高一数学函数的表示法2
3.1.2一函数的表示法二

则 b=________.
答案
1 2
解析 f 56=3×56-b=52-b,∴f 52-b=4,
52-b<1,
①
325-b-b=4,
无解;
52-b≥1,
②
225-b=4,
综上,b=12.
解得 b=12.
①前三年中,产量增长的速度越来越快;
②前三年中,产量增长的速度越来越慢;
③第三年后,这种产品停止生产; ④第三年后,年产量保持不变. 答案 ②③ 解析 由于纵坐标表示八年来前 t 年产品生产总量, ②③正确.
2x,x≥2,
若 f(x)=3,则 x 等
于( )
A.1
B.± 3
3 C.2
D. 3
4.已知函数 f(x)的图象是两条线段(如图所示,不含
端点),则 f13等于( )
2x,0≤x≤1, 8.函数 f(x)=2,1<x<2,
3,x≥2
的定义域是___.
9.若定义运算 a⊙b=ab,,aa<≥bb. , 则函数 f(x)=
第5页
2020 学年第一学期高一数学课时练习
班级
姓名
由图①中函数取值的情况,结合函数 φ(x)的定义, 可得函数 φ(x)的图象如图②. 令-x2+2=x 得 x=-2 或 x=1. 结合图②,得出 φ(x)的解析式为
高中数学 第二章 函数 2.1.2 函数的表示方法课件 b必修1b高一必修1数学课件

答案:1 2
12/13/2021
第四十页,共四十四页。
4.已知 f(x+1)=x2-2x,则 f( 2)=________. 解析:设 x+1=t,则 x=t-1. 则 f(t)=(t-1)2-2(t-1) =t2-4t+3. 所以 f(x)=x2-4x+3, 所以 f( 2)=( 2)2-4 2+3=5-4 2. 答案:5-4 2
12/13/2021
第十八页,共四十四页。
法二:设 x+4=t≥4,则 x=t-4,x=(t-4)2, 所以 f(t)=(t-4)2+8(t-4)=t2-16. 所以 f(x)=x2-16(x≥4). 所以 f(x2)=x4-16(x≤-2 或 x≥2). (3)由 2f(x)+f1x=2x,① 将 x 换成1x,则1x换成 x,得 2f1x+f(x)=2x,② ①×2-②,得 3f(x)=4x-2x,即 f(x)=43x-32x.
第二章 函 数
2.1.2 函数的表示(biǎoshì)方法
12/13/2021
第一页,共四十四页。
第二章 函 数
1.掌握函数的三种表示方法:解析法、图象法、 列表法. 2.了解简单的分段函数. 3.掌握函数解析式 的求法.
12/13/2021
第二页,共四十四页。
1.函数的表示方法
12/13/2021
第十三页,共四十四页。
(4)该函数中 y=1(x≥1)表示平行于 x 轴的一条射线.
12/13/2021
第十四页,共四十四页。
作函数图象时应注意的事项 (1)画函数图象时首先关注函数的定义域,即在定义域内作图; (2)图象是实线或实点,定义域外的部分有时可用虚线来衬托 整个图象; (3)要标出某些关键点,例如图象的顶点、端点、与坐标轴的 交点等.要分清这些关键点是实心点还是空心点.
2014—2015学年高一数学必修一导学案:2.1.2函数的表示方法(2)

x 的函数解析式为
5、某公司将进货单价为 8 元一个的商品按 10 元一个销售,每天可卖出 100 个,若这 种商品的销售价每个上涨 1 元,则销售量就减少 10 个。 (1)求销售价为 13 元时每天的销售利润; (2)如果销售利润为 360 元,那么销售价上涨了几元?高度 x(km) 的气温为 y(C ) ,在距地面高度不超过 11km 时, y 随着 x 的 增加而降低,且每升高 1km ,大气温度降低 6C ;高度超过 11km 时,气温可视 为不变。 设地面温度为 22 C , 试写出 y f ( x) 的解析式, 并分别求高度为 3.5km 和 12 km 的气温。
x x 20
4
4 3 2 1 o -4 -3 -2 -1 1 2 3 4
x
例 2、国内投寄信函(外埠) ,邮资按以下规则计算:① 信函的质量不超过 100g 时,每
20g 付邮资 80 分,即信函质量不超过 20g 时,付邮资 80 分;质量超过 20g ,但不超 过 40g 付邮资 160 分,依次类推。② 信函质量超过 100g 时,超出部分每 100g 付邮资 200 分,即信函质量超过 100g ,但不超过 200g 付邮资 ( A 200) 分( A 为质量等于 100g 的信函的邮资) ,信函的质量超过 200g 但不超过 300g 付邮资 ( A 400) 分,依 次类推,设一封质量 xg (0 x 200) 的信函应付邮资为 y (单位:分) ,试写出以 x 为
函数的表示方法:第 2 课时
班级: 姓名: 学号:
一、学习目标
了解分段函数的生活中的运用, 会求实际问题的函数解析式; 培养抽象概括能力和 解决问题的能力。
一、课前预习
1.函数的三种表示方法,各自优缺点。 2.在实际问题中的应用及其注意点。
高一数学函数的常用表示方法

x
45
钱数y
5 10 15 20 25
例4 下表是某校高一(1)班三名同学在高一 学年度六次数学测试的成绩及班级平均分表。
解:从表中可以知道每位同学在每次测试中的成 绩,但不太容易分析每位同学的成绩变化情况。 如果将“成绩”与“测试时间”之间的关系用函 数图象表示出来,如下表,那么就能比较直观地 看到成绩变化地情况。这对我们地分析很有帮助。
解:这个函数的定义域是数集{1,2,3,4,5} 用解析法可将函数y=f(x)表示为
y 5x, x 1,2,3,4,5
用列表法可将函数表示为
笔记本数x 1
钱数y
5
234 5 10 15 20 25
用图象法可将函数表示为下图
y
.
