电力系统潮流计算
电力系统的潮流计算

Z T 1 Z T 2
*
ST1
ZT2SLD
*
*
Scir
ZT1ZT2
*
ST2
ZT1SLD
*
*
Scir
ZT1ZT2
E V A 1 V A 2 V A ( k 1 k 2 )——环路电势 V N H —— 高压侧额定电压
S cir
变比不同的变压器并联运行 时的功率分布
环路电势可由环路的开口电压确定。
Q P L 1 2 V Q 2 1 R 1 2 ( Q b V Q 2 c Q 1 ) R 2 2 ( Q V 1 2 Q b ) R 3 0
得到经济 功率分布:
P 1ecP b(R R 1 2 R R 2 3) R P 3cR 2
简单环网的功率分布
Q 1ecQ b(R R 1 2 R R 2 3) R Q 3cR 2
3.电源初步功率分布方程的一般形式
k*
Sa1i1* ZiSi (V *a * V *b)V NSa1,L DScir
Z
Z
k*
Sbki 1* ZiSi (V *b * V *a)V NSbk,L DScir
Z
Z
沿线有多个负荷的两端供电网络
对于均一网络〔各线段单位长度的阻抗值都相等或各线段的R/X相等〕有:
k*
k
k
k
SiZ0li
Sili
P ili
Q ili
Sa1i 1* Z0l
i 1 l
i 1 l
ji 1 l
k
k
k
Sili
Pili
Qili
Sbk
i1 l
i1 l
ji1 l
结论:在均一电力网中有功功率和无功功率的分布彼此无关。
电力系统潮流计算

电力系统潮流计算电力系统潮流计算是电力系统运行分析中的重要环节。
它通过对电力系统中各节点的电压、相角以及功率等参数进行计算和分析,从而得出电力系统的稳态运行状态。
本文将从潮流计算的基本原理、计算方法、应用及其发展等方面进行阐述。
一、潮流计算的基本原理电力系统潮流计算的基本原理是基于潮流方程建立的。
潮流方程是一组非线性的方程,描述了电力系统中各节点的电压、相角以及功率之间的关系。
潮流计算的目的就是求解这组非线性方程,以确定电力系统的电压幅值、相角及有功、无功功率的分布情况。
二、潮流计算的基本方法潮流计算的基本方法主要有直接法、迭代法以及牛顿-拉夫逊法。
直接法是通过直接求解潮流方程得到电力系统的潮流状况,但对于大规模复杂的电力系统来说,直接法计算复杂度高。
迭代法是通过对电力系统的节点逐个进行迭代计算,直到满足预设的收敛条件。
牛顿-拉夫逊法是一种较为高效的迭代法,它通过近似潮流方程的雅可比矩阵,实现了计算的高效和稳定。
三、潮流计算的应用潮流计算在电力系统运行与规划中起着重要作用。
首先,潮流计算可以用于电力系统的稳态分析,确定电力系统在各种工况下的电压、相角等参数,以判断电力系统是否存在潮流拥挤、电压失调等问题。
其次,潮流计算还可以用于电力系统的优化调度,通过调整电力系统的发电机出力、负荷组织等参数,以改善电力系统的经济性和可靠性。
此外,潮流计算还可以用于电力系统规划,通过对电力系统进行潮流计算,可以为新建电源、输电线路以及变电站等设备的规划和选择提供科学依据。
四、潮流计算的发展随着电力系统的规模不断扩大和复杂度的提高,潮流计算技术也得到了迅速的发展。
传统的潮流计算方法在计算效率和计算精度上存在一定的局限性。
因此,近年来研究者提出了基于改进的迭代方法、高精度的求解算法以及并行计算等技术,以提高潮流计算的速度和准确性。
此外,随着可再生能源的不断融入电力系统,潮流计算还需要考虑多种能源的互联互通问题,这对潮流计算提出了新的挑战,需要进一步的研究和改进。
电力系统潮流计算

(k ) f ( x ) (k ) x f ( x ( k ) )
迭代过程的收敛判据为 f ( x ( k ) ) 1
x ( k ) 2
或
牛顿—拉夫逊法实质上就是切线法,是一种逐步线性化的 方法。牛顿法不仅用于求解单变量方程,它也是求解多变 量非线性方程的有效方法。
有
(0) (0) (0) (0) f1 ( x1(0) x1(0) , x2 x2 , , xn xn )0 (0) (0) (0) (0) f 2 ( x1(0) x1(0) , x2 x2 , , xn xn )0
(0) (0) (0) (0) f n ( x1(0) x1(0) , x2 x2 , , xn xn )0
