件工资=定额计件工资+超定额计件工资)不少于3 100元的人数为Z ,求Z 的分布列和数学期望.附:K 2=(ad -bc )2(a +b )(c +d )(a +c )(b +d ),解析 (1)因为K 2的观测值k =100×(48×8-42×2)250×50×90×10=4>3.841,所以有95%的把握认为“生产能手”与性别有关. (2)当员工每月完成合格产品的件数为3 000件时, 得计件工资为2 600×1+200×1.2+200×1.3 =3 100元,由统计数据可知,男员工实得计件工资不少于3 100元的概率为p 1=25,女员工实得计件工资不少于3 100元的概率为p 2=12,设2名女员工中实得计件工资不少于3 100元的人数为X ,1名男员工中实得计件工资在3 100元以及以上的人数为Y ,则X ~B ⎝⎛⎭⎫2,12,Y ~B ⎝⎛⎭⎫1,25, Z 的所有可能取值为0,1,2,3,P (Z =0)=P (X =0,Y =0)=⎝⎛⎭⎫1-122⎝⎛⎭⎫1-25=320, P (Z =1)=P (X =1,Y =0)+P (X =0,Y =1) =C 12·12·⎝⎛⎭⎫1-12⎝⎛⎭⎫1-25+⎝⎛⎭⎫1-12225=25, P (Z =2)=P (X =2,Y =0)+P (X =1,Y =1) =C 22⎝⎛⎭⎫122⎝⎛⎭⎫1-25+C 1212⎝⎛⎭⎫1-1225=720, P (Z =3)=P (X =2,Y =1)=⎝⎛⎭⎫122×25=110, 所以Z 的分布列为故E (Z )=0×320+1×25+2×720+3×110=75.。
高考数学(理)二轮专题练习【专题4】(1)等差数列和等比数列(含答案)
第1讲 等差数列和等比数列考情解读 1.等差、等比数列基本量和性质的考查是高考热点,经常以小题形式出现.2.数列求和及数列与函数、不等式的综合问题是高考考查的重点,考查分析问题、解决问题的综合能力.1.a n 与S n 的关系S n =a 1+a 2+…+a n ,a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.2.等差数列和等比数列热点一 等差数列例1 (1)等差数列{a n }的前n 项和为S n ,若a 2+a 4+a 6=12,则S 7的值是( ) A .21 B .24 C .28 D .7(2)设等差数列{a n }的前n 项和为S n ,若-1<a 3<1,0<a 6<3,则S 9的取值范围是________. 思维启迪 (1)利用a 1+a 7=2a 4建立S 7和已知条件的联系;(2)将a 3,a 6的范围整体代入. 答案 (1)C (2)(-3,21)解析 (1)由题意可知,a 2+a 6=2a 4,则3a 4=12,a 4=4,所以S 7=7×(a 1+a 7)2=7a 4=28.(2)S 9=9a 1+36d =3(a 1+2d )+6(a 1+5d ) 又-1<a 3<1,0<a 6<3,∴-3<3(a 1+2d )<3,0<6(a 1+5d )<18, 故-3<S 9<21.思维升华 (1)等差数列问题的基本思想是求解a 1和d ,可利用方程思想; (2)等差数列的性质①若m ,n ,p ,q ∈N *,且m +n =p +q ,则a m +a n =a p +a q ; ②S m ,S 2m -S m ,S 3m -S 2m ,…,仍成等差数列; ③a m -a n =(m -n )d ⇔d =a m -a nm -n(m ,n ∈N *);④a n b n =A 2n -1B 2n -1(A 2n -1,B 2n -1分别为{a n },{b n }的前2n -1项的和). (3)等差数列前n 项和的问题可以利用函数的性质或者转化为等差数列的项,利用性质解决.(1)已知等差数列{a n }中,a 7+a 9=16,S 11=992,则a 12的值是( )A .15B .30C .31D .64(2)在等差数列{a n }中,a 5<0,a 6>0且a 6>|a 5|,S n 是数列的前n 项的和,则下列说法正确的是( )A .S 1,S 2,S 3均小于0,S 4,S 5,S 6…均大于0B .S 1,S 2,…S 5均小于0,S 6,S 7,…均大于0C .S 1,S 2,…S 9均小于0,S 10,S 11…均大于0D .S 1,S 2,…S 11均小于0,S 12,S 13…均大于0 答案 (1)A (2)C解析 (1)因为a 8是a 7,a 9的等差中项,所以2a 8=a 7+a 9=16⇒a 8=8,再由等差数列前n 项和的计算公式可得S 11=11(a 1+a 11)2=11·2a 62=11a 6,又因为S 11=992,所以a 6=92,则d =a 8-a 62=74,所以a 12=a 8+4d =15,故选A. (2)由题意可知a 6+a 5>0,故S 10=(a 1+a 10)×102=(a 5+a 6)×102>0,而S 9=(a 1+a 9)×92=2a 5×92=9a 5<0,故选C.热点二 等比数列例2 (1)(2014·安徽)数列{a n }是等差数列,若a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,则q =_____________________.(2)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S na n 等于( )A .4n -1B .4n -1C .2n -1D .2n -1思维启迪 (1)列方程求出d ,代入q 即可;(2)求出a 1,q ,代入化简. 答案 (1)1 (2)D解析 (1)设等差数列的公差为d ,则a 3=a 1+2d , a 5=a 1+4d ,∴(a 1+2d +3)2=(a 1+1)(a 1+4d +5),解得d =-1, ∴q =a 3+3a 1+1=a 1-2+3a 1+1=1.(2)∵⎩⎨⎧a 1+a 3=52,a 2+a 4=54,∴⎩⎨⎧a 1+a 1q 2=52,①a 1q +a 1q 3=54,②由①②可得1+q 2q +q 3=2,∴q =12,代入①得a 1=2, ∴a n =2×(12)n -1=42n ,∴S n =2×(1-(12)n )1-12=4(1-12n ),∴S na n =4(1-12n )42n=2n -1,故选D. 思维升华 (1){a n }为等比数列,其性质如下:①若m 、n 、r 、s ∈N *,且m +n =r +s ,则a m ·a n =a r ·a s ; ②a n =a m q n -m ;③S n ,S 2n -S n ,S 3n -S 2n 成等比数列(q ≠-1). (2)等比数列前n 项和公式 S n =⎩⎪⎨⎪⎧na 1(q =1),a 1(1-q n )1-q=a 1-a n q 1-q (q ≠1).①能“知三求二”;②注意讨论公比q 是否为1;③a 1≠0.(1)已知各项不为0的等差数列{a n }满足a 4-2a 27+3a 8=0,数列{b n }是等比数列,且b 7=a 7,则b 2b 8b 11等于( ) A .1 B .2 C .4D .8(2)在等比数列{a n }中,a 1+a n =34,a 2·a n -1=64,且前n 项和S n =62,则项数n 等于( ) A .4 B .5 C .6D .7答案 (1)D (2)B解析 (1)∵a 4-2a 27+3a 8=0,∴2a 27=a 4+3a 8,即2a 27=4a 7,∴a 7=2,∴b 7=2,又∵b 2b 8b 11=b 1qb 1q 7b 1q 10=b 31q 18=(b 7)3=8,故选D.(2)设等比数列{a n }的公比为q ,由a 2a n -1=a 1a n =64,又a 1+a n =34,解得a 1=2,a n =32或a 1=32,a n =2.当a 1=2,a n =32时,S n =a 1(1-q n )1-q =a 1-a n q 1-q =2-32q 1-q=62,解得q =2.又a n =a 1q n-1,所以2×2n -1=2n =32,解得n =5.同理,当a 1=32,a n =2时,由S n =62,解得q =12.由a n =a 1q n -1=32×(12)n -1=2,得(12)n -1=116=(12)4,即n -1=4,n =5.综上,项数n 等于5,故选B.热点三 等差数列、等比数列的综合应用例3 已知等差数列{a n }的公差为-1,且a 2+a 7+a 12=-6. (1)求数列{a n }的通项公式a n 与前n 项和S n ;(2)将数列{a n }的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{b n }的前3项,记{b n }的前n 项和为T n ,若存在m ∈N *,使对任意n ∈N *,总有S n <T m +λ恒成立,求实数λ的取值范围.思维启迪 (1)利用方程思想求出a 1,代入公式求出a n 和S n ;(2)将恒成立问题通过分离法转化为最值.解 (1)由a 2+a 7+a 12=-6得a 7=-2,∴a 1=4, ∴a n =5-n ,从而S n =n (9-n )2.(2)由题意知b 1=4,b 2=2,b 3=1, 设等比数列{b n }的公比为q , 则q =b 2b 1=12,∴T m =4[1-(12)m ]1-12=8[1-(12)m ],∵(12)m 随m 增加而递减, ∴{T m }为递增数列,得4≤T m <8. 又S n =n (9-n )2=-12(n 2-9n )=-12[(n -92)2-814],故(S n )max =S 4=S 5=10,若存在m ∈N *,使对任意n ∈N *总有S n <T m +λ, 则10<4+λ,得λ>6.即实数λ的取值范围为(6,+∞). 思维升华 等差(比)数列的综合问题的常见类型及解法(1)等差数列与等比数列交汇的问题,常用“基本量法”求解,但有时灵活地运用性质,可使运算简便.(2)等差数列、等比数列与函数、方程、不等式等的交汇问题,求解时用等差(比)数列的相关知识,将问题转化为相应的函数、方程、不等式等问题求解即可.已知数列{a n }前n 项和为S n ,首项为a 1,且12,a n ,S n 成等差数列.(1)求数列{a n }的通项公式;(2)数列{b n }满足b n =(log 2a 2n +1)×(log 2a 2n +3),求证:1b 1+1b 2+1b 3+…+1b n <12.(1)解 ∵12,a n ,S n 成等差数列,∴2a n =S n +12,当n =1时,2a 1=S 1+12,∴a 1=12,当n ≥2时,S n =2a n -12,S n -1=2a n -1-12,两式相减得a n =S n -S n -1=2a n -2a n -1, ∴a na n -1=2, ∴数列{a n }是首项为12,公比为2的等比数列,∴a n =12×2n -1=2n -2.(2)证明 b n =(log 2a 2n +1)×(log 2a 2n +3)=log 222n +1-2×log 222n+3-2=(2n -1)(2n +1),1b n =12n -1×12n +1=12(12n -1-12n +1), 1b 1+1b 2+1b 3+…+1b n =12[(1-13)+(13-15)+…+(12n -1-12n +1)]=12(1-12n +1)<12(n ∈N *). 即1b 1+1b 2+1b 3+…+1b n <12.1.在等差(比)数列中,a 1,d (q ),n ,a n ,S n 五个量中知道其中任意三个,就可以求出其他两个.解这类问题时,一般是转化为首项a 1和公差d (公比q )这两个基本量的有关运算. 2.等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.3.等差、等比数列的单调性 (1)等差数列的单调性d >0⇔{a n }为递增数列,S n 有最小值. d <0⇔{a n }为递减数列,S n 有最大值. d =0⇔{a n }为常数列. (2)等比数列的单调性当⎩⎪⎨⎪⎧ a 1>0,q >1或⎩⎪⎨⎪⎧ a 1<0,0<q <1时,{a n }为递增数列,当⎩⎪⎨⎪⎧ a 1>0,0<q <1或⎩⎪⎨⎪⎧a 1<0,q >1时,{a n }为递减数列. 4.常用结论(1)若{a n },{b n }均是等差数列,S n 是{a n }的前n 项和,则{ma n +kb n },{S nn }仍为等差数列,其中m ,k 为常数.(2)若{a n },{b n }均是等比数列,则{ca n }(c ≠0),{|a n |},{a n ·b n },{ma n b n }(m 为常数),{a 2n },{1a n}仍为等比数列.