25
. 20 . 15 .. 10
5
012345
笔记本数x 1 2 3
2.1.2函数表示法 课件
例5 画出函数y=|x|的图象.
解:由绝对值的概念,我们有
y=
图象如下:
x, x≥0, -x, x<0.
y
5 4 3 2 1
-3 -2 -1 0 1 2 3
x
例6.某市空调公共汽车的票价按下列规则制定: (1)5公里以内(含5公里),票价2元; (2)5公里以上,每增加5公里,票价增加1元 (不足5公里的按5公里计算)。
已知两个相邻的公共汽车站间相距为1公里,如果 沿途(包括起点站和终点站)有21个汽车站,请 根据题意,写出票价与里程之间的函数解析式, 并画出函数的图象。
解:设票价为y,里程为x,则根据题意, 如果某空调汽车运行路线中设21个汽车站,那么汽车 行驶的里程约为20公里,所以自变量x的数的三种表示法及其各种的优点 2、分段函数 3、映射的概念
高一数学函数的表示方法2

x2 2、已知函数 f ( x ) 1 0
( x 0) ( x 0) ( x 0)
求 f (1) , f f (3) , f f f ( 3) 的值。 1 1 1
3、画出y= x-5 + x+3 图象
提示:找出分界点,然后分段讨论,写出分段 函数,再画图
阅读教材P42-P43回答下列问题
1.什么叫分段函数? 2.如何画出简单的分段函数 的图象?
分段函数:
在函数的定义域内,对于自变量x的 不同取值区间,有着不同的对应法 则,这样的函数通常叫做分段函数。
应用
仿照例题5解答P43第3题
某市的空调公共汽车的票价制定的规则是: (1)乘坐5km以内,票价2元; (2)乘坐5km以上,每增加5km,票价增 加1元(不足5km的按5km计算)。 已知两个相邻的公共汽车站之间相距约1km,如果 在某条路线上沿途(包括起点站和终点站)设21个 汽车站,请根据题意写出这条线路的票价与里程之 间的函数解析式。
对称变换:y=f(-x)与y=f(x)的图象关于y轴对称; y=-f(x)与y=f(x)的图象关于x轴对称; y=-f(-x)与y=f(x)的图象关于原点对称。
巩固提升:
(1)作出函数y x2的图象,由此作出y=f(x-1)=(x-1)2 的图象,再作出y=f(x-1)-1=(x-1)2 -1的图象
(2) y=f(x)与y=f(︱x ︱) 的图象之间的关系是: 将y=f(x)在y轴左方的部分去掉,作右方部分关于 Y轴的对称图象,从而形成一个关于y轴对称的函 数图象,便得到y=f(︱x︱) 的图象。
fx = lnx
1.5
练习: 1、已知函数y=f(x)的图象如图: 作出下列函数的图象。 ①y=f(-x); ②y=-f(x); ③y=︱f(x)︱; ④ y=f(︱x︱); ⑤y=f(x-1); ⑥y=f(1-x)
高一数学函数的表示方法

函数的表示方法(一)1、列表法:通过列出自变量与对应的函数值的表来表达函数关系的方法叫列表法2、图像法:如果图形F 是函数)(x f y =的图像,则图像上的任意点的坐标满足函数的关系式,反之满足函数关系的点都在图像上.这种由图形表示函数的方法叫做图像法.3、如果在函数)(x f y =)(A x ∈中,)(x f 是用代数式来表达的,这种方法叫做解析法4、讨论分别用a x -,a y -分别替换函数)(x f y =中的x ,y 以后函数的图像会发生哪些变化?5、讨论分别用x -,y -分别替换函数)(x f y =中的x ,y 以后函数的图像会发生哪些变化?6、讨论分别用ax ,by 分别替换函数)(x f y =中的x ,y 以后函数的图像会发生哪些变化?7、讨论分别用||x ,|)(|x f 分别替换函数)(x f y =中的x ,)(x f 以后函数的图像会发生哪些变化?8、试作出下列函数的图像: (1)43-+=x x y (2)11-=x y11、若)3()3(x f x f +=-,那么函数)(x f 的图像有何性质? 12、)3(x f y -=与)3(x f +的图像之间有何关系函数的表示方法(二)1.例题:例1.(1)已知一次函数()f x 满足(0)5f =,图象过点(2,1)-,求()f x ;(2)已知二次函数()h x 与x 轴的两交点为(2,0)-,(3,0),且(0)3h =-,求()h x ; (3)已知二次函数()F x ,其图象的顶点是(1,2)-,且经过原点,()F x .例2.(1)已知2()43f x x x =-+,(1)f x +; (2)已知2(1)2f x x x +=-,求()f x .例3.函数在闭区间[1,2]-例4.某人开汽车以60/km h 的速度从A 地到150km 远处的B 地,在B 地停留1h 后,再以50/km h 的速度返回A 地,把汽车离开A 地的路程()x km 表示为时间()t h (从A 地出发是开始)的函数,并画出函数的图象;再把车速v /km h 表示为时间()t h 的函数,并画出函数的图象.例5.已知一个函数的解析式为22y x x =-,它的值域为[1,3]-,这样的函数有多少个?试写出其中两个函数.2.练习:(1)练习:(1)已知2(3)21f x x =-,求()f x ; (答案:22()19f x x =-)(2)已知2211()1f x x xx-=++,求()f x .(答案:2()3f x x =+)3.小结:1.已知函数类型,求函数解析式,常用待定系数法;它的基本步骤是:设出函数的一般式(或顶点式等),代入已知条件,通过解方程(组)确定未知系数; 2.已知()f x 的解析式,求[()]f g x 时,把x 用()g x 代替;已知[()]f g x 的解析式,求()f x 时,常用配凑法或换元法;3.在解决实际问题时,求出函数解析式后,一定要写出定义域。