牛顿-拉夫逊法潮流计算
一、牛顿—拉夫逊法的基本原理 单变量非线性方程: x=x(0)+ Δx(0) 即 f(x=x(0)+ Δx(0) ) = 0 f(x)=0 (11—29) 解的近似值x(0),它与真解的误差为Δx(0)
展成泰勒级数
f (x
(0)
x ) f ( x ) f ( x )x
f1 (0) xn )0 xn 0 f (0) 2 xn )0 xn 0
(0) f n ( x1(0) , x2 ,
写成矩阵形式:
f n f (0) x1(0) n x2 x1 0 x2 0 f1 x1 0 (0) (0) (0) f1 ( x1 , x2 , , xn ) f 2 (0) (0) (0) f 2 ( x1 , x2 , , xn ) x 1 0 (0) (0) (0) f ( x , x , , x n 1 2 n ) f n x1 0
电力系统潮流计算

电力系统潮流计算电力系统潮流计算是电力系统运行和安排分析的基础,也是现代电力系统科学研究的重要内容之一。
潮流计算主要是根据电力系统终端负荷和电力系统节点的运行状态,计算和分析不同状态下电力系统的各种相关物理量。
电力系统潮流计算的核心目的是为了确定电力系统状态的最佳运行模式,及其电压、电流和功率的合理分配,以此来达到系统的安全、稳定、可靠和经济的运行。
电力系统潮流计算是通过对电力系统运行特征和物理约束的有效分析,来检测b系统安全性、稳定性和经济性,以及发电、负荷、输电线路和变压器等设备状态的检测,从而有效帮助电力系统的运行和控制。
潮流计算可以用来分析电力系统拓扑结构、根据拓扑结构对系统故障进行性检查、以及分析电力系统的安全稳定性等。
电力系统潮流计算的计算方法主要有基于线性代数的潮流计算法、参数拟合法,基于全局优化的潮流计算法,基于负载拟合的潮流计算法等方法。
基于线性代数的潮流计算法主要是根据电力系统的线性约束和Kirchhoff定律来建立电力系统的各种物理参数的数学模型,以此来计算出电力系统的潮流和电压。
参数拟合法是根据电力系统各节点的历史数据来建立负荷模型,然后根据这些模型来拟合出电力系统的潮流和电压。
基于全局优化的潮流计算法则是利用模拟退火和遗传算法等全局优化算法,求解出电力系统的潮流和电压。
潮流计算结果主要应用在电力系统规划设计、电力网络安全分析、发电满足率分析、电网终端负荷预测、电力系统容量及负荷平衡等方面。
电力系统规划设计时,可以利用潮流计算结果,选择合适的设备、制定负荷安排方案,确定电力系统的最佳运行模式,以保证系统的安全可靠。
电力网安全分析中,可以利用潮流计算的结果,检测出电力系统的故障点,以及设备的运行情况,从而有效预防和应对电力系统的安全威胁。
综上所述,电力系统潮流计算是电力系统及其科学研究的重要内容,通过对电力系统的物理参数有效分析,可以帮助电力系统安全、可靠的运行。
潮流计算的核心目的是确定电力系统状态的最佳运行模式,及其电压、电流和功率的合理分配,并且利用潮流计算结果,可以在电力系统规划、安全分析、发电满足率分析、电网终端负荷预测等方面发挥作用。
电力系统潮流计算

电力系统潮流计算引言电力系统潮流计算是电力系统分析中的重要环节。
通过潮流计算,可以确定电力系统中各个节点的电压和电流分布,从而评估系统的稳定性、负载能力以及潮流路径等重要参数。
本文将介绍电力系统潮流计算的基本原理、常用的计算方法以及相关的软件工具。
潮流计算原理电力系统潮流计算基于基尔霍夫电流法和功率-电压关系理论。
在潮流计算中,电力系统被建模为一个复杂的电路网络,其中各个节点表示发电机、负载和变电站等设备。
通过求解节点间的电压和电流,可以得到系统各个节点的电压和电流分布情况。
潮流计算方法直流潮流计算直流潮流计算是潮流计算中最简单和最常用的方法。
在直流潮流计算中,电力系统中的电流和电压被假设为恒定的直流量。
这种方法适用于传输系统和简单的配电网。
直流潮流计算的基本步骤包括建立节点电压方程、定义线路参数、计算线路功率损耗和节点电压。
交流潮流计算交流潮流计算是潮流计算中更为复杂的方法,它考虑了网络中的电压相位差和无功功率流动。
在交流潮流计算中,电力系统的节点电压和变压器的变比可以变化。
这种方法适用于复杂的电力系统,能够更准确地模拟实际情况。