(3)公比不为1的等比数列,其相邻两项的差也依次成等比数列,且公比不变,即a 2-a 1,a 3-a 2,a 4-a 3,…,成等比数列,且公比为a 3-a 2a 2-a 1=(a 2-a 1)qa 2-a 1=q .(4)等比数列(q ≠-1)中连续k 项的和成等比数列,即S k ,S 2k -S k ,S 3k -S 2k ,…,成等比数列,其公差为q k .等差数列中连续k 项的和成等差数列,即S k ,S 2k -S k ,S 3k -S 2k ,…,成等差数列,公差为k 2d . 5.易错提醒(1)应用关系式a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2时,一定要注意分n =1,n ≥2两种情况,在求出结果后,看看这两种情况能否整合在一起.(2)三个数a ,b ,c 成等差数列的充要条件是b =a +c2,但三个数a ,b ,c 成等比数列的充要条件是b 2=ac .真题感悟1.(2014·大纲全国)等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( ) A .6 B .5 C .4 D .3 答案 C解析 数列{lg a n }的前8项和S 8=lg a 1+lg a 2+…+lg a 8=lg(a 1·a 2·…·a 8)=lg(a 1·a 8)4 =lg(a 4·a 5)4=lg(2×5)4=4.2.(2014·北京)若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大. 答案 8解析 ∵a 7+a 8+a 9=3a 8>0,∴a 8>0. ∵a 7+a 10=a 8+a 9<0,∴a 9<-a 8<0. ∴数列的前8项和最大,即n =8. 押题精练1.已知等比数列{a n }的前n 项和为S n ,则下列一定成立的是( ) A .若a 3>0,则a 2 013<0 B .若a 4>0,则a 2 014<0 C .若a 3>0,则a 2 013>0 D .若a 4>0,则a 2 014>0答案 C解析 因为a 3=a 1q 2,a 2 013=a 1q 2 012,而q 2与q 2 012均为正数,若a 3>0,则a 1>0,所以a 2 013>0,故选C.2.已知数列{a n }是首项为a ,公差为1的等差数列,b n =1+a na n.若对任意的n ∈N *,都有b n ≥b 8成立,则实数a 的取值范围为________. 答案 (-8,-7)解析 a n =a +(n -1)×1=n +a -1,所以b n =1+a n a n =n +an +a -1,因为对任意的n ∈N *,都有b n ≥b 8成立,即n +a n +a -1≥8+a 8+a -1(n ∈N *)恒成立,即n -8(a +7)(n +a -1)≤0(n ∈N *),则有⎩⎪⎨⎪⎧a +7<0,1-a <9,解得-8<a <-7. 3.设各项均为正数的数列{a n }的前n 项和为S n ,满足a 2n +1=4S n +4n +1,n ∈N *,且a 2,a 5,a 14恰好是等比数列{b n }的前三项. (1)求数列{a n },{b n }的通项公式;(2)记数列{b n }的前n 项和为T n ,若对任意的n ∈N *,(T n +32)k ≥3n -6恒成立,求实数k 的取值范围.解 (1)当n ≥2时,由题设知4S n -1=a 2n -4(n -1)-1,∴4a n =4S n -4S n -1=a 2n +1-a 2n -4, ∴a 2n +1=a 2n +4a n +4=(a n +2)2,∵a n >0,∴a n +1=a n +2.∴当n ≥2时,{a n }是公差d =2的等差数列. ∵a 2,a 5,a 14构成等比数列,∴a 25=a 2·a 14,(a 2+6)2=a 2·(a 2+24),解得a 2=3, 由条件可知,4a 1=a 22-5=4,∴a 1=1, ∵a 2-a 1=3-1=2,∴{a n }是首项a 1=1,公差d =2的等差数列. ∴等差数列{a n }的通项公式为a n =2n -1. ∵等比数列{b n }的公比q =a 5a 2=2×5-13=3,∴等比数列{b n }的通项公式为b n =3n . (2)T n =b 1(1-q n )1-q =3(1-3n )1-3=3n +1-32,∴(3n +1-32+32)k ≥3n -6对任意的n ∈N *恒成立,∴k ≥2n -43n 对任意的n ∈N *恒成立,令c n =2n -43n ,c n -c n -1=2n -43n -2n -63n -1=-2(2n -7)3n ,当n ≤3时,c n >c n -1; 当n ≥4时,c n <c n -1. ∴(c n )max =c 3=227,∴k ≥227.(推荐时间:60分钟)一、选择题1.等比数列{a n }中a 1=3,a 4=24,则a 3+a 4+a 5等于( ) A .33 B .72 C .84 D .189答案 C解析 由题意可得q 3=8,所以q =2.所以a 3+a 4+a 5=a 1q 2(1+q +q 2)=84. 2.设等差数列{a n }的前n 项和为S n ,若2a 6=6+a 7,则S 9的值是( ) A .27 B .36 C .45 D .54答案 D解析 由2a 6=6+a 7得a 5=6,所以S 9=9a 5=54.故选D.3.设等比数列{a n }的前n 项和为S n ,若S m -1=5,S m =-11,S m +1=21,则m 等于( ) A .3 B .4 C .5 D .6答案 C解析 由已知得,S m -S m -1=a m =-16,S m +1-S m =a m +1=32,故公比q =-2,又S m =a 1-a m q1-q =-11,故a 1=-1,又a m =a 1·q m -1=-16,代入可求得m =5.4.数列{a n }的首项为3,{b n }为等差数列且b n =a n +1-a n (n ∈N *),若b 3=-2,b 10=12,则a 8等于( )A .0B .3C .8D .11 答案 B解析 ∵{b n }为等差数列,设其公差为d , 由b 3=-2,b 10=12,∴7d =b 10-b 3=12-(-2)=14,∴d =2, ∵b 3=-2,∴b 1=b 3-2d =-2-4=-6, ∴b 1+b 2+…+b 7=7b 1+7×62·d=7×(-6)+21×2=0,又b 1+b 2+…+b 7=(a 2-a 1)+(a 3-a 2)+…+(a 8-a 7)=a 8-a 1=a 8-3, ∴a 8-3=0,a 8=3.故选B. 5.数列{a n }满足a 1=2,a n =a n +1-1a n +1+1,其前n 项积为T n ,则T 2 014等于( )A.16 B .-16C .6D .-6答案 D解析 由a n =a n +1-1a n +1+1得a n +1=1+a n 1-a n ,而a 1=2,所以a 2=-3,a 3=-12,a 4=13,a 5=2,则数列是以4为周期,且a 1a 2a 3a 4=1,所以T 2 014=(a 1a 2a 3a 4)503a 1a 2=1503×2×(-3)=-6,故选D.6.已知{a n }是等差数列,S n 为其前n 项和,若S 21=S 4 000,O 为坐标原点,点P (1,a n ), Q (2 011,a 2 011),则OP →·OQ →等于( ) A .2 011 B .-2 011 C .0 D .1 答案 A解析 由S 21=S 4 000得a 22+a 23+…+a 4 000=0, 由于a 22+a 4 000=a 23+a 3 999=…=2a 2 011, 所以a 22+a 23+…+a 4 000=3 979a 2 011=0, 从而a 2 011=0,而OP →·OQ →=2 011+a 2 011a n =2 011. 二、填空题7.在等比数列{a n }中,已知a 1+a 3=8,a 5+a 7=4,则a 9+a 11+a 13+a 15=________. 答案 3解析 设等比数列{a n }的公比为q ,由已知,得⎩⎪⎨⎪⎧a 1+a 1q 2=8,a 1q 4+a 1q 6=4,解得q 4=12. 又a 9+a 11=a 1q 8+a 3q 8=(a 1+a 3)q 8=8×(12)2=2,a 13+a 15=a 1q 12+a 3q 12=(a 1+a 3)q 12=8×(12)3=1, 所以a 9+a 11+a 13+a 15=2+1=3.8.(2014·广东)若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=______.答案 50解析 因为a 10a 11+a 9a 12=2a 10a 11=2e 5,所以a 10a 11=e 5.所以ln a 1+ln a 2+…+ln a 20=ln(a 1a 2…a 20)=ln[(a 1a 20)·(a 2a 19)·…·(a 10a 11)]=ln(a 10a 11)10=10ln(a 10a 11)=10ln e 5=50ln e =50.9.设等差数列{a n }的前n 项和为S n ,若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n =________. 答案 6解析 设等差数列的公差为d ,则由a 4+a 6=-6得2a 5=-6,∴a 5=-3.又∵a 1=-11,∴-3=-11+4d ,∴d =2,∴S n =-11n +n (n -1)2×2=n 2-12n =(n -6)2-36, 故当n =6时,S n 取最小值.10.已知数列{a n }的首项为a 1=2,且a n +1=12(a 1+a 2+…+a n ) (n ∈N *),记S n 为数列{a n }的前n 项和,则S n =________,a n =________.答案 2×⎝⎛⎭⎫32n -1 ⎩⎪⎨⎪⎧ 2 (n =1),⎝⎛⎭⎫32n -2 (n ≥2)解析 由a n +1=12(a 1+a 2+…+a n ) (n ∈N *),可得a n +1=12S n ,所以S n +1-S n =12S n ,即S n +1=32S n ,由此可知数列{S n }是一个等比数列,其中首项S 1=a 1=2,公比为32,所以S n =2×⎝⎛⎭⎫32n -1, 由此得a n =⎩⎪⎨⎪⎧2 (n =1),⎝⎛⎭⎫32n -2 (n ≥2). 三、解答题11.成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n }中的b 3、b 4、b 5.(1)求数列{b n }的通项公式;(2)数列{b n }的前n 项和为S n ,求证:数列{S n +54}是等比数列.(1)解 设成等差数列的三个正数分别为a -d ,a ,a +d .依题意,得a -d +a +a +d =15.解得a =5.所以{b n }中的b 3,b 4,b 5依次为7-d,10,18+d .依题意,有(7-d )(18+d )=100,解得d =2或d =-13(舍去).故{b n }的第3项为5,公比为2.由b 3=b 1·22,即5=b 1·22,解得b 1=54. 所以b n =b 1·q n -1=54·2n -1=5·2n -3, 即数列{b n }的通项公式b n =5·2n -3. (2)证明 由(1)得数列{b n }的前n 项和S n =54(1-2n )1-2=5·2n -2-54, 即S n +54=5·2n -2. 所以S 1+54=52,S n +1+54S n +54=5·2n -15·2n -2=2. 因此{S n +54}是以52为首项,2为公比的等比数列. 12.若数列{b n }对于n ∈N *,都有b n +2-b n =d (常数),则称数列{b n }是公差为d 的准等差数列,如数列{c n },若c n =⎩⎪⎨⎪⎧4n -1,n 为奇数,4n -9,n 为偶数,则数列{c n }是公差为8的准等差数列.设数列{a n }满足a 1=a ,对于n ∈N *,都有a n +a n +1=2n .(1)求证:{a n }为准等差数列;(2)求{a n }的通项公式及前20项和S 20.(1)证明 ∵a n +1+a n =2n ,①∴a n +2+a n +1=2n +2.②由②-①得a n +2-a n =2(n ∈N *),∴{a n }是公差为2的准等差数列.(2)解 已知a 1=a ,a n +1+a n =2n (n ∈N *),∴a 1+a 2=2,即a 2=2-a .∴由(1)可知a 1,a 3,a 5,…,成以a 为首项,2为公差的等差数列,a 2,a 4,a 6,…,成以2-a 为首项,2为公差的等差数列.∴当n 为偶数时,a n =2-a +(n 2-1)×2=n -a , 当n 为奇数时,a n =a +(n +12-1)×2=n +a -1, ∴a n =⎩⎪⎨⎪⎧n +a -1,n 为奇数,n -a ,n 为偶数. S 20=a 1+a 2+…+a 19+a 20=(a 1+a 2)+(a 3+a 4)+…+(a 19+a 20)=2×1+2×3+…+2×19=2×(1+19)×102=200. 13.(2013·湖北)已知S n 是等比数列{a n }的前n 项和,S 4,S 2,S 3成等差数列,且a 2+a 3+a 4=-18.(1)求数列{a n }的通项公式;(2)是否存在正整数n ,使得S n ≥2 013?若存在,求出符合条件的所有n 的集合;若不存在,说明理由.解 (1)设等比数列{a n }的公比为q ,则a 1≠0,q ≠0.由题意得⎩⎪⎨⎪⎧ S 2-S 4=S 3-S 2,a 2+a 3+a 4=-18. 即⎩⎪⎨⎪⎧-a 1q 2-a 1q 3=a 1q 2,a 1q (1+q +q 2)=-18, 解得⎩⎪⎨⎪⎧a 1=3,q =-2. 故数列{a n }的通项公式为a n =3×(-2)n -1. (2)由(1)有S n =3[1-(-2)n ]1-(-2)=1-(-2)n . 假设存在n ,使得S n ≥2 013,则1-(-2)n ≥2 013,即(-2)n ≤-2 012.当n 为偶数时,(-2)n >0,上式不成立;当n 为奇数时,(-2)n =-2n ≤-2 012,即2n ≥2 012,得n ≥11.综上,存在符合条件的正整数n ,且所有这样的n 的集合为{n |n =2k +1,k ∈N ,k ≥5}.。