高一数学复习知识讲解课件22 函数的表示法(第2课时) 求函数的解析式
3.1.2函数的表示高一数学复习知求函数的解的表示法(第2课时)复习知识讲解课件数的解析式题型一题型一 待定例1 (1)已知f (x )是一次函数,且f (f【分析分析】】 根据题意,设f (x )=kx +来求k 与b 的值.待定系数法(x ))=16x -25,求f (x ).b (k ≠0),再写出复合函数f (f (x ))的解析式(2)已知f (x )为二次函数,且f (x +1) 【解析解析】】 设f (x )=ax 2+bx +c (a ≠f (x +1)+f (x -1)=a (x +1)2+b (x +1)+c +a (x -1)2+=2ax 2+2bx +2a +2c=2x 2-4x ,所以 2a =2,2b =-4,2a +2c =0,解得a =1,b =-2,c =-1, 所以f (x )=x 2-2x -1. +f (x -1)=2x 2-4x ,求f (x )的解析式. 0),则b (x -1)+c【讲评讲评】】 此类型题目一般说明函数的常量,即“待定系数法”,而此题的关键在量关系,这也是今后常用的一种思维方法函数的类型,需要我们确定其系数或一些关键在于根据“恒等式”的特点来写出等方法.探究1 待定系数法:我们在解决某些问题时,常用一些字母一些条件或要求来确定这些系数,从而解决数法.待定系数法适用于:已知所要求的解析数等等,即可设出f (x )的解析式,然后根据些字母来表示需要确定的系数,然后根据而解决问题, 这样的思维方法叫做待定系的解析式f (x )的类型,如一次函数、二次函后根据已知条件确定其系数.思考题1 (1)已知f (x )是一次函数,f (x )的解析式.(2)已知二次函数图象的顶点坐标为(解析式为( )A .y =x 2-1C .y =(x -1)2+1 C ,且满足3f (x +1)-2f (x -1)=2x +17,求(1,1),且过点(2,2),则该二次函数的B .y =-(x -1)2+1 D .y =(x -1)2-1【解析解析】】 (1)设f (x )=mx +n (m ≠0),则3f (x +1)-2f (x -1)=3mx +3m +3n -2mx +2m -2n=mx +n +5m=2x +17,所以m =2,n +5m =17,解得m =2,n =7,所以f (x )=2x +7.(2)设函数f (x )=a (x -1)2+1,将点,(2,2)代入得a =1.探究2 换元法、配凑法求函数解析式已知f (g (x ))=h (x ),求f (x ),有两种方法(1)换元法,即令t =g (x ),解出x ,代入x 替换t ,便得到f (x )的解析式.利用换元法解题时,换元后要确定新元(2)配凑法,即从f (g (x ))的解析式中配凑析式中的g (x )用x 代替即可.利用配凑法解题时,要确定g (x )的值域解析式:种方法.代入h (x )中,得到一个含t 的解析式,再用定新元t 的取值范围,即函数f (x )的定义域.中配凑出g (x ),用g (x )来表示h (x ),然后将解的值域,即为函数f (x )的定义域.探究3 消元法:将函数中的自变量x 适当地置换为别的两个函数方程组成的方程组中,通过消元为别的自变量,得到一个新的函数方程,从消元,得到所求函数解析式.。
新北师大版高中数学必修1课件:第二章 §2 2.2 第1课时 函数的三种表示方法
题型一 题型二 题型三
反思列表法、图像法和解析法分别从三个不同的角度刻画了自 变量与函数值的对应关系.采用列表法的前提是定义域内自变量的 个数较少;采用图像法的前提是函数的变化规律清晰;采用解析法 的前提是变量间的对应关系明确.
题型一 题型二 题型三
【变式训练1】 某种笔记本的单价是5元,买x(x∈{1,2,3,4,5})个 笔记本需要y元,试用三种表示法表示函数y=f(x).
123456
解析:由题意知该学生离学校越来越近,故排除选项A;又由于开始 匀速,后来因交通堵塞停留一段时间,最后是加快速度行驶,故选C. 答案:C
123456
3若g(x+2)=2x+3,则g(3)的值是( ) A.9 B.7 C.5 D.3 答案:C
123456
4某航空公司规定,乘客所携带行李的质量(kg)与其运费(元)由图中 的函数图像确定,则乘客可免费携带行李的最大质量为( )
题型一 题型二 题型三
题型一 函数的表示方法 【例1】 某商场新进了10台彩电,每台售价3 000元,试分别用列 表法、图像法、解析法表示售出台数x(x∈{1,2,3,4,5,6,7,8,9,10})与 收款总额y(元)之间的函数关系. 分析:明确函数的定义域 明确函数的值域 用三种表示 方法表示函数
2.2 函数的表示法
第1课时 函数的三种表示方法
1.掌握函数的三种表示方法——解析法、图像法、列表法. 2.会作简单函数的图像,掌握求函数解析式的一般方法.
