医用多孔金属的制备及其生物活化研究进展
多孔材料在生物医药领域的应用研究

多孔材料在生物医药领域的应用研究随着生物医药领域的不断发展,人们对于材料的需求也越来越高。
多孔材料由于其良好的物理化学性质,逐渐成为生物医药领域中广受关注的材料之一。
本文将从多角度探讨多孔材料在生物医药领域的应用研究。
一、多孔材料在生物医药领域的基础运用多孔材料可以为生物医学领域提供许多重要应用。
例如,它们可以用来制造生物传感器、药物递送系统、组织修复支架、生物印迹等设备和实验室界面。
多孔材料的这些应用依赖于其广泛的可调性和生物相容性。
多孔材料可以通过调整其体积形状、表面、孔隙网络和化学组成来实现可控的物理特性,从而产生所需的生物相应性。
这使得多孔材料在制备生物医学材料和设备时具有灵活性,可以弥补其它材料的不足。
二、多孔材料在医学图像学中的应用多孔材料在医学图像学中的应用非常广泛。
在这个领域,多孔材料可以被用作可调节孔径大小的超声有机造影剂,被应用于组织扫描和诊断,如针对癌细胞的筛查。
多孔材料也可以用于生物医学成像与追踪造影剂的制造,因为它们可以用来调整荧光,增加成像分辨率和医学诊断能力。
此外,多孔材料在医学治疗上的应用也是相当广泛的,比如可以制造支架和修补组织等等。
三、多孔材料在药物递送领域的应用多孔材料在药物递送领域中的应用,也广受医学机构的关注。
传统的药物递送方法通常依赖于被体内分解破坏、氧化和代谢的慢降解,因此,药物的释放和截留是很小的。
多孔材料因其多孔性,在这种问题上具有极高的应用潜力,可提供更高的药物储存和释放的效率。
多孔材料中的药物分子可以通过控制多孔纳米孔和孔洞大小来进行透过,从而以更精确的方式向病人提供药物治疗。
四、多孔材料在组织工程领域的应用多孔材料可以作为成功组织修复的关键元素之一。
现在的技术允许把干细胞嵌入到多孔材料中,从而为损伤组织提供生长和修复所需的生长因子。
这可以在神经系统、骨骼和关节等组织上应用。
多孔材料可提供一种基底,可通过精确控制其结构和材料组成,创造出允许细胞成长的三维结构。
《生物质基多孔材料的制备及其吸附二氧化碳性能》

《生物质基多孔材料的制备及其吸附二氧化碳性能》篇一一、引言随着全球气候变化和环境污染的日益严重,二氧化碳的减排和利用已成为全球关注的焦点。
生物质基多孔材料作为一种新型的吸附材料,具有来源广泛、环境友好、多孔结构丰富等特点,因此,其在二氧化碳吸附方面的应用具有重要价值。
本文旨在探讨生物质基多孔材料的制备方法及其在吸附二氧化碳方面的性能。
二、生物质基多孔材料的制备1. 材料选择与预处理生物质基多孔材料的制备原料主要包括生物质废弃物、纤维素等可再生资源。
这些原料需要经过粉碎、清洗等预处理过程,以提高其纯度和表面活性。
2. 制备方法(1)化学活化法:将预处理后的生物质原料与化学活化剂混合,进行高温活化处理,使原料发生化学反应,形成多孔结构。
(2)物理活化法:通过物理手段如蒸汽、二氧化碳等对生物质原料进行活化处理,使其形成多孔结构。
(3)生物模板法:利用生物模板作为造孔剂,通过模板与生物质原料之间的相互作用,形成具有特定孔径和孔隙率的多孔材料。
三、生物质基多孔材料吸附二氧化碳性能1. 吸附原理生物质基多孔材料吸附二氧化碳的原理主要在于其丰富的孔隙结构和表面化学性质。
多孔材料具有较大的比表面积和丰富的活性位点,能够与二氧化碳分子发生物理吸附和化学吸附作用,从而实现对二氧化碳的有效吸附。
2. 实验方法与结果(1)实验方法:通过静态吸附法和动态吸附法等实验方法,测定生物质基多孔材料对二氧化碳的吸附性能。
(2)实验结果:实验结果表明,生物质基多孔材料具有较高的二氧化碳吸附能力,其吸附量随温度、湿度等环境条件的变化而发生变化。