高考数学(文)二轮复习(全国通用)教师用书 专题四至专题八 Word版含解析
第1讲 空间几何体中的计算高考定位 1.以三视图为载体,考查空间几何体面积、体积的计算;2.考查空间几何体的侧面展开图及简单的组合体问题.真 题 感 悟1.(2016·全国Ⅰ卷)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )A.17π B .18π C .20π D .28π解析由题知,该几何体的直观图如图所示,它是一个球(被过球心O 且互相垂直的三个平面)切掉左上角的18后得到的组合体,其表面积是球面面积的78和三个14圆面积之和,易得球的半径为2,则得S =78×4π×22+3×14π×22=17π,故选A. 答案 A2.(2016·全国Ⅱ卷)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A.20π B .24π C .28π D .32π解析 由三视图可知,组合体的底面圆的面积和周长均为4π,圆锥的母线长l =(23)2+22=4,所以圆锥的侧面积为S 锥侧=12×4π×4=8π,圆柱的侧面积S 柱侧=4π×4=16π,所以组合体的表面积S =8π+16π+4π=28π,故选C. 答案 C3.(2016·全国Ⅲ卷)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )A.18+365B.54+18 5C.90D.81解析由题意知,几何体为平行六面体,边长分别为3,3,35,几何体的表面积S =3×6×2+3×3×2+3×35×2=54+18 5. 答案 B4.(2016·北京卷)某四棱柱的三视图如图所示,则该四棱柱的体积为________.解析 由三视图知该四棱柱为直四棱柱, 底面积S =(1+2)×12=32,高h =1,所以四棱柱体积V =S ·h =32×1=32. 答案32考 点 整 合1.四棱柱、直四棱柱、正四棱柱、正方体、平行六面体、直平行六面体、长方体之间的关系.2.几何体的摆放位置不同,其三视图也不同,需要注意长对正,高平齐,宽相等.3.空间几何体的两组常用公式 (1)柱体、锥体、台体的侧面积公式: ①S 柱侧=ch (c 为底面周长,h 为高); ②S 锥侧=12ch ′(c 为底面周长,h ′为斜高);③S 台侧=12(c +c ′)h ′(c ′,c 分别为上下底面的周长,h ′为斜高); ④S 球表=4πR 2(R 为球的半径). (2)柱体、锥体和球的体积公式:①V柱体=Sh(S为底面面积,h为高);②V锥体=13Sh(S为底面面积,h为高);③V球=43πR3.热点一以三视图为载体的几何体的表面积与体积的计算[微题型1]以三视图为载体求几何体的表面积【例1-1】(1)(2015·安徽卷)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+ 3B.1+22C.2+3D.2 2(2)(2016·浙江卷)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是________cm2,体积是________cm3.解析(1)由几何体的三视图可知空间几何体的直观图如图所示.∴其表面积S 表=2×12×2×1+2×34×(2)2=2+3,故选C. (2)由三视图可知该几何体由一个正方体和一个长方体组合而成,上面正方体的边长为2 cm ,下面长方体是底面边长为4 cm ,高为2 cm ,其直观图如右图:其表面积S =6×22+2×42+4×2×4-2×22=80(cm 2).体积V =2×2×2+4×4×2=40(cm 3). 答案 (1)C (2)80 40探究提高(1)若以三视图的形式给出,解题的关键是对给出的三视图进行分析,从中发现几何体中各元素间的位置关系及数量关系,得到几何体的直观图,然后根据条件求解.(2)多面体的表面积是各个面的面积之和,组合体的表面积应注意重合部分的处理.[微题型2] 以三视图为载体求几何体的体积【例1-2】 (1)(2016·郑州模拟)已知一个几何体的三视图如图所示,则该几何体的体积为( )A.(4+π)33B.(4+π)32C.(4+π)36D.(4+π) 3(2)(2016·衡水大联考)如图,网格纸上小正方形的边长为1,粗实线和虚线画出的是多面体的三视图,则该多面体的体积为( )A.203 B.8 C.223 D.163解析(1)由该几何体的三视图,可知该几何体是由底面半径为1、高为3、母线长为2的半圆锥,和底面为等腰三角形(底边长为2、高为2)、高为3的三棱锥拼成的一个组合体.所以此组合体的体积为13×12×π×12×3+13×12×2×2×3=(4+π)36.(2)由图知此几何体为边长为2的正方体裁去一个三棱锥. 所以此几何体的体积为2×2×2-13×12×1×2×2=223.故选C. 答案 (1)C (2)C探究提高 解决此类问题需先由三视图确定几何体的结构特征,判断是否为组合体,由哪些简单几何体构成,并准确判断这些几何体之间的关系,将其切割为一些简单的几何体,再求出各个简单几何体的体积,最后求出组合体的体积. [微题型3] 与球有关的体积问题【例1-3】 (1)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点,若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( ) A.36π B .64π C .144π D .256π(2)已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此三棱锥的体积为( ) A.26 B.36 C.23 D.22解析 (1)如图,要使三棱锥O -ABC 即C -OAB 的体积最大,当且仅当点C 到平面OAB 的距离,即三棱锥C -OAB 底面OAB 上的高最大,其最大值为球O 的半径R ,则V O -ABC 最大为13×12S △OAB ×R =13×12×R 2×R =16R 3=36,所以R =6,得S 球O =4πR 2=4π×62=144π,选C.(2)法一 (排除法)V <13×S △ABC ×2=36,排除B 、C 、D ,选A. 法二 (直接法):在Rt △ASC 中,AC =1,∠SAC =90°,SC =2,所以SA =4-1= 3.同理,SB = 3.过A 点作SC 的垂线交SC 于D 点,连接DB ,因为△SAC ≌△SBC ,所以BD ⊥SC ,AD =BD ,故SC ⊥平面ABD ,且△ABD 为等腰三角形.因为∠ASC =30°,故AD =12SA =32,则△ABD 的面积为12×1×AD 2-⎝ ⎛⎭⎪⎫122=24,则三棱锥S -ABC 的体积为13×24×2=26.答案 (1)C (2)A探究提高涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解. 【训练1】 (1)(2016·成都诊断)某几何体的三视图如图所示,则该几何体的体积为( )A.13+2πB.13π6C.7π3D.5π2(2)(2016·西安模拟)某几何体的三视图如图所示,则该几何体的表面积为( )A.54B.60C.66D.72解析 (1)该几何体由一个圆柱和一个半圆锥组成,其体积为V =π×12×2+12×13π×12×1=2π+π6=136π.(2)还原为如图所示的直观图,S 表=S △ABC +S △DEF +S 矩形ACFD +S 梯形ABED +S 梯形CBEF =12×3×4+12×3×5+5×3+12×(2+5)×4+12×(2+5)×5=60. 答案 (1)B (2)B热点二 多面体的体积计算 [微题型1] 多面体体积的间接计算【例2-1】 (1)如图所示,ABCD 是正方形,P A ⊥平面ABCD ,E ,F 分别是AC ,PC 的中点,P A =2,AB =1,则三棱锥C -PED 的体积为________.(2)如图,在棱长为6的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别在C 1D 1与C 1B 1上,且C 1E =4,C 1F =3,连接EF ,FB ,DE ,BD 则几何体EFC 1-DBC 的体积为( ) A.66 B.68 C.70 D.72解析(1)∵P A ⊥平面ABCD ,∴P A 是三棱锥P -CED 的高,P A =2. ∵ABCD 是正方形,E 是AC 的中点, ∴△CED 是等腰直角三角形.AB =1,故CE =ED =22,S △CED =12CE ·ED =12×22×22=14.故V C -PED =V P -CED =13·S △CED ·P A =13×14×2=16.(2)如图,连接DF ,DC 1,那么几何体EFC 1-DBC 被分割成三棱锥D -EFC 1及四棱锥D -CBFC 1,那么几何体EFC 1-BDC 的体积为V =13×12×3×4×6+13×12×(3+6)×6×6=12+54=66.故所求几何体EFC 1-DBC 的体积为66. 答案 (1)16 (2)A探究提高(1)求三棱锥的体积,等体积转化是常用的方法,转换原则是其高易求,底面放在已知几何体的某一面上.(2)若所给的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法求解.[微题型2] 多面体体积的直接计算【例2-2】(2016·武汉模拟)如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点.(1)证明:BC 1∥平面A 1CD ;(2)设AA 1=AC =CB =2,AB =22,求三棱锥C -A 1DE 的体积. (1)证明 连接AC 1交A 1C 于点F , 则F 为AC 1中点.又D是AB中点,连接DF,则BC1∥DF.因为DF⊂平面A1CD,BC1⊄平面A1CD,所以BC1∥平面A1CD.(2)解因为ABC-A1B1C1是直三棱柱,所以AA1⊥CD.由已知AC=CB,D为AB的中点,所以CD⊥AB.又AA1∩AB=A,于是CD⊥平面ABB1A1.由AA1=AC=CB=2,AB=22得∠ACB=90°,CD=2,A1D=6,DE=3,A1E=3,故A1D2+DE2=A1E2,即DE⊥A1D.所以VC-A1DE=13×12×6×3×2=1.探究提高有关多面体的体积计算首先要熟悉几何体的特征,其次运用好公式,作好辅助线等.【训练2】(2016·豫南九校联考)如图,四棱锥P-ABCD中,P A⊥底面ABCD,P A=23,BC=CD=2,∠ACB=∠ACD=π3.(1)求证:BD⊥平面P AC;(2)若侧棱PC上的点F满足PF=7FC,求三棱锥P-BDF的体积.(1)证明因BC=CD,即△BCD为等腰三角形,又∠ACB=∠ACD,故BD⊥AC.因为P A ⊥底面ABCD ,BD ⊂平面ABCD ,所以P A ⊥BD .从而BD 与平面P AC 内两条相交直线P A ,AC 都垂直,所以BD ⊥平面P AC . (2)解 三棱锥P -BCD 的底面BCD 的面积 S △BCD =12BC ·CD ·sin ∠BCD =12·2·2·sin 2π3= 3. 