交流潮流计算的基本步骤包括建立节点功率方程、定义节点电压相位差、计算线路功率和节点电压。
潮流计算软件潮流计算是一项复杂且计算量大的工作,需要借助计算机软件来实现。
以下是一些常用的潮流计算软件:1.PSS/E:由Siemens开发的电力系统潮流计算软件,功能强大且广泛使用。
2.PowerWorld Simulator:一款商业化的电力系统仿真软件,可以进行潮流计算、稳定性分析和故障分析等。
3.MATLAB/Simulink:MATLAB提供了强大的数值计算和仿真功能,可以用于电力系统潮流计算和建模。
结论电力系统潮流计算是电力系统分析中的重要环节,可以帮助我们了解系统的运行状态和性能。
直流潮流计算和交流潮流计算是常用的潮流计算方法,可以根据系统的复杂程度和要求选择合适的方法。
电力系统分析潮流计算

电力系统分析潮流计算电力系统分析是对电力系统运行状态进行研究、分析和评估的一项重要工作。
其中,潮流计算是电力系统分析的一种重要方法,用于计算电力系统中各节点的电压、功率和电流等参数。
本文将详细介绍电力系统潮流计算的原理、方法和应用。
一、电力系统潮流计算的原理电力系统潮流计算是基于潮流方程的求解,潮流方程是描述电力系统各节点电压和相角之间的关系的一组非线性方程。
潮流方程的基本原理是基于电力系统的等效导纳矩阵和节点电压相位差的关系,通过潮流计算可以得到电力系统各节点的电压和功率等参数。
电力系统潮流方程的一般形式如下:\begin{align*}P_i &= \sum_{j=1}^{n}(V_iV_j(G_{ij}\cos(\theta_i-\theta_j)+B_{ij}\sin(\theta_i-\theta_j))) \\Q_i &= \sum_{j=1}^{n}(V_iV_j(G_{ij}\sin(\theta_i-\theta_j)-B_{ij}\cos(\theta_i-\theta_j)))\end{align*}其中,$n$为节点数,$P_i$和$Q_i$表示第i个节点的有功功率和无功功率。
$V_i$和$\theta_i$表示第i个节点的电压和相角。
$G_{ij}$和$B_{ij}$表示节点i和节点j之间的等效导纳。
二、电力系统潮流计算的方法电力系统潮流计算的方法主要包括直接法、迭代法和牛顿-拉夫逊法等。
1.直接法:直接法是一种适用于小规模电力系统的潮流计算方法,它通过直接求解潮流方程来计算电力系统的潮流。
直接法的计算速度快,但对系统规模有一定的限制。
2.迭代法:迭代法是一种常用的潮流计算方法,通常使用高尔顿法或牛顿法。
迭代法通过迭代求解潮流方程来计算电力系统的潮流。
迭代法相对于直接法来说,可以适用于大规模电力系统,但计算时间较长。
3.牛顿-拉夫逊法:牛顿-拉夫逊法是一种高效的潮流计算方法,它通过求解潮流方程的雅可比矩阵来进行迭代计算,可以有效地提高计算速度。
电力系统的潮流计算
电力系统的潮流计算电力系统的潮流计算是电力系统分析中的基础工作,主要用于计算电力系统中各节点的电压和功率流动情况。
通过潮流计算可以得到电力系统的电压、功率、功率因数等关键参数,为电力系统的运行和规划提供有效的参考依据。
本文将介绍电力系统潮流计算的基本原理、计算方法和应用。
一、电力系统潮流计算的基本原理电力系统潮流计算基于电力系统的能量守恒原理和基尔霍夫电流定律,通过建立电力系统的节点电压和功率平衡方程组来描述系统中各节点间的电压和功率流动关系。
潮流计算的基本原理可简述为以下三个步骤:1.建立节点电压方程:根据基尔霍夫电流定律,将电力系统中各节点的电流状况表达为节点电压和导纳矩阵之间的乘积关系。
2.建立功率平衡方程:根据能量守恒原理,将电力系统中各支路的功率流动表达为节点电压和导纳矩阵之间的乘积关系。
3.解算节点电压:通过求解节点电压方程组,得到系统中各节点的电压值。
二、电力系统潮流计算的常用方法电力系统潮流计算常用的方法有高斯-赛德尔迭代法、牛顿-拉夫逊迭代法和快速潮流法等。
其中,高斯-赛德尔迭代法是一种基于节点电压的迭代算法,通过在每一次迭代中更新节点电压值来逐步逼近系统潮流平衡状态。
牛顿-拉夫逊迭代法是一种基于节点电压和节点功率的迭代算法,通过在每一次迭代中同时更新节点电压和节点功率值来逼近系统潮流平衡状态。
快速潮流法则是一种通过行列式运算直接求解节点电压的方法,对于大规模复杂的电力系统具有较高的计算效率和精度。