1.函数的表示法
名师点拨函数的三种表示方法的优缺点比较.
【做一做1】 以下形式中,不能表示“y是x的函数”的是 ( )
A.
x
1
2
3
4
高一数学 函数的表示方法
1.2.2 函数的表示法第一课时函数的表示法Q 情景引入ing jing yin ru如果一个人极有才华,我们会用“才高八斗”来形容他;如果一个人兼有文武才能,我们会用“出将入相”来形容他;如果一个人是稀有而可贵的人才,我们会用“凤毛麟角”来形容他;如果一个人品行卓越,天下绝无仅有,我们会用“斗南一人”来形容他.那么对于函数,又有哪些不同的表示方法呢?X 新知导学in zhi dao xue 函数的表示法Y 预习自测u xi zi ce1.已知f(x)=π(x∈R),则f(π2)等于(B) A.π2B.πC.πD.不确定[解析]因为π2∈R,所以f(π2)=π.2.某同学在一学期的5次大型考试中的数学成绩(总分120分)如下表所示:A.成绩y不是考试次数x的函数B.成绩y是考试次数x的函数C.考试次数x是成绩y的函数D.成绩y不一定是考试次数x的函数[解析]把考试次数组成的集合看作A={1,2,3,4,5},成绩组成的集合看作B={90,102,105,106},∴集合A中的任一个数在集合B中有唯一一个数与之对应,∴成绩y是考试次数x的函数.3.已知函数y=f(x)的图象如图,则f(x)的定义域是(C)A.(-∞,1)∪(1,+∞)B.RC.(-∞,0)∪(0,+∞)D.(-1,0)[解析]由图象,知x≠0,即x∈(-∞,0)∪(0,+∞).4.如图,函数f(x)的图象是曲线OAB,其中点O,A,B的坐标分别为(0,0),(1,2),(3,1),则f[f(3)]的值等于__2__.[解析]据图象,知f(3)=1,所以f[f(3)]=f(1)=2.H 互动探究解疑u dong tan jiu jie yi命题方向1 ⇨函数的三种表示方法典例1 某商场新进了10台彩电,每台售价3 000元,试求售出台数x 与收款数y 之间的函数关系,分别用列表法、图象法、解析法表示出来.[思路分析] 函数的定义域是{1,2,3,…,10},值域是{3 000,6 000,9 000,…,30 000},可直接列表、画图表示.分析题意得到表达y 与x 关系的解析式,注意定义域.[解析] (1)列表法:(3)解析法:y =3 000x ,x ∈{1,2,3,…,10}.『规律方法』 列表法、图象法和解析法是从三个不同的角度刻画自变量与函数值的对应关系,同一个函数可以用不同的方法表示.在应用三种方法表示函数时要注意:(1)解析法:必须注明函数的定义域;(2)列表法:选取的自变量要有代表性,应能反映定义域的特征; (3)图象法:是否连线. 〔跟踪练习1〕将一条长为10 cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做一个正方形.试用多种方法表示两个正方形的面积之和S 与其中一段铁丝长x 的函数关系.(x 属于正整数集)[解析] (1)解析法:S =(x4)2+(10-x 4)2.将上式整理得S =18x 2-54x +254,x ∈{x |1≤x <10,x ∈N *}.(2)列表法:命题方向2 ⇨与函数图象有关的问题典例2 作出下列函数的图象并求出其值域.(1)y =2x +1,x ∈[0,2];(2)y =2x ,x ∈[2,+∞);(3)y =x 2+2x ,x ∈[-2,2].[思路分析] (1)画函数的图象时首先要注意的是什么? (2)所给三个函数的大致图象分别是什么形式的? [解析] (1)列表:当x ∈[0,2][1,5].(2)列表当x ∈[2,+∞),图象是反比例函数y =2x的一部分,观察图象可知其值域为(0,1].(3)列表由图可得函数的值域是[-1,8].『规律方法』 (1)常见函数图象的特征: ①一次函数y =kx +b (k ≠0)是一条直线; ②y =kx (k ≠0)是与坐标轴无限接近的双曲线;③y =ax 2+bx +c (a ≠0)是顶点为(-b 2a ,4ac -b 24a ),对称轴为x =-b 2a的抛物线. (2)作函数图象时应注意以下几点: ①在定义域内作图;②图象是实线或实点,定义域外的部分有时可用虚线来衬托整个图象;③要标出某些关键点,例如图象的顶点、端点与坐标轴的交点等.要分清这些关键点是实心点还是空心点.〔跟踪练习2〕作出下列函数的图象,并指出其值域. (1)y =x 2+x (-1≤x ≤1); (2)y =2x(-2≤x ≤1,且x ≠0).[解析] (1)用描点法可以作出函数的图象如图. 由图可知y =x 2+x (-1≤x ≤1)的值域为[-14,2].(2)用描点法可以作出函数的图象如图.由图可知y =2x (-2≤x ≤1,且x ≠0)的值域为(-∞,-1]∪[2,+∞).Y 易混易错警示i hun yi cuo jing shi换元求解析式时忽略自变量的取值范围致误典例3 已知f (x -1)=3-x ,求f (x )的解析式.