此外,不同制备方法、孔径和孔隙率的生物质基多孔材料在二氧化碳吸附性能上存在差异。
四、影响因素及优化措施1. 影响因素:生物质基多孔材料的二氧化碳吸附性能受原料种类、制备方法、孔径、孔隙率、温度、湿度等因素的影响。
2. 优化措施:为提高生物质基多孔材料的二氧化碳吸附性能,可采取以下措施:(1)选用具有较高比表面积和丰富活性位点的生物质原料;(2)优化制备工艺,如采用化学活化法或生物模板法等制备方法;(3)通过调整孔径和孔隙率等参数,提高多孔材料的二氧化碳吸附能力;(4)对多孔材料进行表面改性,提高其与二氧化碳分子的相互作用力。
多孔金属有机骨架材料的制备及其应用研究

多孔金属有机骨架材料的制备及其应用研究近年来,多孔金属有机骨架材料受到了广泛关注。
这种材料在化学、物理、材料科学等领域都有着重要的应用,同时也是新型材料领域的前沿研究课题。
本文将介绍多孔金属有机骨架材料的制备方法和应用研究进展。
一、多孔金属有机骨架材料的制备方法1. 溶剂热法溶剂热法是制备多孔金属有机骨架材料的常用方法之一,其原理是将金属离子与有机配体在有机溶剂中反应生成多孔结构。
其中的有机配体通常为大环化合物,能够提供足够的空间和配位位点,从而形成高度有序的孔洞结构。
2. 水热合成法水热合成法是利用水热反应条件制备多孔金属有机骨架材料的方法。
该方法需要在高温高压下进行实验,水热反应的高效性极大提高了孔洞结构的有序性和纯度,有助于实现更高效和可重复的制备方法。
3. 等离子体增强化学气相沉积法等离子体增强化学气相沉积法是一种新型的制备多孔金属有机骨架材料的方法,其利用等离子体增强化学反应在表面上生成有机乃至无机薄膜,再通过控制氧化剂、反应时间等因素调控氧化反应来实现多孔结构的形成。
二、多孔金属有机骨架材料的应用研究1. 气体储存与分离多孔金属有机骨架材料具有高度有序孔结构,可以承载气体分子并具有储存和分离作用,因此在气体储存和分离方面具有很大的应用潜力。
2. 催化反应多孔金属有机骨架材料在催化反应中作为载体,有助于调控反应速率和选择性,进而提高反应效率和产率。
因此,多孔金属有机骨架材料被广泛应用于各种催化反应领域。
3. 气体传感器多孔金属有机骨架材料的结构与表面性质可通过调控实现对特定气体分子的识别和探测。
基于这种特性,多孔金属有机骨架材料可用于气体传感器、化学传感器等领域,对环境污染物等进行检测。
三、结语多孔金属有机骨架材料的制备方法和应用研究已经取得了令人瞩目的进展。
随着科技的不断发展,多孔金属有机骨架材料在化学、物理、能源等领域的应用将会越来越广泛,成为新型材料领域中的重要研究方向。
金属多孔材料的研究现状与发展前景

金属多孔材料的研究现状与发展前景摘要:介绍了金属多孔材料的制备方法、应用、发展方向以及前景。
关键字:金属多孔材料;制备方法;应用1 引言金属多孔材料是一类具有明显孔隙特征的金属材料(孔隙率可达98%),由于孔隙的存在而呈现出一系列有别于金属致密材料的特殊功能,广泛应用于冶金机械、石油化工、能源环保、国防军工、核技术和生物制药等工业过程中的过滤分离、流体渗透与分布控制、流态化、高效燃烧、强化传质传热、阻燃防爆等,是上述工业实现技术突破的关键材料。
近年来金属多孔材料的开发和应用日益受到人们的关注。
金属多孔(泡沫金属)材料是20世纪80年代后期国际上迅速发展起来的,是由刚性骨架和内部的孔洞组成,具有优异的物理特性和良好的机械性能的新型工程材料。
它具备的优异物理性能,如密度小、刚度大、比表面积大、吸能减振性能好、消音降噪效果好、电磁屏蔽性能高,使其应用领域已扩展到航空、电子、医用材料及生物化学领域等。