三、电力系统潮流计算的应用电力系统潮流计算在电力系统的规划和运行中有广泛应用。
具体应用包括:1.电力系统规划:通过潮流计算可以预测系统中各节点的电压和功率流动情况,为电力系统的设计和扩建提供参考依据。
2.电力系统稳定性分析:潮流计算可以帮助分析系统中节点电压偏差、功率瓶颈等问题,为系统的稳态和暂态稳定性分析提供基础数据。
3.运行状态分析:潮流计算可以实时监测系统中各节点的电压和功率流动情况,为电力系统的运行调度提供参考。
电力系统的潮流计算
QB2
1 2
BV22
线路
S0 (GT jBT )V 2 变压器
S0
P0
jQ0
P0
j
I0% 100
SN
直接用变压器空载试
验数据计算
8
开式网络的电压和功率分布计算
一、已知供电点电压和负荷点功率时的计算方法 ➢ 已知末端的功率和电压:从末端开始依次计算出
电压降落和功率损耗。
➢ 已知电源点的电压和负荷的功率:采取近似的方 法通过叠代计算求得满足一定精度的结果
V1 S ' R
I
jX S '' V2
I
S LD
V1 V2 (R jX )I
5
计算电压降落时,必须用同一端的电压与功率.
V2
V2
P''R Q'' X V2
P'' X Q''R V2
arctg V2
V2 V2
V1
V2
P'R Q'X V1
P'X Q'R V1
arctg V1
Sb SG STc S0c jQB2 jQB3
1
b
2
c
3
d
A
Tb
Tc
Td
SLDb
SG
G
SLDd
16
二、两级电压的开式电力网计算
➢ 计算方法一:包含理想变压器,计算时,经过理
想变压器功率保持不变,两侧电压之比等于实际
变比k。
L-1 b
A
Tc
1 A
b Z'T c' k:1 c
Sc
Sd
VAb
电力系统潮流计算
功率 注入
母线 电压
5/75
7.1 潮流计算的基本概念
3) 对潮流计算的要求
收敛可靠性(尤其病态系统) 计算速度(如用于静态安全分析) 内存占用量 可移植性 可扩展性 使用灵活性
6/75
7.2 潮流计算的手工计算
1) 元件的等值电路
线路模型
i
Z
j
Y/2
SA
b
c
A
VA
d Si VN Vd
VA SA
Sb
Sc
Sd
Vi
10/75
7.3 潮流计算的基本原理
1) 潮流计算的基本方程
基本公式 其展开式
I YV 或 V ZI
*
n
Ii Y ijV j j 1
Ii
Si V i
Pi
j Qi
*
Vi
n
Pi
第7章 电力系统潮流计算
一.潮流计算的基本概念 二.潮流计算的手工计算 三. 潮流计算的基本原理 四.极坐标牛顿法潮流计算 五.直角坐标牛顿法潮流计算 六. 其他形式的牛顿法潮流
1/75
第7章 电力系统潮流计算 七.PQ分解法潮流计算 八.导纳矩阵的形成 九. 线性方程组的解法
2/75
思考题
1. 潮流计算的节点分哪几类? 2. 导纳矩阵有哪些元件形成?如何形成? 3. 牛顿法求解非线性方程的原理。 4. 直角坐标和极坐标牛顿法的修正方程? 5. 快速分解法原理?简化假设对计算结果的精度
2 j
2 Qij Q ji
变压器损耗
PT I 2 RT Pij Pji
QT I 2 X T Qij Q ji S0 (GT jBT )Vi2
电力系统潮流计算
f J xT
极坐标下牛顿
P SP P(V , ) P(V , ) f ( x) SP Q ( V , ) Q Q(V , )
( X X ) P
XP
1)阻抗矩阵的变化 设原输电系统网络的节点阻抗矩阵为x ,支路 k 两 端的节点为i、j。这里的支路是指两节点间各线路的 并联,线路是支路中的一个元件。当支路 增加一条 电抗为 的线路(称追加线路)时,形成新的网络。
应用支路追加原理,新网络的节点阻抗矩阵为
极坐标下牛顿法修正方程:
P T Q T
P V T P V V Q Q V V T V
将极坐标Jacobian矩阵中的电压平方项移出矩阵
' VP H ' VQ M
ˆ ˆ UYU S
ˆ (G jB )U Pi jQi U i ij ij j
ji
i 1, 2, N
所有节点的功率平衡方程
Pi jQi (ei jf i ) (Gij jBij )(e j jf j )
ji
(ei jf i )(ai jbi )
问题
什么是潮流计算?