[错解] 令x -1=t ,则x =t 2+1,所以f (t )=3-(t 2+1)=2-t 2,即有f (x )=2-x 2.[错因分析] 本例的错误是由于忽视了已知条件中“f ”作用的对象“x -1”是有范围限制的.利用换元法求函数的解析式时,一定要注意换元后新元的限制条件.[正解] 令x -1=t ,则t ≥0,且x =t 2+1,所以f (t )=3-(t 2+1)=2-t 2(t ≥0),即f (x )=2-x 2(x ≥0).[警示] 利用换元法求函数解析式时,一定要注意保持换元前后自变量的范围不变. X 学科核心素养ue ke he xin su yang 求函数解析式的常用方法1.待定系数法已知函数类型(如一次、二次、正比例、反比例函数等),可先设出函数解析式,再依据所给条件,确定待定系数.典例4 已知f (x )为二次函数,其图象的顶点坐标为(1,3),且过原点,求f (x )的解析式.[思路分析] 已知二次函数f (x )的顶点坐标,可设顶点(配方)式,再利用其他条件确定待定系数.[解析] 由于函数图象的顶点坐标为(1,3),则设f (x )=a (x -1)2+3(a ≠0). ∵函数图象过原点(0,0),∴a +3=0,∴a =-3. 故f (x )=-3(x -1)2+3. 即f (x )=-3x 2+6x .『规律方法』 (1)一次函数可设为y =kx +b (k ≠0),正比例函数可设为y =kx (k ≠0);反比例函数可设为y =kx (k ≠0);已知二次函数f (x )的顶点或对称轴、最值时,可设顶点式f (x )=a (x +m )2+n ;已知二次函数与x 轴两交点坐标时,常设分解(标根)式f (x )=a (x -x 1)(x -x 2).已知f (x )的图象过某三点时,常设一般式f (x )=ax 2+bx +c ;(2)凡是已知函数(或方程、不等式等)的形式时,常用待定系数法求解. 2.恒成立的应用一般地,若f (x )与g (x )是同类型的函数(或具有相同的表达式),f (x )=g (x )恒成立,则f (x )与g (x )的对应项系数相等.典例5 已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x ).[解析] 由题意可设f (x )=ax +b (a ≠0),则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +b +5a =2x +17,∴⎩⎪⎨⎪⎧a =2b +5a =17,∴a =2,b =7.∴f (x )=2x +7. 典例6 已知f (x )+2f (-x )=x +1,求f (x )的解析式.[思路分析] 这是关于x 的一个恒等式,由于x ∈R ,∴对任意x ∈R ,此等式都成立,当x ∈R 时,-x ∈R ,因此上述等式对-x 也成立.用-x 代替原等式中的x ,可构造关于f (x )与f (-x )的方程组求解.[解析] 因为f (x )+2f (-x )=x +1,对任意x ∈R 都成立,所以用-x 替换x ,得f (-x )+2f (x )=-x +1,由以上两式可解得f (x )=-x +13.K 课堂达标验收e tang da biao yan shou1.如图,函数f (x )的图象是折线段,其中点A ,B ,C 的坐标分别是(0,4),(2,0),(6,4),则f [f (2)]=( C )A .0B .2C .4D .6[解析] 由图象可得f [f (2)]=f (0)=4.2.函数y =x 2-2x 的定义域为{0,1,2,3},那么其值域为( A ) A .{-1,0,3} B .{0,1,2,3} C .{y |-1≤y ≤3}D .{y |0≤y ≤3} [解析] 把x =0,1,2,3分别代入y =x 2-2x 中得y 的值共三个为-1,0,3,故值域为{-1,0,3}.3.某人开车去某地旅行,先沿直线匀速前行了a km ,到达目的地后游玩了一段时间,又原路返回匀速行驶了b km(b <a ),再折回匀速前进c km ,则此人距起点的距离s 与时间t 的关系示意图正确的是( C )[解析] 注意理解两坐标轴s ,t 的含义,这里s 是指距起点的距离,不是路程的累加,结合题意可知C 符合.故选C .4.一个面积为100 cm 2的等腰梯形,上底长为x cm ,下底长为上底长的3倍,则它的高y 与x 的函数关系为__y =50x(x >0)__. [解析] 由梯形的面积公式有100=(x +3x )2·y ,得y =50x(x >0).5.已知函数f (x )=ax +b ,且f (-1)=-4,f (2)=5, 求:(1)a ,b 的值;(2)f (0)的值.[解析] (1)由⎩⎨⎧f (-1)=-4f (2)=5,得⎩⎪⎨⎪⎧-a +b =-42a +b =5,解得a =3,b =-1.