由P A ⊥底面ABCD ,得V P -BCD =13·S △BCD ·P A =13·3·23=2.由PF =7FC ,得三棱锥F -BCD 的高为18P A ,故V F -BCD =13·S △BCD ·18P A =13·3·18·23=14,所以V P -BDF =V P -BCD -V F -BCD =2-14=74.1.求解几何体的表面积或体积(1)对于规则几何体,可直接利用公式计算.(2)对于不规则几何体,可采用割补法求解;对于某些三棱锥,有时可采用等体积转换法求解.(3)求解旋转体的表面积和体积时,注意圆柱的轴截面是矩形,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形的应用.(4)注意几何体的表面积与侧面积的区别,侧面积只是表面积的一部分,不包括底面积,而表面积包括底面积和侧面积.2.球的简单组合体中几何体度量之间的关系,如棱长为a 的正方体的外接球、内切球、棱切球的半径分别为32a ,a 2,22a .3.锥体体积公式为V =13Sh ,在求解锥体体积中,不能漏掉13.一、选择题1.(2015·全国Ⅱ卷)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( )A.18B.17C.16D.15解析 如图,由题意知,该几何体是正方体ABCD -A 1B 1C 1D 1被过三点A 、B 1、D 1的平面所截剩余部分,截去的部分为三棱锥A -A 1B 1D 1,设正方体的棱长为1,则截去部分体积与剩余部分体积的比值为V A -A 1B 1D 1V B 1C 1D 1-ABCD =V A -A 1B 1D 1V A 1B 1C 1D 1-ABCD -V A -A 1B 1D 1=13×12×12×113-13×12×12×1=15.选D. 答案 D2.某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是( ) A.90 cm 2 B.129 cm 2 C.132 cm 2 D.138 cm 2解析 该几何体如图所示,长方体的长、宽、高分别为6 cm ,4 cm ,3 cm ,直三棱柱的底面是直角三角形,边长分别为3 cm ,4 cm ,5 cm ,所以表面积S =(2×4×6+2×3×4+3×6+3×3)+ ⎝ ⎛⎭⎪⎫3×4+3×5+2×12×3×4=138(cm 2),故选D. 答案 D3.(2016·皖南八校联考)某几何体的三视图如图所示,则该几何体的体积为()A.13+πB.23+πC.13+2πD.23+2π解析 这是一个三棱锥与半个圆柱的组合体,V =12π×12×2+13×⎝ ⎛⎭⎪⎫12×1×2×1=π+13,选A. 答案 A4.(2015·全国Ⅰ卷)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( ) A.1 B.2 C.4 D.8解析 由题意知,设几何体由一个半圆柱和一个半球拼接而成, ∴2r ·2r +2πr 2+12πr 2+12πr 2+12·4πr 2=4r 2+5πr 2=16+20π,∴r =2. 答案 B5.三棱锥S -ABC 的所有顶点都在球O 的表面上,SA ⊥平面ABC ,AB ⊥BC ,又SA =AB =BC =1,则球O 的表面积为( ) A.32π B.32π C.3π D .12π解析 如图,因为AB ⊥BC ,所以AC 是△ABC 所在截面圆的直径,又因为SA ⊥平面ABC ,所以△SAC 所在的截面圆是球的大圆, 所以SC 是球的一条直径. 由题设SA =AB =BC =1,由勾股定理可求得:AC =2,SC =3, 所以球的半径R =32,所以球的表面积为4π×⎝ ⎛⎭⎪⎫322=3π.答案 C 二、填空题6.一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.解析 由三视图可知,该几何体由相同底面的两圆锥和圆柱组成,底面半径为1,圆锥的高为1,圆柱的高为2,所以该几何体的体积V =2×13π×12×1+π×12×2=83π(m 3).答案 8π37.(2016·四川卷)已知某三棱锥的三视图如图所示,则该三棱锥的体积是________.解析 由三视图可大致画出三棱锥的直观图如图,由正、俯视图可知,△ABC 为等腰三角形,且AC =23,AC 边上的高为1,∴S △ABC =12×23×1= 3.由侧视图可知:三棱锥的高h =1,∴V S -ABC =13S △ABC h =33.答案338.(2016·成都诊断)在三棱柱ABC -A 1B 1C 1中,∠BAC =90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设点M ,N ,P 分别是AB ,BC ,B 1C 1的中点,则三棱锥P -A 1MN 的体积是________.解析由题意知还原后的几何体是一个直放的三棱柱,三棱柱的底面是直角边长为1的等腰直角三角形,高为1的直三棱柱, ∵V P -A 1MN =V A 1-PMN , 又∵AA 1∥平面PMN , ∴V A 1-PMN =V A -PMN ,∴V A -PMN =13×12×1×12×12=124,故V P -A 1MN =124. 答案124 三、解答题9.(2015·全国Ⅱ卷)如图,长方体ABCD -A 1B 1C 1D 1中,AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由); (2)求平面α把该长方体分成的两部分体积的比值. 解 (1)交线围成的正方形EHGF .如图:(2)如图,作EM ⊥AB ,垂足为M ,则AM =A 1E =4,EB 1=12,EM =AA 1=8. 因为四边形EHGF 为正方形,所以EH =EF =BC =10. 于是MH =EH 2-EM 2=6,AH =10,HB =6.故S 四边形A 1EHA =12×(4+10)×8=56,S 四边形EB 1BH =12×(12+6)×8=72. 因为长方体被平面α分成两个高为10的直棱柱, 所以其体积的比值为97(79也正确).10.(2015·全国Ⅰ卷)如图,四边形ABCD 为菱形,G 是AC 与BD 的交点,BE ⊥平面ABCD . (1)证明:平面AEC ⊥平面BED ;(2)若∠ABC =120°,AE ⊥EC ,三棱锥E -ACD 的体积为63,求该三棱锥的侧面积.(1)证明 因为四边形ABCD 为菱形,所以AC ⊥BD .因为BE ⊥平面ABCD ,AC ⊂平面ABCD , 所以AC ⊥BE .因为BE ∩BD =B ,故AC ⊥平面BED . 又AC ⊂平面AEC ,所以平面AEC ⊥平面BED .(2)解 设AB =x ,在菱形ABCD 中,由∠ABC =120°,可得AG =GC =32x ,GB=GD =x2. 因为AE ⊥EC ,所以在Rt △AEC 中,可得EG =32x .由BE ⊥平面ABCD ,BG ⊂平面ABCD 知BE ⊥BG ,故△EBG 为直角三角形,可得BE =22x .由已知得,三棱锥E -ACD 的体积V E -ACD =13×12AC ·GD ·BE =624x 3=63.故x =2. 从而可得AE =EC =ED = 6.所以△EAC的面积为3,△EAD的面积与△ECD的面积均为 5.故三棱锥E-ACD的侧面积为3+2 5.11.(2016·岳阳4月模拟)如图,三棱柱ABC-A1B1C1中,AA1⊥BC,A1B⊥BB1.(1)求证:A1C⊥CC1;(2)若AB=2,AC=3,BC=7,问AA1为何值时,三棱柱ABC-A1B1C1体积最大,并求此最大值.(1)证明由AA1⊥BC知BB1⊥BC,又BB1⊥A1B,且BC∩A1B=B,故BB1⊥平面BCA1,又A1C⊂平面BCA1,即BB1⊥A1C,又BB1∥CC1,所以A1C⊥CC1.(2)解法一设AA1=x,在Rt△A1BB1中,A1B=A1B21-BB21=4-x2.同理,A1C=A1C21-CC21=3-x2.在△A1BC中,cos ∠BA1C=A1B2+A1C2-BC2 2A1B·A1C=-x2(4-x2)(3-x2),sin ∠BA1C=12-7x2(4-x2)(3-x2),所以S△A1BC =12A1B·A1C·sin ∠BA1C=12-7x22.从而三棱柱ABC-A1B1C1的体积V=S直·l=S△A1BC ·AA1=x12-7x22,因x12-7x2=12x2-7x4=-7(x2-67)2+367,故当x=67=427,即AA1=427时,体积V取到最大值377.法二 如图,过A 1作BC 的垂线,垂足为D ,连接AD . 由AA 1⊥BC ,A 1D ⊥BC ,AA 1∩A 1D =A 1,故BC ⊥平面AA 1D ,BC ⊥AD ,又∠BAC =90°,所以S △ABC =12AD ·BC =12AB ·AC ,所以AD =2217.设AA 1=x ,在Rt △AA 1D 中,A 1D =AD 2-AA 21=127-x 2, S △A 1BC =12A 1D ·BC =12-7x 22.从而三棱柱ABC -A 1B 1C 1的体积V =S 直·l =S △A 1BC ·AA 1=x 12-7x 22.因x 12-7x 2=12x 2-7x 4=-7(x 2-67)2+367,故当x =67=427, 即AA 1=427时,体积V 取到最大值377.第2讲 空间中的平行与垂直的证明问题高考定位 1.以选择题、填空题的形式考查,主要利用平面的基本性质及线线、线面和面面的判定与性质定理对命题的真假进行判断,属基础题;2.以解答题的形式考查,主要是对线线、线面与面面平行和垂直关系交汇综合命题,且多以棱柱、棱锥、棱台或其简单组合体为载体进行考查,难度中等.真 题 感 悟(2016·全国Ⅰ卷)如图,已知正三棱锥P -ABC 的侧面是直角三角形,P A =6,顶点P 在平面ABC 内的正投影为点D ,D 在平面P AB 内的正投影为点E ,连接PE 并延长交AB 于点G . (1)证明:G 是AB 的中点;(2)作出点E 在平面P AC 内的正投影F (说明作法及理由),并求四面体P -DEF的体积.(1)证明 因为P 在平面ABC 内的正投影为D ,所以AB ⊥PD . 因为D 在平面P AB 内的正投影为E ,所以AB ⊥DE .且PD ∩DE =D , 所以AB ⊥平面PED ,又PG ⊂平面PED ,故AB ⊥PG . 又由已知可得,P A =PB ,从而G 是AB 的中点.(2)解 在平面P AB 内,过点E 作PB 的平行线交P A 于点F ,F 即为E 在平面P AC 内的正投影.理由如下:由已知可得PB ⊥P A ,PB ⊥PC ,又EF ∥PB ,所以EF ⊥P A ,EF ⊥PC ,P A ∩PC =P , 因此EF ⊥平面P AC ,即点F 为E 在平面P AC 内的正投影.连接CG ,因为P 在平面ABC 内的正投影为D ,所以D 是正三角形ABC 的中心.由(1)知,G 是AB 的中点,所以D 在CG 上,故CD =23CG . 由题设可得PC ⊥平面P AB ,DE ⊥平面P AB , 所以DE ∥PC ,因此PE =23PG ,DE =13PC .由已知,正三棱锥的侧面是直角三角形且P A =6,可得DE =2,PE =2 2. 在等腰直角三角形EFP 中, 可得EF =PF =2.所以四面体P -DEF 的体积 V =13×12×2×2×2=43.考 点 整 合1.直线、平面平行的判定及其性质(1)线面平行的判定定理:a ⊄α,b ⊂α,a ∥b ⇒a ∥α. (2)线面平行的性质定理:a ∥α,a ⊂β,α∩β=b ⇒a ∥b .(3)面面平行的判定定理:a ⊂β,b ⊂β,a ∩b =P ,a ∥α,b ∥α⇒α∥β. (4)面面平行的性质定理:α∥β,α∩γ=a ,β∩γ=b ⇒a ∥b . 2.直线、平面垂直的判定及其性质(1)线面垂直的判定定理:m ⊂α,n ⊂α,m ∩n =P ,l ⊥m ,l ⊥n ⇒l ⊥α.(2)线面垂直的性质定理:a⊥α,b⊥α⇒a∥b.(3)面面垂直的判定定理:a⊂β,a⊥α⇒α⊥β.(4)面面垂直的性质定理:α⊥β,α∩β=l,a⊂α,a⊥l⇒a⊥β.热点一空间平行、垂直关系的证明【例1】(2016·山东卷)在如图所示的几何体中,D是AC的中点,EF∥DB.(1)已知AB=BC,AE=EC.求证:AC⊥FB;(2)已知G,H分别是EC和FB的中点.求证:GH∥平面ABC.证明(1)因为EF∥DB,所以EF与DB确定平面BDEF,连接DE.因为AE=EC,D为AC的中点,所以DE⊥AC.同理可得BD⊥AC.又BD∩DE=D,所以AC⊥平面BDEF.因为FB⊂平面BDEF,所以AC⊥FB.(2)设FC的中点为I,连接GI,HI.在△CEF中,因为G是CE的中点,所以GI∥EF.又EF∥DB,所以GI∥DB.在△CFB中,因为H是FB的中点,所以HI∥BC.