指在给定电力系统网络拓扑、元件参数和发电、负荷参量条件 下,计算有功功率、无功功率及电压在电力网中的分布。
为什么要进行潮流计算?
电力系统潮流计算的结果是电力系统稳定计算和故障分析的基 础。
如何进行潮流计算? 简单电力网络(开式网络、环形网络、两端供电网络) 潮流计算计算机算法(高斯—赛德尔法、牛顿法、P-Q分解法)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 32 卷 第 14 期 2008 年 7 月 文章编号:1000-3673(2008)14-0044-06
电 网 技 术 Power System Technology 中图分类号:TM712 文献标识码:A
Vol. 32 No. 14 Jul. 2008 学科代码:470·4054
基于 PMU 量测数据和 SCADA 数据融合的 电力系统状态估计方法
(1) (2) (3) (4)
θ ij = θi − θ j Pi = ∑VV i j (Gij cos θij + Bij sin θ ij )
j∈i
PDF 文件使用 "pdfFactory Pro" 试用版本创建
46
薛辉等:基于 PMU 量测数据和 SCADA 数据融合的电力系统状态估计方法
0
引言
为保证电力系统安全、 经济运行, 必须要迅速、 准确、 全 面掌握 电力系统实际运 行状态, 特别是 “8.14 美加大停电”事故发生以后,人们进一步认 [1-2] 识到状态估计在电网安全运行中的重要作用 。 状态估计也称为滤波,它是利用实时量测系统 的冗余度来提高数据精度,自动排除随机干扰引起 的错误信息, 估计或预报系统的运行状态(或轨迹), 分为静态状态估计和动态状态估计[3-4]: 静态估计是 利用同一断面的量测信息估计电网的状态;动态估 计 是利用 当前时 刻 的量测信息 和 前 一时 刻 的量测 [5-6] 信息对当前时刻的状态进行估计 。 动态状态估计 法不仅具有静态估计的所有优点,还能实现经济分 配、安全预估和预防控制等在线功能[7-9]。目前的状 态估计大都属于静态状态估计,量测数据源于监控 数据采集(supervisory control and data acquisition, SCADA) 系统,一般包括节点注入功率、支路功率 和节点电压幅值,数据每 2 s 传送一次。由于系统 的量测信息是通过远动装置传送到调度中心,远动 装置 的 误 差及传 送 过 程中各个环 节的误 差使得 迭 代求解出来的电压相量精度难以得到保证[10-11]。 近年来,全球定位系统(global position system, GPS)全面建成并投入运行, 由于其时间传递精确而
V =V ( l )
b( l ) = V0 [( − Br )T Rr−1[ Zr − hr (θ ,V )]] θ =θ ( l )
−1 A = V04 [( − Ba )T Ra ( − Ba )]
V =V ( l )
B = V02 [( − Br )T Rr-1 ( − Br )] 式 中: V0 为 系统的参考节点电压; Za 为有功量测 值; Z r 为无功量测值、节点电压模值; ha (Vi ,θ i ) 、 hr (Vi ,θi ) 分别为有功、无功量测方程 Pij = Vi 2 gii − VV i j gij cos θij − VV i j bij sin θ ij Qij = −Vi ( bii + yc ) − VV i j gij sin θ ij + VV i j bij cos θij
Vol. 32 No. 14
2
2.1
改进快速分解方法
潮流预测
潮流量非常接近。 考虑到 SCADA 量测数据的精确性问题,本文 对这些数据设定权重,对精度比较高的 SCADA 量 测值选用比较高的权重,对量测精度较低的 SCADA 量测数据选用较低的权重,以便根据这些 SCADA 量测数据的精度来确定其在状态估计过程 中的重要性。 2.2 PMU 支路电流相量在状态估计中的应用模型 目前,大部分基于 PMU 量测数据的状态估计 只使用节点电压相量量测,支路电流相量量测在电 力系统状态估计中应用很少。 本文充分考虑了 PMU 的节点电压相量和支路 电流相量,并通过它们对系统进行可观测性分析。 利用装置 PMU 节点的邻接节点和相关联支路的伪 量测数据,可增加系统量测数据的冗余度,提高系 统的计算精度和收敛性。 单支路电路如图 3 所示,装置 PMU 节点 1 的 & = I ∠θ 为 &=U ∠θ 和 支路 电流相量 I 电 压 相量 U 1 1 i1 1 1 u1 已知, δ u1 、 δ i1 、 δ θu1 、 δ θi1 分别为电压幅值、电流 幅值、电压相角和电流相角量测误差的标准差。
Qi = ∑VV i j (Gij sin θ ij − Bij cos θ ij )
j∈i
(5)