(2)由(1)知f (x )=3x -1,所以f (0)=-1.一、选择题1.已知函数f (x )由下表给出,则f (3)等于( C )A .1 C .3D .不存在[解析] ∵2<x ≤4时, f (x )=3,∴f (3)=3,故选C .2.已知y 与x 成反比,且当x =2时,y =1,则y 关于x 的函数关系式为( C ) A .y =1xB .y =-1xC .y =2xD .y =-2x[解析] 设y =k x ,由1=k2得,k =2,因此,y 关于x 的函数关系式为y =2x.3.一等腰三角形的周长是20,底边长y 是关于腰长x 的函数,则它的解析式为( D ) A .y =20-2xB .y =20-2x (0<x <10)C .y =20-2x (5≤x ≤10)D .y =20-2x (5<x <10)[解析] 由题意得y +2x =20,∴y =20-2x .又∵2x >y ,∴2x >20-2x ,即x >5.由y >0,即20-2x >0得x <10,∴5<x <10.故选D .4.若f (x )=2x +3,g (x +2)=f (x ),则g (x )的表达式为( B ) A .g (x )=2x +1 B .g (x )=2x -1 C .g (x )=2x -3D .g (x )=2x +7[解析] ∵g (x +2)=f (x )=2x +3, 令x +2=t ,∴x =t -2, ∴g (t )=2(t -2)+3=2t -1, ∴g (x )=2x -1. 5.观察下表:则f [g (3)-f A .3 B .4 C .-3D .5[解析] 由题表知,g (3)-f (-1)=-4-(-1)=-3, ∴f [g (3)-f (-1)]=f (-3)=4.6.若f (1x )=x1-x ,则当x ≠0,且x ≠1时,f (x )=( B )A .1xB .1x -1C .11-xD .1x-1[解析] f (1x )=x 1-x =11x -1∴f (x )=1x -1,故选B .二、填空题7.已知函数f (x )是反比例函数,且f (-1)=2,则f (x )=__-2x __.[解析] 设f (x )=kx (k ≠0),∴f (-1)=-k =2,∴k =-2, ∴f (x )=-2x.8.已知g (x )=1-2x ,f [g (x )]=1-x 2x 2(x ≠0),则f (12)等于__15__.[解析] 令g (x )=1-2x =12,∴x =14,∴f (12)=f [g (14)]=1-(14)2(14)2=15.三、解答题9.作出下列函数的图象. (1)y =x2+1,x ∈{1,2,3,4,5};(2)y =2x 2-4x -3(0≤x <3).[解析] (1)函数y =x 2+1,x ∈{1,2,3,4,5}是由(1,32),(2,2),(3,52),(4,3),(5,72)五个孤立的点构成,如图.(2)因为0≤x <3,所以这个函数的图象是抛物线y =2x 2-4x -3介于0≤x <3之间的一段曲线,且y =2x 2-4x -3=2(x -1)2-5,当x =0时,y =-3;当x =3时,y =3,如图所示.10.已知函数f (x )=xax +b (a ,b 为常数,且a ≠0)满足f (2)=1,且f (x )=x 有唯一解,求函数y =f (x )的解析式和f [f(-3)]的值.[解析] 因为f (2)=1,所以22a +b =1,即2a +b =2,①又因为f (x )=x 有唯一解,即xax +b=x 有唯一解,所以ax 2+(b -1)x =0有两个相等的实数根,所以Δ=(b -1)2=0,即b =1.代入①得a =12.所以f (x )=x 12x +1=2xx +2,所以f (-3)=2×(-3)-3+2=6,所以f [(f (-3)]=f (6)=2×66+2=32.。
函数的表示法
类比二次函数y= 类比二次函数 =x2 及二次函数y=( - 及二次函数 =(x-2 )2+1你 =( 你 有何感想? 有何感想?
问题探究
2x+3, x<- <-1, <- x2, -1≤x<1, < 4. 已知函数 (x)= 已知函数f x-1, - x≥1 .
(1)求f{f[f(-2)]} ;(复合函数) 求 - (复合函数) (2) 当f (x)=-7时,求x ; - 时求
欲改造营口开发区世纪广场中 心的圆形喷水池, 心的圆形喷水池,已知原喷水池直径为 20m, 20m,喷水池的周边靠近水面的位置安装 一圈喷水头,喷出的水柱在离池中心4m 一圈喷水头,喷出的水柱在离池中心4m 处达到最高,高度为6m 6m, 处达到最高,高度为6m,现设想在喷水 池的中心设计一个装饰物, 池的中心设计一个装饰物,使各方面喷 来的水柱在此处汇合, 来的水柱在此处汇合,这个装饰物的高 度应当如何设计? 度应当如何设计?
函数的表示法
函数表示法有几种?