通孔的金属多孔材料还具有换热散热能力强、渗透性好、热导率高等优点;而闭孔金属多孔材料的物理特性则与通孔的相反。
为了得到不同性能的多孔金属,各种制备方法被相继提出,如直接发泡法,精密铸造法,气泡法,烧结法和电沉积法等[1,2]。
2 金属多孔材料制备方法2.1 从液态(熔融)金属开始制备2.1.1熔体发泡法在一定的条件下金属熔体中可生成气泡,并且一般情况下多数气泡由于浮力作用会迅速上升到液体表面而溢出。
为了使更多气泡留在熔体中,可在其中加入增粘剂来阻碍气泡的上浮。
19世纪60至70年代,人们就已经尝试用这种方法制备铝、镁、锌及其合金的泡沫材料。
过去的10年中,又涌现出了大量的新思路、新工艺,其中有两种熔体发泡工艺特别具有发展前景:其一是直接将气体通入金属熔体中,其二是将发泡剂加入熔体中,发泡剂分解释放大量气体[3]。
①直接吹气法:首先在熔融的金属中加入增粘剂以防止气泡从熔体中逸出。
随后,采用旋转浆或振动的喷嘴将发泡气体(空气、氮气、二氧化碳、氩气等)通入熔体中,旋转浆或喷嘴的作用是在熔体中产生足够多的优良气泡并使他们分布均匀。
浅谈金属多孔材料的制备方法与应用

浅谈金属多孔材料的制备方法与应用关键词:功能机构;金属加工;多孔材料文献标识码:A文章编号:1671-7597(2011)0120144-01多孔材料是一种由相互贯通或封闭的孔洞构成网络结构的材料,孔洞的边界或表面由支柱或平板构成。
由于多孔材料具有相对密度低、比强度高、比表面积大、重量轻、隔音、隔热、渗透性好等优点,其应用范围远远超过单一功能的材料。
近年来金属多孔材料的开发和应用日益受到人们的关注。
从20世纪中叶开始,世界各国竞相投入到多孔金属材料的研究与开发之中,并相继提出了各种不同的制备工艺。
1 金属多孔材料的制备工艺1.1 粉末冶金(PM)法。
该方法的原理是将一种或多种金属粉末按一定的配比混合均匀后,在一定的压力下压制成粉末压坯。
将成形坯在烧结炉中进行烧结,制得具有一定孔隙度的多孔金属材料。
或不进行成形压制的步骤,直接将粉末松装于模具内进行无压烧结,即粉末松装烧结法。
1.2 纤维烧结法。
纤维烧结法与粉末冶金法基本类似。
用金属纤维代替金属粉末颗粒,选取一定几何分布的金属纤维混合均匀,分布成纤维毡,随后在惰性气氛或还原性气氛中烧结制各金属纤维材料。
该方法制各的金属多孔材料孔隙度可在很大范围内调整。
1.3 发泡法。
1)直接吹气法。
对于制备泡沫金属,直接吹气法是一种简便、快速且低耗能的方法。
2)金属氢化物分解发泡法。
这种方法是在熔融的金属液中加入发泡剂(金属氢化物粉末),氢化物被加热后分解出H2,并且发生体积膨胀,使得液体金属发泡,冷却后得到泡沫金属材料。
3)粉末发泡法。
该方法的基本工艺是将金属与发泡剂按一定的比例混合均匀,然后在一定的压力下压制成形。
将成形坯经过进一步加工,如轧制、模锻等,使之成为半成品,然后将半成品放入一定的钢模中加热,使得发泡剂分解放出气体发泡,最后得到多孔泡沫金属材料。
1.4 自蔓延合成法。
自蔓延高温合成法是一种利用原材料组分之间化学反应的强烈放热,在维持自身反应继续进行的同时产生大量孔隙的材料合成方法。
多孔金属材料的制备方法及应用

多孔金属材料的制备方法及应用摘要:孔金属材料由于具有独特的综合性能,近年来逐渐成为研究热点。
科研水平的提高使一些多孔金属材料的孔隙率可以达到90%以上,但许多的多孔金属材料的制备仍然存在很大的挑战。
本文主要对多孔金属材料的几种制备方法和多孔金属材料的应用进行了介绍,并对今后的研究热点作了展望。
关键词:多孔金属材料;制备方法;应用引言:多孔金属材料是一类新型的金属材料,与传统金属材料和其他多孔材料相比在某些方面具有更佳的性能,且随着研究的发展,多孔金属材料的应用领域变得更加宽泛。