式中: gij + jbij 为线路导纳; Gij 、 Bij 为节点导纳; θ ij 为节点间的相角差; yc 为线路的对地导纳。 根据常规潮流计算的经验,Ba 取支路电抗的倒 数 ( 忽略对 有功功率分布 影响很小 的变压 器非标 准 变 比和线路对地 电容) , Br 取支路导纳的 虚部时具 有最快的迭代收敛速度。 将以上函数代入修正公式得出 ( − Ba )T Ra−1 ( − Ba ) ∆θi( l ) = 1 T −1 V2 ( − Ba ) Ra [ Za − ha (Vi ,θi ) ] θ =θ ((ll)) 0 V =V (6) T −1 (l ) V ( − B ) R ( − B ) ∆ = i r r r 1 [( − Br )T Rr−1[ Z r − hr (Vi ,θ i )]] θ =θ ( l ) V0 V =V ( l ) 通过以上传统快速分解法编制状态估计程序, 其流程如图 1 所示。
1
传统快速分解方法
传统快速分解算法属于静态状态估计,它充分 利用了电力系统的物理性质,而忽略了某些次要因 素;将 P -θ 和 Q -V 分开计算,降低了问题的阶次, 减少了内存的使用量,提高了每次迭代的计算速度。 快速分解状态估计的迭代修正公式为 A∆θ a( l )
(l )
=a
(l )
B∆V ( l ) = b( l ) = V02 [( − Ba )T Ra−1[ Z a − ha (θ ,V )]] θ =θ ( l )
(School of Electrical Engineering,Yanshan University,Qinhuangdao 066004,Hebei Province,China) ABSTRACT: To remedy the defect of traditional static state estimation methods, an improved power system state estimation method, which merges the data of partial nodes measured by PMU into SCADA data then perform whole system state estimation, is proposed. The proposed method simplifies Jacobian matrix of power system and saves calculation time. For this purpose, after merging the voltage and current data measured by PMU into SCADA data a fast-decouple method is researched. According to the disadvantages of SCADA data, the power flow data is forecasted by historical database and the power system state is analyzed by PMU-measured data, then the dynamic monitoring of whole system state is performed. Tested by example and results, the new method improves the accuracy of results, reduces the number of iteration, and describes the variety process of power systems state accurately compared to traditional methods, which provide more information for control center to make the next decision making. KEY WORDS: state estimation; phasor measurement unit (PMU) ; global positioning system (GPS) ; power flow forecasting;fast-decoupled method 摘要: 针对传统静态状态估计方法的缺点, 提出了一种改进 的电力系统状态估计方法,即将部分节点相量测量单元 (phasor measurement unit ,PMU)量测数据与监控数据采集 (supervisory control and data acquisition, SCADA)量测数据融 合进行电力系统的全网状态估计。 该方法简化了系统的雅可 比矩阵,缩短了计算时间。文章研究了 PMU 和 SCADA 系 统融合改进后的快速分解法,针对 SCADA 量测数据的缺 点,通过历史数据库对潮流数据进行预测,并依据 PMU 量 测量对系统进行分析,继而进行系统全网状态的动态监测。 通过算例证明, 与传统的估计方法相比, 该方法改善了状态 估计的精确性, 减少了迭代次数, 细致地描绘了电网状态的 变化过程,为调度中心下一步的决策提供了依据。 关键词:状态估计;相量测量单元(PMU);全球定位系统 (GPS);潮流预测;快速分解法