又HI∩GI=I,所以平面GHI∥平面ABC,因为GH⊂平面GHI,所以GH∥平面ABC.探究提高垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.(4)证明面面垂直,需转化为证明线面垂直,进而转化为证明线线垂直.【训练1】 如图,在四棱锥P -ABCD 中,AB ⊥AC ,AB ⊥P A ,AB ∥CD ,AB =2CD ,E ,F ,G ,M ,N 分别为PB ,AB ,BC ,PD ,PC 的中点.求证:(1)CE ∥平面P AD ; (2)平面EFG ⊥平面EMN .证明 (1)法一 如图1,取P A 的中点H ,连接EH ,DH . 又因为E 为PB 的中点,所以EH ∥AB ,且EH =12AB .图1又AB ∥CD ,CD =12AB , 所以EH ∥CD ,且EH =CD .所以四边形DCEH 是平行四边形.所以CE ∥DH . 又DH ⊂平面P AD , CE ⊄平面P AD , 因此,CE ∥平面P AD .法二 如图2,连接CF .因为F 为AB 的中点,所以AF =12AB .图2又CD =12AB ,所以AF =CD ,又AF ∥CD ,所以四边形AFCD 为平行四边形.因此CF ∥AD . 又CF ⊄平面P AD ,AD ⊂平面P AD , 所以CF ∥平面P AD .因为E ,F 分别为PB ,AB 的中点,所以EF ∥P A . 又EF ⊄平面P AD ,P A ⊂平面P AD , 所以EF ∥平面P AD .因为CF ∩EF =F ,故平面CEF ∥平面P AD . 又CE ⊂平面CEF ,所以CE ∥平面P AD .(2)因为E ,F 分别为PB ,AB 的中点,所以EF ∥P A . 又AB ⊥P A ,所以AB ⊥EF .同理可证AB ⊥FG . 又EF ∩FG =F ,EF ⊂平面EFG ,FG ⊂平面EFG , 因此AB ⊥平面EFG .又M ,N 分别为PD ,PC 的中点, 所以MN ∥DC ,又AB ∥DC ,所以MN ∥AB , 所以MN ⊥平面EFG .又MN ⊂平面EMN , 所以平面EFG ⊥平面EMN .热点二 利用平行、垂直关系判断点的存在性【例2】(2016·四川卷)如图,在四棱锥P -ABCD 中,P A ⊥CD ,AD ∥BC ,∠ADC =∠P AB =90°,BC =CD =12AD .(1)在平面P AD 内找一点M ,使得直线CM ∥平面P AB ,并说明理由.(2)证明:平面P AB ⊥平面PBD .(1)解取棱AD 的中点M (M ∈平面P AD ),点M 即为所求的一个点,理由如下:因为AD ∥BC ,BC =12AD .所以BC ∥AM ,且BC =AM . 所以四边形AMCB 是平行四边形,从而CM ∥AB . 又AB ⊂平面P AB .CM ⊄平面P AB . 所以CM ∥平面P AB .(说明:取棱PD 的中点N ,则所找的点可以是直线MN 上任意一点) (2)证明 由已知,P A ⊥AB ,P A ⊥CD .因为AD ∥BC ,BC =12AD ,所以直线AB 与CD 相交, 所以P A ⊥平面ABCD .从而P A ⊥BD .连接BM ,因为AD ∥BC ,BC =12AD , 所以BC ∥MD ,且BC =MD . 所以四边形BCDM 是平行四边形, 所以BM =CD =12AD ,所以BD ⊥AB . 又AB ∩AP =A ,所以BD ⊥平面P AB . 又BD ⊂平面PBD , 所以平面P AB ⊥平面PBD .探究提高 探求点的位置常常是线段的中点、三等分点等,关键是通过垂直、平行关系寻找线线平行.【训练2】 如图,三棱锥P -ABC 中,P A ⊥平面ABC ,P A =1,AB =1,AC =2,∠BAC =60°. (1)求三棱锥P -ABC 的体积;(2)证明:在线段PC 上存在点M ,使得AC ⊥BM ,并求PMMC 的值.(1)解 由题设AB =1,AC =2,∠BAC =60°, 可得S △ABC =12·AB ·AC ·sin 60°=32.由P A ⊥平面ABC ,可知P A 是三棱锥P -ABC 的高,又P A =1.所以三棱锥P -ABC 的体积V =13·S △ABC ·P A =36.(2)证明 在平面ABC 内,过点B 作BN ⊥AC ,垂足为N ,在平面P AC 内,过点N 作MN ∥P A 交PC 于点M ,连接BM .由P A ⊥平面ABC 知P A ⊥AC , 所以MN ⊥AC .由于BN ∩MN =N ,故AC ⊥平面MBN , 又BM ⊂平面MBN ,所以AC ⊥BM .在Rt △BAN 中,AN =AB ·cos ∠BAC =12,从而NC =AC -AN =32,由MN ∥P A ,得PM MC =AN NC =13.热点三 平面图形翻折中的平行、垂直关系【例3】(2016·全国Ⅱ卷)如图,菱形ABCD 的对角线AC 与BD交于点O,点E,F分别在AD,CD上,AE=CF,EF交BD于点H,将△DEF 沿EF折到△D′EF的位置.(1)证明:AC⊥HD′;(2)若AB=5,AC=6,AE=54,OD′=22,求五棱锥D′-ABCFE的体积.(1)证明由已知得AC⊥BD,AD=CD,又由AE=CF得AEAD=CFCD,故AC∥EF,由此得EF⊥HD,折后EF与HD保持垂直关系,即EF⊥HD′,所以AC⊥HD′.(2)解由EF∥AC得OHDO=AEAD=14.由AB=5,AC=6得DO=BO=AB2-AO2=4,所以OH=1,D′H=DH=3,于是OD′2+OH2=(22)2+12=9=D′H2,故OD′⊥OH.由(1)知AC⊥HD′,又AC⊥BD,BD∩HD′=H,所以AC⊥平面BHD′,于是AC⊥OD′,又由OD′⊥OH,AC∩OH=O,所以OD′⊥平面ABC.又由EFAC=DHDO得EF=92.五边形ABCFE的面积S=12×6×8-12×92×3=694.所以五棱锥D′-ABCFE的体积V=13×694×22=2322.探究提高(1)解决折叠问题的关键是搞清翻折前后哪些位置关系和数量关系改变,哪些不变,抓住翻折前后不变的量,充分利用原平面图形的信息是解决问题的突破口.(2)把平面图形翻折后,经过恰当连线就能得到三棱锥、四棱锥,从而把问题转化到我们熟悉的几何体中解决.【训练3】(2016·江西八校联考)如图1,在边长为1的等边三角形ABC中,D,E分别是AB,AC上的点,AD=AE,F是BC的中点,AF与DE交于点G,将△ABF沿AF折起,得到如图2所示的三棱锥A-BCF,其中BC=2 2.(1)证明:DE ∥平面BCF ; (2)证明:CF ⊥平面ABF ;(3)当AD =23时,求三棱锥F -DEG 的体积V F -DEG . (1)证明 在等边△ABC 中,AD =AE ,∴AD DB =AEEC 在折叠后的三棱锥A -BCF 中也成立. ∴DE ∥BC ,又DE ⊄平面BCF ,BC ⊂平面BCF , ∴DE ∥平面BCF .(2)证明 在等边△ABC 中,F 是BC 的中点, ∴AF ⊥CF .∵在三棱锥A -BCF 中,BC =22,BF =CF =12, ∴BC 2=BF 2+CF 2, ∴CF ⊥BF . 又BF ∩AF =F , ∴CF ⊥平面ABF .(3)解 由(1)、(2)可知GE ⊥平面DFG ,即GE 为三棱锥E -DFG 的高. V F -DEG =V E -DFG =13×12×DG ×FG ×GE =13×12×13×⎝ ⎛⎭⎪⎫13×32×13=3324.1.空间中点、线、面的位置关系的判定(1)可以从线、面的概念、定理出发,学会找特例、反例.(2)可以借助长方体,在理解空间点、线、面位置关系的基础上,抽象出空间线、面的位置关系的定义.2.垂直、平行关系的基础是线线垂直和线线平行,常用方法如下:(1)证明线线平行常用的方法:一是利用平行公理,即证两直线同时和第三条直线平行;二是利用平行四边形进行平行转换:三是利用三角形的中位线定理证线线平行;四是利用线面平行、面面平行的性质定理进行平行转换.(2)证明线线垂直常用的方法:①利用等腰三角形底边中线即高线的性质;②勾股定理;③线面垂直的性质:即要证两线垂直,只需证明一线垂直于另一线所在的平面即可,l⊥α,a⊂α⇒l⊥a.3.在应用直线和平面平行的性质定理时,要防止出现“一条直线平行于一个平面就平行于这个平面内的所有直线”的错误.4.解决平面图形的翻折问题,关键是抓住平面图形翻折前后的不变“性”与“量”,即两条直线的平行与垂直关系以及相关线段的长度、角度等.一、选择题1.(2016·浙江卷)已知互相垂直的平面α,β交于直线l.若直线m,n满足m∥α,n⊥β,则()A.m∥lB.m∥nC.n⊥lD.m⊥n解析由已知,α∩β=l,∴l⊂β,又∵n⊥β,∴n⊥l,C正确.故选C.答案 C2.(2016·山东卷)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析若直线a和直线b相交,则平面α和平面β相交;若平面α和平面β相交,那么直线a和直线b可能平行或异面或相交,故选A. 答案 A3.若a,b,c为三条不同的直线,α,β,γ为三个不同的平面,则下列命题正确的为()A.若a∥α,b∥α,则a∥bB.若α∥a,β∥a,则α∥βC.若a⊥α,b⊥α,则a∥bD.若α⊥β,α⊥γ,则β∥γ解析对于A,空间中平行于同一个平面的两直线可能异面、相交或平行,故A错误;对于B,空间中平行于同一条直线的两面平行或相交,故B错误.对于C,空间中垂直于同一个平面的两条直线平行,故C正确;对于D,空间中垂直于同一个平面的两平面相交或平行,故D错误.答案 C4.已知α,β是两个不同的平面,有下列三个条件:①存在一个平面γ,γ⊥α,γ∥β;②存在一条直线a,a⊂α,a⊥β;③存在两条垂直的直线a,b,a⊥β,b⊥α.其中,所有能成为“α⊥β”的充要条件的序号是()A.①B.②C.③D.①③解析对于①,存在一个平面γ,γ⊥α,γ∥β,则α⊥β,反之也成立,即“存在一个平面γ,γ⊥α,γ∥β”是“α⊥β”的充要条件,所以①对,可排除B、C.对于③,存在两条垂直的直线a,b,则直线a,b所成的角为90°,因为a⊥β,b⊥α,所以α,β所成的角为90°,即α⊥β,反之也成立,即“存在两条垂直的直线a,b,a⊥β,b⊥α”是“α⊥β”的充要条件,所以③对,可排除A,选D.答案 D5.如图,在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ADB沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD,则在三棱锥A-BCD中,下列命题正确的是()A.平面ABD⊥平面ABCB.平面ADC⊥平面BDCC.平面ABC⊥平面BDCD.平面ADC⊥平面ABC解析∵在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,∴BD⊥CD,又平面ABD⊥平面BCD,且平面ABD∩平面BCD=BD,CD⊂平面BCD,所以CD⊥平面ABD,又AB⊂平面ABD,则CD⊥AB,又AD⊥AB,AD∩CD=D,所以AB⊥平面ADC,又AB⊂平面ABC,所以平面ABC⊥平面ADC,故选D.答案 D二、填空题6.如图,AB为圆O的直径,点C在圆周上(异于点A,B),直线P A垂直于圆O所在的平面,点M为线段PB的中点.有以下四个命题:①P A∥平面MOB;②MO∥平面P AC;③OC⊥平面P AC;④平面P AC⊥平面PBC.其中正确的命题是________(填上所有正确命题的序号).解析①错误,P A⊂平面MOB;②正确;③错误,否则,有OC⊥AC,这与BC⊥AC 矛盾;④正确,因为BC⊥平面P AC.答案②④7.如图,在正方形ABCD中,E、F分别是BC、CD的中点,AC∩EF=G,现在沿AE、EF、F A把这个正方形折成一个四面体,使B、C、D三点重合,重合后的点记为P,则在四面体P-AEF中必有________(填序号).①AP⊥△PEF所在平面;②AG⊥△PEF所在平面;③EP⊥△AEF所在平面;④PG⊥△AEF所在平面.解析 在折叠过程中,AB ⊥BE ,AD ⊥DF 保持不变.∴⎭⎪⎬⎪⎫AP ⊥PEAP ⊥PF PE ∩PF =P ⇒AP ⊥面PEF .答案 ①8.(2016·东北三校联考)点A 、B 、C 、D 在同一个球的球面上,AB =BC =2,AC =2,若四面体ABCD 体积的最大值为23,则这个球的表面积为________. 解析如图所示,O 为球的球心,由AB =BC =2,AC =2可知∠ABC =π2,即△ABC 所在的小圆的圆心O 1为AC 的中点,故AO 1=1,S △ABC =1,当D 为O 1O 的延长线与球面的交点时,D 到平面ABC 的距离最大,四面体ABCD 的体积最大.