函数表示法 解析法 图像法 列表法
一、函数的三种表示方法: 函数的三种表示方法:
定义:是把两个变量的函数关系,用一个等式来表示, 定义:是把两个变量的函数关系,用一个等式来表示, 1、解析法 简称解析式。 简称解析式。 优点:函数关系清楚, 优点:函数关系清楚,容易从自变量的值求出其对应 的函数值,便于用解析式来研究函数的性质。 的函数值,便于用解析式来研究函数的性质。 2、列表法 定义:是列出表格来表示两个变量的函数关系。 定义:是列出表格来表示两个变量的函数关系。 优点: 优点:不必通过计算就知道当自变量取某些值时函 数的对应值。 数的对应值。 3、图象法 定义:是用函数图象来表示两个变量的函数关系。 定义:是用函数图象来表示两个变量的函数关系。 优点:能直观形象地表示出函数的变化情况。 优点:能直观形象地表示出函数的变化情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 2 f ( ) x 1 x 2.已知 (x>0) 求f(x) x
3.已知f(x)是一次函数, 且f[f(x)]=4x1, 求f(x)的解析式。
2n 1 4.集合A=N,B={m|m= ,n∈N},f:x→y= 2n 1
2x 1 9 2 x 1 ,x∈A,y∈B.请计算在f作用下,象 11
成本的单位:元/102kg, 时间单位:天)
四、小结
1.求函数解析式的方法 2.映射定义: 3.映射判定及映射三要素 4.求映射个数及象与原象
五、作业: 书P24 10
补充题: 1.设
f (x x ) x x ,
3
1
3
g( x x 1 ) x 2 x 2 求f[g(x)]。
例3.(1)已知(x,y)在映射f作用 下的象是(x+y,x-y),求在f作用下 象(1,2)的原象;
Hale Waihona Puke 例4.某蔬菜基地种植西红柿,由历年市场行 选讲:
情得知,从二月一日起的300天内,西红柿市场售价与 上市时间的关系用图一的一条折线表示;西红柿的种 植成本与上市时间的关系用图二的抛物线段表示。 (I)写出图一表示的市场售价与时间的函数关系P=f(t); 写出图二表求援 种植成本与时间的函数关系式Q=g(t); (II)认定市场售价减去种植成本为纯收益,问何时上 市的西红柿纯收益最大? (注:市场售价和种植
三、新课讲解:
映射定义: 设A、B是两个非空的集合,如果 按某一个确定的对应法则f,使对于集合A中 的任意一个元素x,在集合B中都有唯一确定 的元素y与之对应,那么就称对应f:A B 为从集合A到集合B的一个映射(mapping). 记作“f:A B"
举例分析映射实质:
A 9 4 1 (1) A 1 -1 2 -2 3 -3 (3) 求平方
起来:“守夜也有秦顺儿呢!哪儿轮得到您们!”两各丫环晓得爷那是动咯气,吓得别敢再吱声,乖乖地放下手中の热水和中衣,壹并退咯下去。回到水清の房间,月影只见晚 膳还胡乱地摆在桌子上,上前看咯看,有些动咯,有些壹点儿也没什么动,看样子仆役用咯壹些,但都别多。再往里屋探身壹看,水清已经和衣躺在床上咯,深感失职の月影赶 快冲咯进去:“仆役,奴婢回来咯,奴婢那就服侍您歇息。”水清随便用咯些晚膳之后,原本是拿咯壹本书,壹边看书壹边等月影,结果因为壹天の旅途劳累,看咯没壹会儿就 有些迷迷糊糊地睡着咯,被月影叫醒后,她赶快问道:“爷那里怎么样咯?都伺候完咯吗?”“嗯,是爷让我们回来の,说有秦公公服侍就可以咯。”“噢,那您们赶快吃饭吧, 都有些凉咯呢。”“奴婢别饿の,仆役,赶快让奴婢帮您安置咯吧。”“我那里也没什么啥啊事情„„”别待水清说完,月影已经手脚麻利地开始为水清拆头发,拔簪子,卸容 妆,水清也好由着她做那些,晓得她那是心中愧疚,只有壹刻别停地忙碌着才能让她心安理得壹些。吉尔眼见着月影进咯里间屋伺候侧福晋,她在外间屋没敢贸然地进去。由于 是初次服侍侧福晋,既别好跟月影那各老人抢差事,又别晓得如何跟侧福晋解释啥啊,更是别晓得那各侧福晋是啥啊性子,她贸然进屋会别会惹主子别高兴。于是吉尔赶快很有 眼力劲儿地在外间屋将桌子收拾干净,又将行李归置整齐。她那么手脚别停地干活儿,也是想让自己能够心安壹些。由于水清别习惯有人在跟前值夜,于是两各丫环就在外间屋 踏踏实实地睡咯壹晚。前壹天被两各小丫环弄得只有招架之功,没什么还手之力の王爷急于摆脱被动挨打の局面,于是壹大清早儿就让秦顺儿给水清传话:“您壹会儿跟侧福晋 传爷の吩咐,月影和吉尔两各人专门负责伺候侧福晋,别用到爷那里当差来咯。” 水清听完咯秦顺儿壹字别落の传话,心里别由得咯噔地壹下:昨天晚上发生啥啊事情咯?爷怎 么会专门来传那各吩咐?爷の身边没各丫环,光指着秦顺儿壹各小太监怎么能行?况且福晋姐姐那次之所以特意将吉尔派来同行,还别是担心她和月影两各人没什么经验,生怕 别能把爷伺候好吗?现在吉尔假设成咯自己の专用丫环,把爷の事情给耽误咯,既辜负咯福晋の壹番心意,更是要把福晋姐姐得罪咯。第壹卷 第552章 抢功生怕辜负咯福晋壹 片信任の水清想到那里,赶快对秦顺儿说道:“您跟爷回各话,我那里有月影壹各人就行咯,还是让吉尔专心伺候爷吧。”别但秦顺儿听明白咯水清の吩咐,连两各丫环都听得 真真切切。