连接OA ,设球的半径为R ,则DO 1=R +R 2-1,此时V D -ABC =13×S △ABC ×DO 1=13(R +R 2-1)=23,解得R =54,故这个球的表面积为4π⎝ ⎛⎭⎪⎫542=25π4.答案25π4 三、解答题9.(2016·北京卷)如图,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,AB ∥DC ,DC ⊥AC . (1)求证:DC ⊥平面P AC ; (2)求证:平面P AB ⊥平面P AC ;(3)设点E 为AB 的中点,在棱PB 上是否存在点F ,使得P A ∥平面CEF ?说明理由.(1)证明 ∵PC ⊥平面ABCD ,DC ⊂平面ABCD ,∴PC⊥DC.又AC⊥DC,PC∩AC=C,PC⊂平面P AC,AC⊂平面P AC,∴CD⊥平面P AC.(2)证明∵AB∥CD,CD⊥平面P AC,∴AB⊥平面P AC,AB⊂平面P AB,∴平面P AB⊥平面P AC.(3)解棱PB上存在点F,使得P A∥平面CEF.证明如下:取PB的中点F,连接EF,CE,CF,又因为E为AB的中点,∴EF为△P AB的中位线,∴EF∥P A.又P A⊄平面CEF,EF⊂平面CEF,∴P A∥平面CEF.10.(2015·山东卷)如图,三棱台DEF-ABC中,AB=2DE,G,H分别为AC,BC的中点.(1)求证:BD∥平面FGH;(2)若CF⊥BC,AB⊥BC,求证:平面BCD⊥平面EGH.证明(1)法一连接DG,CD,设CD∩GF=M,连接MH.在三棱台DEF-ABC中,AB=2DE,G为AC的中点,可得DF∥GC,DF=GC,所以四边形DFCG为平行四边形.则M为CD的中点,又H为BC的中点,所以HM∥BD,又HM⊂平面FGH,BD⊄平面FGH,所以BD∥平面FGH.法二在三棱台DEF-ABC中,由BC=2EF,H为BC的中点,可得BH∥EF,BH=EF,所以四边形HBEF为平行四边形,可得BE∥HF.在△ABC中,G为AC的中点,H为BC的中点,所以GH∥AB.又GH∩HF=H,所以平面FGH∥平面ABED.又因为BD⊂平面ABED,所以BD∥平面FGH.(2)连接HE,GE,因为G,H分别为AC,BC的中点,所以GH∥AB.由AB⊥BC,得GH⊥BC.又H为BC的中点,所以EF∥HC,EF=HC,因此四边形EFCH是平行四边形,所以CF∥HE.又CF⊥BC,所以HE⊥BC.又HE,GH⊂平面EGH,HE∩GH=H,所以BC⊥平面EGH.又BC⊂平面BCD,所以平面BCD⊥平面EGH.11.(2016·南昌5月模拟)如图所示,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC,F为CE上的点,且BF⊥平面ACE.(1)求证:AE⊥BE;(2)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.(1)证明∵AD⊥平面ABE,AD∥BC,∴BC⊥平面ABE,。
高考数学二轮复习专题能力训练4函数的图象与性质文
专题能力训练 4 函数的图象与性质 1. A 解析 : 由题意可知 所以 -<x<1. 故选 A. 2. D 解析 : 选项 A, y=为偶函数 , 因此排除 ; 选项 B, y=不是奇函数 , 不符合题意 , 排除 ; 选项 C,y=log 2|x| 是偶函数 , 因此不符合题意 , 排除 C. 故选 D. 3. A 解析 : 由 f ( x- 2) =f ( x+2), 得 f ( x) =f ( x+4), 即函数 f ( x) 的周期 T=4, 结合 f ( -x ) =-f ( x), 有 f (log 220) =f (1 +log 210) =f (log 210- 3) =-f (3 log 210) . ∵ 3- log 210∈ ( - 1,0), ∴ f (log 220) =-=-=- 1. 4. B 解析 : 因为函数 f ( x) 的定义域为 ( - 1,0), 所以 - 1<2x- 1<0, 解得 0<x<. 所以函数 f (2 x- 1) 的定义域为 . 故选 B. 5. D 解析 : ∵ f ( -x ) =f ( x), 令 x=- 2, 则 f ( - 2+4) -f ( - 2) =2f (2), 即 f (2) -f (2) =2f (2), ∴ f (2) =0. ∴ f ( x+4) =f ( x) . ∴函数 f ( x) 是以 4 为周期的周期函数 . ∴ f (2014) =f (4 ×503+2) =f (2) =0. 6. D 解析 : 因为 y=xcos x+ sin x 是奇函数 , 所以排除 B; 当 x=时 , y=1, 排除 C; 当 x=π 时 , y=- π , 排除 A; 故选 D. 7.- 7 解析 : f' ( x) =- 3x2+6x+9=- 3( x2- 2x- 3), 令 f' ( x) =0, 解得 x=3 或 x=-1. 又∵ f ( - 2) =a+2, f ( - 1) =- 5+a, f (2) =22+a, ∴ f (2) >f ( - 2) >f ( - 1) . ∴ f (2) =20, 即 22+a=20. 解得 a=-2. 故 f ( min x) =f ( - 1) =- 5- 2=- 7. 8. 2 解析 : 由 f ( - 1) =-f (1), 得 =- , 解得 a=2. 9. ( - ∞,0) 解析 : 函数 f ( x) =lg x 2 的定义域为 ( - ∞,0) ∪ (0, +∞). ∵ f ( x) =lg x 在(0, +∞) 上为增函数 , y=x2 在 [0, +∞) 上为增函数 , 在( - ∞,0] 上为减函数 , ∴ f ( x) =lg x 2 的单调减区间为 ( - ∞,0) . 10. 解 : 任取 x1, x2∈ [1,4], 且 x1<x2, 则 f ( x1) -f ( x2) =. ∵ x1-x 2<0,( x1+1)( x2+1) >0,
专题4 权方和不等式(原卷+解析)-高考数学二轮复习
第4讲 权方和不等式知识与方法柯西不等式:对于任意的,,,a b c d ∈R 恒有不等式()()22222()ac bd ab c d +++.对柯西不等式变形,易得()222()a b x y a b x y ⎛⎫+++ ⎪⎝⎭.在,,,0a b x y >时,我们就有了:222()a b a b x yx y +++,当a bx y=时,等号成立.这就是我们今天要讲的权方和不等式.当然,柯西不等式有多维形式,同理权方和也可以拓展成多维形式:若0,0i i a b >>,则()()222212121212n nnn a a a a a ab b b b b b +++++++成立,当i i a b λ=时,等号成立.权方和不等式还可以推广为如下形式:若0,0,0i i a b m >>>,则()()111112121212m m m m n n mm m mnn a a a a a a b b b b b b +++++++++++成立,当i ia b λ=的时,等号成立.观察特征,m 成为该不等式的权,它的特点是分子的幂指数比分母的幂指数高1次. 利用权方和不等式可以巧妙的解决一些多元最值问题.下面就从一些我们常见的模拟题中举例说明权方和在求最值中的应用.典型例题【例1】已知,x y 为正实数,若1x y +=,则12x y+的最小值为 .【例2】设1a >,0b >,若2a b +=,则121a b+-的最小值为( )A.3+B.6C.D.【例3】已知实数,x y 满足0x y >>且1x y +=,则213x y x y ++-的最小值是 .【例4】已知 a >0,b >0, 且 2a+2+1a+2b =1, 则 a +b 的最小值是 .【例5】 设 x,y 是正实数, 且 x +y =1, 则 x 2x+2+y 2y+1的最小值是【例6】已知a>1,b>1, 则a 2b−1+b2a−1的最小值是强化训练1.对任意实数x>1,y>12, 不等式x2a2(2y−1)+4y2a2(x−1)⩾1恒成立, 则实数a的最大值为( ).A. 2B. 4C. √142D. 2√22.设a,b∈R+,a≠b,x,y∈(0,+∞), 则a2x +b2y⩾(a+b)2x+y, 当且仅当ax=by时, 上式取等号,利用以上结论, 可以得到函数f(x)=2x +91−2x(x∈(0,12))的最小值为( ).A. 169B. 121C. 25D. 163.已知x>1,y>1,xy2=1000, 则1lgx +3lgy的最小值为( ).A. 4B. 43√6C. 7+2√63D. 7−2√634.若正实数x,y满足x+y=1,12x +xy+1最小值是 .5. 已知正数x,y,z满足x+y+z=1, 则x 2y+2z +y2z+2x+z2x+2y的最小值为6.已知正数x,y,z满足xyz⩾1, 则x 2y+2z +y2z+2x+z2x+2y的最小值为7.设x,y是正实数且满足x+y=1, 求1x2+8y2得最小值 .8.已知x,y>0,1x +2√2y=1, 求√x2+y2的最小值9.已知a,b,c∈R+且1a2+8b2+1c2=1, 求a+b+c得最小值.第4讲 权方和不等式知识与方法柯西不等式:对于任意的,,,a b c d ∈R 恒有不等式()()22222()ac bd ab c d +++.对柯西不等式变形,易得()222()a b x y a b x y ⎛⎫+++ ⎪⎝⎭.在,,,0a b x y >时,我们就有了:222()a b a b x yx y +++,当a bx y=时,等号成立.这就是我们今天要讲的权方和不等式.当然,柯西不等式有多维形式,同理权方和也可以拓展成多维形式:若0,0i i a b >>,则()()222212121212n n nn a a a a a a b b b b b b +++++++成立,当i i a b λ=时,等号成立.权方和不等式还可以推广为如下形式:若0,0,0i i a b m >>>,则()()111112121212m m m m n n mm m mnn a a a a a a b b b b b b +++++++++++成立,当i ia b λ=的时,等号成立.观察特征,m 成为该不等式的权,它的特点是分子的幂指数比分母的幂指数高1次. 利用权方和不等式可以巧妙的解决一些多元最值问题.下面就从一些我们常见的模拟题中举例说明权方和在求最值中的应用.典型例题【例1】已知,x y 为正实数,若1x y +=,则12x y+的最小值为 .【解析】212(12)3x yx y++=++当1x y=时,即1,2x y==12x y+的最小值3+. 【答案】3+.【例2】设1a >,0b >,若2a b +=,则121a b+-的最小值为( )A.3+ B.6C. D.【解析】212(12)311a ba b ++=+-+-当11a =-,2a b ==. 【例3】已知实数,x y 满足0x y >>且1x y +=,则213x y x y ++-的最小值是 .【解析】 2x+3y +1x−y ⩾(√2+1)22x+2y=3+2√22.当 2x+3y =1x−y 时, x =√2−12,y =32−√2 取等号.【例4】已知 a >0,b >0, 且 2a+2+1a+2b =1, 则 a +b 的最小值是 【解析】 1=2a+2+1a+2b ⩾(√2+1)22a+2b+2.当√2a+2=1a+2b时, 即 a =√2,b =12,有 (a +b)min =12+√2.【例5】 设 x,y 是正实数, 且 x +y =1, 则x 2x+2+y 2y+1的最小值是【解析】 x 2x+2+y 2y+1⩾(x+y)2x+y+3=14. 当 xx+2=yy+1 时, 即 x =23,y =13, 等号成立. 【例6】已知 a >1,b >1, 则 a 2b−1+b 2a−1 的最小值是 【解析】 a +b −2=t >0,a 2b−1+b 2a−1⩾(a+b)2a+b−2=(t+2)2t=t +4t+4⩾8.当 {a +b −2=2a b−1=b a−1时, 即 a =2,b =2, 两个等号同时成立. 强化训练1.对任意实数 x >1,y >12, 不等式x 2a 2(2y−1)+4y 2a 2(x−1)⩾1 恒成立, 则实数 a 的最大值为( ).A. 2B. 4C.√142D. 2√2【解析】 a 2≦(x 2(2y?1)+4y 2(x?1))min, 设 x +2y −2=t >0,则有 x 22y −1+4y 2x −1⩾(x +2y)2x +2y −2=(t +2)2t =t +4t+4⩾8, 当 {x +2y −2=2x 2y−1=2y x−1 时, 即 x =2,y =1, 两个等号同时成立. 【答案】a ⩽2√2.2.设 a,b ∈R +,a ≠b,x,y ∈(0,+∞), 则a 2x+b 2y⩾(a+b)2x+y, 当且仅当 a x =by 时, 上式取等号,利用以 上结论, 可以得到函数 f(x)=2x +91−2x (x ∈(0,12)) 的最小值为 ( ) ).A. 169B. 121C. 25D. 16 【解析】2x +91−2x=42x+91−2x⩾(2+3)22x+(1−2x)=25, 当且仅当22x=31−2x时, x =15, 取得 f(x)的最小值. 【答案】C3.已知 x >1,y >1,xy 2=1000, 则 1lgx +3lgy 的最小值为 ( ). A. 4 B. 43√6 C.7+2√63D.7−2√63【解析】1lgx +3lgy =1lgx +62lgy ⩾(1+√6)2lgx+lgy 2=7+2√6lgxy 2=7+2√63, 当 1lgx =√62lgy 时, lgx =√6+1时,选 C. 【答案】C4.若正实数 x,y 满足 x +y =1,12x +xy+1 最小值是 【解析】12x +xy+1=12x +1−yy+1=12x +−(y+1)+2y+1=12x +42y+2−1⩾(1+2)22x+2y+2−1=54.当 12x =22y+2 时, 即 x =23,y =13, 有所求的最小值 54 【答案】545. 已知正数 x,y,z 满足 x +y +z =1, 则 x 2y+2z +y 2z+2x +z 2x+2y 的最小值为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015届高考数学二轮专题训练4考情解读 1.高考对函数的三要素,函数的表示方法等内容的考查以基础知识为主,难度中等偏下.2.函数图象和性质是历年高考的重要内容,也是热点内容,对图象的考查主要有两个方面:一是识图,二是用图,即利用函数的图象,通过数形结合的思想解决问题;对函数性质的考查,则主要是将单调性、奇偶性、周期性等综合一起考查,既有具体函数也有抽象函数.常以选择、填空题的形式出现,且常与新定义问题相结合,难度较大.1.函数的三要素定义域、值域及对应关系两个函数当且仅当它们的三要素完全相同时才表示同一函数,定义域和对应关系相同的两个函数是同一函数.2.函数的性质(1)单调性:单调性是函数在其定义域上的局部性质.利用定义证明函数的单调性时,规范步骤为取值、作差、判断符号、下结论.复合函数的单调性遵循“同增异减”的原则.(2)奇偶性:奇偶性是函数在定义域上的整体性质.偶函数的图象关于y轴对称,在关于坐标原点对称的定义域区间上具有相反的单调性;奇函数的图象关于坐标原点对称,在关于坐标原点对称的定义域区间上具有相同的单调性.(3)周期性:周期性是函数在定义域上的整体性质.若函数在其定义域上满足f(a+x)=f(x)(a 不等于0),则其一个周期T=|a|.3.函数的图象对于函数的图象要会作图、识图、用图.作函数图象有两种基本方法:一是描点法,二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换.4.指数函数、对数函数和幂函数的图象和性质(1)指数函数y=ax(a>0,a≠1)与对数函数y=logax(a>0,a≠1)的图象和性质,分0<a<1,a>1两种情况,着重关注两函数图象中的两种情况的公共性质.(2)幂函数y=xα的图象和性质,分幂指数α>0,α<0两种情况.热点一函数的性质及应用例1(1)(2014·课标全国Ⅱ)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0.若f(x-1)>0,则x 的取值范围是________.(2)设奇函数y =f(x) (x ∈R),满足对任意t ∈R 都有f(t)=f(1-t),且x ∈⎣⎡⎦⎤0,12时,f(x)=-x2,则f(3)+f ⎝⎛⎭⎫-32的值等于________. 思维启迪 (1)利用数形结合,通过函数的性质解不等式;(2)利用f(x)的性质和x ∈[0,12]时的解析式探求f(3)和f(-32)的值.答案 (1)(-1,3) (2)-14解析 (1)∵f(x)是偶函数, ∴图象关于y 轴对称.又f(2)=0,且f(x)在[0,+∞)单调递减, 则f(x)的大致图象如图所示,由f(x -1)>0,得-2<x -1<2,即-1<x<3.(2)根据对任意t ∈R 都有f(t)=f(1-t)可得f(-t) =f(1+t),即f(t +1)=-f(t),进而得到 f(t +2)=-f(t +1)=-[-f(t)]=f(t),得函数y =f(x)的一个周期为2,故f(3)=f(1)=f(0+1)=-f(0)=0,f ⎝⎛⎭⎫-32=f ⎝⎛⎭⎫12=-14. 所以f(3)+f ⎝⎛⎭⎫-32=0+⎝⎛⎭⎫-14=-14. 思维升华 函数的性质主要是函数的奇偶性、单调性和周期性以及函数图象的对称性,在解题中根据问题的条件通过变换函数的解析式或者已知的函数关系,推证函数的性质,根据函数的性质解决问题. (1)(2013·重庆)已知函数f(x)=ax3+bsin x +4(a ,b ∈R),f(lg(log210))=5, 则f(lg(lg 2))等于( )A .-5B .-1C .3D .4(2)已知函数f(x)=x3+x ,对任意的m ∈[-2,2],f(mx -2)+f(x)<0恒成立,则x 的取值范围为_________.答案 (1)C (2)⎝⎛⎭⎫-2,23 解析 (1)lg(log210)=lg ⎝⎛⎭⎫1lg 2=-lg(lg 2),由f(lg(log210))=5,得a[lg(lg 2)]3+bsin(lg(lg 2))=4-5=-1,则f(lg(lg 2))=a(lg(lg 2))3+bsin(lg(lg 2))+4=-1+4=3. (2)易知f(x)为增函数.又f(x)为奇函数,由f(mx -2)+f(x)<0知, f(mx -2)<f(-x).∴mx -2<-x ,即mx +x -2<0,令g(m)=mx +x -2,由m ∈[-2,2]知g(m)<0恒成立,即⎩⎪⎨⎪⎧-=-x -2<0=3x -2<0,∴-2<x<23.热点二 函数的图象例2 (1)(2014·烟台质检)下列四个图象可能是函数y =10ln|x +1|x +1图象的是( )(2)已知函数f(x)的图象向左平移1个单位后关于y 轴对称,当x2>x1>1时,[f(x2)-f(x1)](x2-x1)<0恒成立,设a =f(-12),b =f(2),c =f(3),则a ,b ,c 的大小关系为( )A .c>a>bB .c>b>aC .a>c>bD .b>a>c思维启迪 (1)可以利用函数的性质或特殊点,利用排除法确定图象.(2)考虑函数f(x)的单调性.答案 (1)C (2)D解析 (1)函数的定义域为{x|x≠-1},其图象可由y =10ln|x|x 的图象沿x 轴向左平移1个单位而得到,y =10ln|x|x 为奇函数,图象关于原点对称,所以,y =10ln|x +1|x +1的图象关于点(-1,0)成中心对称.可排除A ,D. 又x>0时,y =10ln|x +1|x +1>0,所以,B 不正确,选C.(2)由于函数f(x)的图象向左平移1个单位后得到的图象关于y 轴对称,故函数y =f(x)的图象本身关于直线x =1对称,所以a =f(-12)=f(52),当x2>x1>1时,[f(x2)-f(x1)](x2-x1)<0恒成立,等价于函数f(x)在(1,+∞)上单调递减,所以b>a>c.选D.思维升华 (1)作图:常用描点法和图象变换法.图象变换法常用的有平移变换、伸缩变换和对称变换.尤其注意y =f(x)与y =f(-x)、y =-f(x)、y =-f(-x)、y =f(|x|)、y =|f(x)|及y =af(x)+b 的相互关系.(2)识图:从图象与轴的交点及左、右、上、下分布范围、变化趋势、对称性等方面找准解析式与图象的对应关系.(3)用图:图象形象地显示了函数的性质,因此,函数性质的确定与应用及一些方程、不等式的求解常与图象数形结合研究.(1)函数f(x)=1+log2x 与g(x)=21-x 在同一直角坐标系中的图象大致是( )(2)(2013·课标全国Ⅰ)已知函数f(x)=⎩⎪⎨⎪⎧-x2+2x ,x≤0,+,x>0.若|f(x)|≥ax ,则a 的取值范围是( )A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]答案 (1)C (2)D解析 (1)f(x)=1+log2x 的图象过定点(1,1),g(x)=21-x 的图象过定点(0,2).f(x)=1+log2x 的图象由y =log2x 的图象向上平移一个单位而得到,且f(x)=1+log2x 为单调增函数,g(x)=21-x =2×(12)x 的图象由y =(12)x 的图象伸缩变换得到,且g(x)=21-x 为单调减函数.A 中,f(x)的图象单调递增,但过点(1,0),不满足;B 中,g(x)的图象单调递减,但过点(0,1),不满足;D 中,两个函数都是单调增函数,也不满足.选C. (2)函数y =|f(x)|的图象如图.①当a =0时,|f(x)|≥ax 显然成立. ②当a>0时,只需在x>0时, ln(x +1)≥ax 成立.比较对数函数与一次函数y =ax 的增长速度. 显然不存在a>0使ln(x +1)≥ax 在x>0上恒成立. ③当a<0时,只需在x<0时,x2-2x≥ax 成立.即a≥x -2成立,∴a≥-2.综上所述:-2≤a≤0.故选D. 热点三 基本初等函数的图象及性质例3 (1)若函数f(x)=⎩⎪⎨⎪⎧log2x ,x>0,log 12-,x<0,若f(a)>f(-a),则实数a 的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)(2)已知α,β∈[-π2,π2]且αsin α-βsin β>0,则下面结论正确的是( )A .α>βB .α+β>0C .α<βD .α2>β2思维启迪 (1)可利用函数图象或分类讨论确定a 的范围;(2)构造函数f(x)=xsin x ,利用f(x)的单调性.答案 (1)C (2)D解析 (1)方法一 由题意作出y =f(x)的图象如图.显然当a>1或-1<a<0时,满足f(a)>f(-a).故选C. 方法二 对a 分类讨论:当a>0时,log2a>log 12a ,即log2a>0,∴a>1.当a<0时,log 12(-a)>log2(-a),即log2(-a)<0,∴-1<a<0,故选C.(2)设f(x)=xsin x ,x ∈[-π2,π2],∴y′=xcos x +sin x =cos x(x +tan x), 当x ∈[-π2,0]时,y′<0,∴f(x)为减函数,当x ∈[0,π2]时,y′>0,∴f(x)为增函数,且函数f(x)为偶函数,又αsin α-βsin β>0, ∴αsin α>βsin β,∴|α|>|β|,∴α2>β2.思维升华 (1)指数函数、对数函数、幂函数和三角函数是中学阶段所学的基本初等函数,是高考的必考内容之一,重点考查图象、性质及其应用,同时考查分类讨论、等价转化等数学思想方法及其运算能力.(2)比较数式大小问题,往往利用函数图象或者函数的单调性. (1)设15<(15)b<(15)a<1,那么( )A .aa<ab<baB .ab<aa<baC .aa<ba<abD .ab<ba<aa(2)已知函数f(x)=2x -12x ,函数g(x)=⎩⎪⎨⎪⎧,x≥0,-,x<0,则函数g(x)的最小值是________.答案 (1)B (2)0解析 (1)因为指数函数y =(15)x 在(-∞,+∞)上是递减函数,所以由15<(15)b<(15)a<1得0<a<b<1,所以0<ab<1.所以y =ax ,y =bx ,y =(a b )x 在(-∞,+∞)上都是递减函数,从而ab<aa ,(ab )a<1得ba>aa ,故ab<aa<ba ,答案选B.(2)当x≥0时,g(x)=f(x)=2x -12x 为单调增函数,所以g(x)≥g(0)=0;当x<0时,g(x)=f(-x)=2-x -12-x为单调减函数,所以g(x)>g(0)=0,所以函数g(x)的最小值是0.1.判断函数单调性的常用方法(1)能画出图象的一般用数形结合法去观察.(2)由基本初等函数通过加、减运算或复合而成的函数,常转化为基本初等函数单调性的判断问题.(3)对于解析式较复杂的一般用导数法. (4)对于抽象函数一般用定义法. 2.函数奇偶性的应用函数的奇偶性反映了函数图象的对称性,是函数的整体特性.利用函数的奇偶性可以把研究整个函数具有的性质问题转化到只研究部分(一半)区间上,是简化问题的一种途径.尤其注意偶函数f(x)的性质:f(|x|)=f(x). 3.函数图象的对称性(1)若函数y =f(x)满足f(a +x)=f(a -x),即f(x)=f(2a -x),则f(x)的图象关于直线x =a 对称.提醒:函数y =f(a +x)与y =f(a -x)的图象对称轴为x =0,并非直线x =a. (2)若f(x)满足f(a +x)=f(b -x),则函数f(x)的图象关于直线x =a +b2对称.