吉尔の心中是暗暗欢喜、感激别已,月影却是急得别行、心生埋怨,于是顾别得礼仪,开口对水清说道:“仆役,要别,让奴婢去服侍爷吧,吉尔留下来伺候 您。”“月影?!”水清惊呆咯!月影可是她从娘家带过来の陪嫁丫环,她们同进共退,同甘共苦,在那陌生の王府里相依为命,度过咯六年の时光!那各丫头可是她在王府里 唯壹の壹各亲人,最为亲近、最为信赖の奴才,怎么现在居然为咯去伺候爷,将她那各正经主子扔在壹边别管咯?难道说为咯攀上王爷那各高枝,她们六年多の主仆之情全都忘 到咯脑后咯?可是,月影别是那种人啊?六年多咯都别去攀附王爷那根高枝,怎么现在突然开窍咯?百思别解の水清根本别打算再理会月影,转身继续对秦顺儿说道:“就照我 刚才の吩咐去给爷传口信吧。”王爷听咯秦顺儿の回复,想想自己手边上只秦顺儿壹各人也确实是有些忙别过来,刚才之所以让两各丫环都留给水清,完全还是因为昨天晚上の 事情在赌气。现在看到水清主动让咯步,心里舒坦咯许多,于是就点头同意咯。秦顺儿见王爷别但同意咯,而且脸色有咯好转,他那心里也跟着高兴起来,于是忍别住就又多咯 壹句嘴:“启禀爷,月影那姑娘其实也想来伺候您呢,侧福晋没答应。”“啥啊?”那各情况大大出乎王爷の意料,再联想到昨天晚上月影那破天荒の殷勤劲儿,更是让他糊涂 别已!以前那丫头见着他就像老鼠见到猫似の,别是战战兢兢,就是退避三舍,偶尔他去咯怡然居,眼见着躲别掉咯,别得已只好硬着头皮上前来伺候他。而从昨天晚上开始の 月影那番脱胎换骨の巨大变化,简直是让他丈二和尚摸别到头脑咯!谢天谢地,幸好水清留下咯月影,否则他还真别晓得怎么面对她。于是他朝秦顺儿挥咯挥手,让他先退下咯。 吉尔听到秦顺儿の禀报,心中自是欢喜别已,辞别咯水清,赶快随着秦顺儿去王爷那里服侍,生怕壹会儿侧福晋又变咯卦。月影眼见着吉尔欢天喜地地去咯王爷那里,急得她顾 别得礼数,壹把拉住水清:“仆役啊!您怎么让吉尔壹各人去服侍爷咯?您怎么那么糊涂啊!”月影急别择言,如此大逆别道の话语未经大脑就脱口而出。好在水清与她壹直情 同姐妹,所以也没什么太在意她の失礼,只是笑咯笑,然后说道:“月影啊,您最近那是怎么?变得我都要别认识咯呢!您现在老老实实跟我交代,昨天晚上到底发生咯啥啊事 情,气得爷都别让您去跟前伺候咯呢。”第壹卷 第553章 和尚月影早就想跟水清好好地说壹说那各事情,现在见水清主动提咯起来,难得碍事の吉尔又别在身边,她也打算打 开天窗说亮话。虽然她们情同姐妹,但毕竟也有主仆之分,于是她先是费咯好大の劲儿才总算是略微压住咯心中の怒火,开口说道:“仆役,昨天晚上没什么发生啥
f B
开平方
B 3 -3 2 -2 1 -1
A
求正弦
B
30 45 0 60 0 90 0
(2) A 1 2 3 (4) 乘以2
0
2 32 2
1
1 2
B 1 2 3 4 5 6
1 4 9
映射三要素:集合A、B以及对应法则,缺一不可;
例题:
例2、下列哪些对应是从集合A到集合B的映射? (1)A={P | P是数轴上的点},B=R,对应关 系f:数轴上的点与它所代表的实数对应; (2)A={ P | P是平面直角体系中的点},B={(x, y)| x∈R,y∈R},对应关系f:平面直角体系中 的点与它的坐标对应; (3)A={三角形},B={x | x是圆},对应关系f: 每一个三角形都对应它的内切圆; (4)A={x | x是新华中学的班级},B={x | x是 新华中学的学生},对应关系f:每一个班级都对 应班里的学生.
练习: 1.设A={1,2,3,4},B={3,4,5,6,7,8,9},集合A中 的元素x按照对应法则“乘2加1”和集合B中的元 素2x+1对应.这个对应是不是映射? 2.设A=N*,B={0,1},集合A中的元素x按照 对应法则“x除以2得的余数”和集合B中的元素对应 这个对应是不是映射? 3.A=Z,B=N*,集合A中的元素x按照对应法则 “求绝对值”和集合B中的元素对应.这个对应是 不是映射? 4.A={0,1,2,4},B={0,1,4,9,64},集合A中的元 素x按照对应法则“f :ab=(a1)2”和集合B中 的元素对应.这个对应是不是映射?
的原象分别是多少; 原象6的象分别是多少? 5.动点P从边长为1的正方形ABCD的顶点A 出发顺次经过B、C、D再回到A,设x表示P 点的行程,f(x)表示PA的长,g(x)表示△ABP 的面积,求f(x)和g(x),并作出g(x)的简图.
温江会计培训 双流会计培训
1.2.2 函数的表示法(二)
一、复习:
1.表示函数的方法有解析法、列表法和图 象法三种. 掌握分段函数的概念; 2.函数的图象通常是一段或几段光滑的曲线, 但有时也可以由一些孤立点或几段线段组成。 必须根据定义域画图,利用描点法或图象变 换法。
二、上节扩充
求函数解析式的方法:待定系数法;配凑法; 换元法;解方程组法(注意定义域) 例1.分别求下列条件下的 f ( x) (1)已知f(x)=ax+b且af(x)+b=9x+8 求f(x) (2)设二次函数f(x)满足f(x+2)=f(2-x)且f(x)=0 的两实根平方和为10,图象过点(0,3),求f(x)的 解析式. 1 x (3)①若 f ( x 1) x 2 x ②若 f ( 2) x 1 x 1 ③ 2 f ( x) f ( ) 3 x x