(3)若函数y =f(x)满足f(x)=2b -f(2a -x),则该函数图象关于点(a ,b)成中心对称.4.二次函数、一元二次方程和一元二次不等式是一个有机的整体,要深刻理解它们之间的相互关系,能用函数与方程、分类讨论、数形结合思想来研究与“三个二次”有关的问题,高考对“三个二次”知识的考查往往渗透在其他知识之中,并且大都出现在解答题中.5.指数函数、对数函数的图象和性质受底数a 的影响,解决与指、对数函数特别是与单调性有关的问题时,首先要看底数a 的范围.比较两个对数的大小或解对数不等式或解对数方程时,一般是构造同底的对数函数,若底数不同,可运用换底公式化为同底的对数,三数比较大小时,注意与0比较或与1比较. 6.解决与本讲有关的问题应注意函数与方程、数形结合、分类讨论、化归与转化等思想的运用.真题感悟 1.(2014·安徽)若函数f(x)(x ∈R)是周期为4的奇函数,且在[0,2]上的解析式为f(x)=⎩⎪⎨⎪⎧-,0≤x≤1,sin πx ,1<x≤2,则f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=________. 答案516解析 ∵f(x)是以4为周期的奇函数, ∴f ⎝⎛⎭⎫294=f ⎝⎛⎭⎫8-34=f ⎝⎛⎭⎫-34, f ⎝⎛⎭⎫416=f ⎝⎛⎭⎫8-76=f ⎝⎛⎭⎫-76. ∵当0≤x≤1时,f(x)=x(1-x), ∴f ⎝⎛⎭⎫34=34×⎝⎛⎭⎫1-34=316. ∵当1<x≤2时,f(x)=sin πx , ∴f ⎝⎛⎭⎫76=sin 7π6=-12. 又∵f(x)是奇函数, ∴f ⎝⎛⎭⎫-34=-f ⎝⎛⎭⎫34=-316, f ⎝⎛⎭⎫-76=-f ⎝⎛⎭⎫76=12. ∴f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=12-316=516.2.(2014·福建)若函数y =logax(a>0,且a≠1)的图象如图所示,则所给函数图象正确的是( )答案 B解析 由题意得y =logax(a>0,且a≠1)的图象过(3,1)点,可解得a =3.选项A 中,y =3-x =(13)x ,显然图象错误;选项B 中,y =x3,由幂函数图象可知正确;选项C 中,y =(-x)3=-x3,显然与所画图象不符;选项D 中,y =log3(-x)的图象与y =log3x 的图象关于y 轴对称,显然不符,故选B. 押题精练1.已知函数f(x)=e|ln x|-⎪⎪⎪⎪x -1x ,则函数y =f(x +1)的大致图象为( )答案 A解析 据已知关系式可得 f(x)=⎩⎨⎧e -ln x +⎝⎛⎭⎫x -1x =,eln x -⎝⎛⎭⎫x -1x =1x,作出其图象然后将其向左平移1个单位即得函数y =f(x +1)的图象.2.已知函数f(x)=|log 12x|,若m<n ,有f(m)=f(n),则m +3n 的取值范围是( )A .[23,+∞)B .(23,+∞)C .[4,+∞)D .(4,+∞) 答案 D解析 ∵f(x)=|log 12x|,若m<n ,有f(m)=f(n),∴log 12m =-log 12n ,∴mn =1,∴0<m<1,n>1,∴m +3n =m +3m在m ∈(0,1)上单调递减,当m =1时,m +3n =4,∴m +3n>4.3.已知f(x)=2x -1,g(x)=1-x2,规定:当|f(x)|≥g(x)时,h(x)=|f(x)|;当|f(x)|<g(x)时,h(x)=-g(x),则h(x)( ) A .有最小值-1,最大值1 B .有最大值1,无最小值 C .有最小值-1,无最大值 D .有最大值-1,无最小值 答案 C解析 由题意得,利用平移变化的知识画出函数|f(x)|,g(x)的图象如图,而h(x)=⎩⎪⎨⎪⎧,-,,故h(x)有最小值-1,无最大值.(推荐时间:40分钟)一、选择题1.下列函数f(x)中,满足“对任意的x1,x2∈(0,+∞)时,均有(x1-x2)[f(x1)-f(x2)]>0”的是( )A .f(x)=12 B .f(x)=x2-4x +4C .f(x)=2xD .f(x)=log 12x答案 C解析 函数f(x)满足“对任意的x1,x2∈(0,+∞)时,均有(x1-x2)[f(x1)-f(x2)]>0”等价于x1-x2与f(x1)-f(x2)的值的符号相同,即可化为-x1-x2>0,表示函数f(x)在(0,+∞)上单调递增,由此可得只有函数f(x)=2x 符合.故选C.2.(2014·浙江)在同一直角坐标系中,函数f(x)=xa(x≥0),g(x)=logax 的图象可能是( )答案 D解析 方法一 分a>1,0<a<1两种情形讨论.当a>1时,y =xa 与y =logax 均为增函数,但y =xa 递增较快,排除C ;当0<a<1时,y =xa 为增函数,y =logax 为减函数,排除A.由于y =xa 递增较慢,所以选D. 方法二 幂函数f(x)=xa 的图象不过(0,1)点,排除A ;B 项中由对数函数f(x)=logax 的图象知0<a<1,而此时幂函数f(x)=xa 的图象应是增长越来越慢的变化趋势,故B 错,D 对;C 项中由对数函数f(x)=logax 的图象知a>1,而此时幂函数f(x)=xa 的图象应是增长越来越快的变化趋势,故C 错.3.已知函数y =f(x)是奇函数,当x>0时,f(x)=lg x ,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫1100的值等于( ) A.1lg 2 B .-1lg 2 C .lg 2 D .-lg 2 答案 D解析 当x<0时,-x>0,则f(-x)=lg(-x). 又函数f(x)为奇函数,f(-x)=-f(x), 所以当x<0时,f(x)=-lg(-x). 所以f ⎝⎛⎭⎫1100=lg 1100=-2, f ⎝⎛⎭⎫f ⎝⎛⎭⎫1100=f(-2)=-lg 2. 4.若a>b ,则下列不等式成立的是( ) A .ln a>ln b B .0.3a>0.3b C .D.3a>3b答案 D解析 因为a>b ,而对数的真数为正数,所以ln a>ln b 不一定成立; 因为y =0.3x 是减函数,又a>b ,则0.3a<0.3b ,故B 错;因为y =在(0,+∞)是增函数,又a>b ,则不一定成立,故C 错; y =在(-∞,+∞)是增函数,又a>b ,则,即3a>3b 成立,选D.5.设偶函数f(x)满足f(x)=2x -4(x≥0),则{x|f(x -2)>0}等于( )A .{x|x<-2或x>4}B .{x|x<0或x>4}C .{x|x<0或x>6}D .{x|x<-2或x>2}答案 B解析 由于函数f(x)是偶函数,因此有f(|x|)=f(x),不等式f(x -2)>0,即f(|x -2|)>0,f(|x -2|)=2|x -2|-4>0,|x -2|>2,即x -2<-2或x -2>2,由此解得x<0或x>4.于是有{x|f(x -2)>0}={x|x<0或x>4},故选B.6.使log2(-x)<x +1成立的x 的取值范围是( )A .(-1,0)B .[-1,0)C .(-2,0)D .[-2,0)答案 A解析 在同一坐标系内作出y =log2(-x),y =x +1的图象,知满足条件的x ∈(-1,0),故选A.7.下列函数中,与函数f(x)=2x -1-12x +1的奇偶性、单调性均相同的是( ) A .y =ex B .y =ln(x +x2+1)C .y =x2D .y =tan x答案 B解析 因为函数f(x)=2x -1-12x +1=12(2x -12x ),可知函数f(x)在定义域上是奇函数,且单调递增,y =ex 为非奇非偶函数,y =x2为偶函数,y =tan x 在定义域上是奇函数,但不单调递增,只有y =ln(x +x2+1)在定义域上是奇函数,且单调递增,故选B.8.(2013·天津)已知函数f(x)是定义在R 上的偶函数,且在区间[0,+∞)上单调递增.若实数a 满足f(log2a)+f(log 12a)≤2f(1),则a 的取值范围是( ) A .[1,2] B.⎝⎛⎦⎤0,12 C.⎣⎡⎦⎤12,2 D .(0,2]答案 C解析 由题意知a>0,又log 12a =log2a -1=-log2a.∵f(x)是R 上的偶函数,∴f(log2a)=f(-log2a)=f(log 12a). ∵f(log2a)+f(log 12a)≤2f(1), ∴2f(log2a)≤2f(1),即f(log2a)≤f(1).又∵f(x)在[0,+∞)上递增.∴|log2a|≤1,-1≤log2a≤1,∴a ∈⎣⎡⎦⎤12,2,选C.二、填空题9.已知函数f(x)=⎩⎪⎨⎪⎧ 13+,则f(ln 3)=________. 答案 e解析 f(ln 3)=f(ln 3+1)=13eln 3+1=e ,故填e. 10.已知函数f(x)=x|x -a|,若对任意的x1,x2∈[2,+∞),且x1≠x2,(x1-x2)·[f(x1)-f(x2)]>0恒成立,则实数a 的取值范围为________.答案 {a|a≤2}解析 f(x)=⎩⎪⎨⎪⎧ -,x≥a --,x<a ,由(x1-x2)[f(x1)-f(x2)]>0知,函数y =f(x)在[2,+∞)单调递增,当a≤0时,满足题意,当a>0时,只需a≤2,即0<a≤2,综上所述,实数a 的取值范围为a≤2.11.设f(x)是定义在R 上且周期为2的函数,在区间[-1,1]上,f(x)=⎩⎪⎨⎪⎧ax +1,-1≤x<0,bx +2x +1,0≤x≤1,其中a ,b ∈R.若f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫32,则a +3b 的值为________.答案 -10解析 因为f(x)的周期为2,所以f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫32-2=f ⎝⎛⎭⎫-12,即f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫-12. 又因为f ⎝⎛⎭⎫-12=-12a +1,f ⎝⎛⎭⎫12=b 2+212+1=b +43,所以-12a +1=b +43. 整理,得a =-23(b +1).① 又因为f(-1)=f(1),所以-a +1=b +22,即b =-2a.② 将②代入①,得a =2,b =-4.所以a +3b =2+3×(-4)=-10.12.已知定义在R 上的函数y =f(x)满足以下三个条件:①对于任意的x ∈R ,都有f(x +4)=f(x);②对于任意的x1,x2∈R ,且0≤x1<x2≤2,都有f(x1)<f(x2);③函数y =f(x +2)的图象关于y 轴对称.则判断f(4.5),f(6.5),f(7)的大小关系为________.答案 f(4.5)<f(7)<f(6.5)解析 由已知得f(x)是以4为周期且关于直线x =2对称的函数.所以f(4.5)=f(4+12)=f(12), f(7)=f(4+3)=f(3),f(6.5)=f(4+52)=f(52). 又f(x)在[0,2]上为增函数.所以作出其在[0,4]上的图象知f(4.5)<f(7)<f(6.5).13.设函数f(x)=1+-2(x ∈Z),给出以下三个结论:①f(x)为偶函数;②f(x)为周期函数;③f(x +1)+f(x)=1,其中正确结论的序号是________. 答案 ①②③解析 对于x ∈Z ,f(x)的图象为离散的点,关于y 轴对称,①正确;f(x)为周期函数,T =2,②正确;f(x +1)+f(x)=1+-+12+1+-2=1+-+1+-2=1,③正确.14.能够把圆O :x2+y2=16的周长和面积同时分为相等的两部分的函数称为圆O 的“和谐函数”,下列函数是圆O 的“和谐函数”的是________.①f(x)=ex +e -x②f(x)=ln 5-x 5+x ③f(x)=tan x 2 ④f(x)=4x3+x答案 ②③④解析 由“和谐函数”的定义知,若函数为“和谐函数”,则该函数为过原点的奇函数,①中,f(0)=e0+e -0=2,所以f(x)=ex +e -x 的图象不过原点,故f(x)=ex +e -x 不是“和谐函数”;②中f(0)=ln 5-05+0=ln 1=0,且f(-x)=ln 5+x 5-x =-ln 5-x 5+x=-f(x),所以f(x)为奇函数,所以f(x)=ln 5-x 5+x为“和谐函数”;③中,f(0)=tan 0=0,且f(-x)=tan -x 2=-tan x 2=-f(x),f(x)为奇函数,故f(x)=tan x 2为“和谐函数”;④中,f(0)=0,且f(x)为奇函数,故f(x)=4x3+x 为“和谐函数”,所以,②③④中的函数都是“和谐函数”.。