简要回顾了多孔金属材料的研究历史,重点综述了几种常用的多孔金属材料的制备方法及其适用性,并对多孔金属材料的应用领域作了介绍,最后展望了多孔金属材料的研究趋势。
1多孔金属材料的制备工艺铝合金在工业上广泛用于制造金属泡沫。
除了铝之外,钛、铁、锌、铜等材料也在工业上得到了应用,但与铝相比,它们的存在率仍然很低。
不同的应用需求对多孔金属材料的孔隙率要求不同,根据多孔金属材料加工产生孔隙时的金属的物质状态(固态、液态、气态或电离态)对各种制备工艺进行分类:固相法、液相法、沉积法。
1.1固相法固相法制备多孔金属材料是对固相金属进行烧结,且在此过程中金属始终保持固态,此工艺方法包含的种类较多,较容易制备大块的材料,该方法操作简单,得到的金属孔隙率高、分辨率高、孔隙分布均匀,缺点是得到的多孔金属材料强度低,常用于制备的多孔金属材料有铝、钛、不锈钢、铜、钼等。
通常固相法常用的制备方法主要有粉末烧结法、粉末发泡法、氧化还原烧结法、空心球烧结法等。
1.2液相法液相法制备多孔金属材料是在液态金属中获得孔隙结构或者是熔化含有气体发泡剂预制体释放气体,气体扩散获得孔隙结构,以此获得多孔金属材料。
该方法的优点是操作简单、成本低、孔隙率高,但不太适用于熔点高的材质。
受液态金属粘度的影响,所得到的多孔金属材料孔隙结构不均匀,力学性能较差,多适用于制备铝合金、钢、铜、青铜、黄铜等多孔金属材料。
医用多孔金属钽材料的基础研究与应用
China &Foreign Medical Treatment中外医疗目前医用骨修复材料主要有天然衍生骨材料、医用陶瓷类以及金属及其合金材料等。
钽具有高摩擦系数,这将使其具有较好的机械稳定性并且当钽移植物植入动物体内后没有周围炎症反应而具有优良的生物相容性。
因此在骨折内固定等外科手术中发挥了重要作用[1]。
然而大量的临床研究表明,目前临床上所使用金属材料由于具有腐蚀性、弹性模量过高等原因导致的疲劳折断、金属过敏、假体松动等,不能完全满足人体生理环境、生物力学以及使用寿命的要求[2]。
上世纪末美国Zimmer 公司研制的新型医用多孔钽材料与传统的金属材料如钛、镁以及合金相比,具有更强的抗腐蚀性、更高的摩擦系数、更好的耐磨损性,同时多孔钽在弹性模量、机械强度、抗疲劳性、生物相容性方面也有出色的表现;其高孔隙率对于细胞粘附增殖以及促进纤维和骨组织向内生长极为有利,同时细胞可以在相互连通的孔隙内自由地进行物质交换,从而使其具有很好的促组织内生性和骨传导性,可以达到生物固定的目的[3-5]。
多孔钽优秀的特质使其很快被用于骨组织工程支架材料方面的研究并取得了令人鼓舞的效果。
1多孔金属钽的物理特性钽(tantalum)是一种难熔金属,熔点近3000度,外观呈深灰色,表面光洁,多孔状结构。
表面及断面可见分布均匀的蜂窝状孔隙,针尖大小。
扫描电镜观察材料表面及断面可见20~50μm 的微粒,微粒之间有分布均匀直径约400~600μm 的微孔结构[6]。
孔隙内部相互连通。
钽在生物体内极其稳定,在常温及各种环境中均不溶解,也不呈现化学反应。
当它与一些元素如氧、碳以及氮等元素具有高亲和力,常温下在钽周围形成保护膜而具有抗腐蚀性特点。
多孔钽由钽粉制备而成,钽粉经加热形成钽蒸汽而沉积于碳或其它元素形成的支架,去除支架后及可获得高孔隙率75%~85%,孔径约400~600μm ,具有三维立体空间构型的多孔钽材料[7-8]。
多孔金属材料的制备方法及应用研究论文
多孔金属材料的制备方法及应用研究论文多孔金属材料是一种具有开放孔隙结构的金属材料,其具有较大的比表面积、高孔隙度和良好的传质性能。
多孔金属材料广泛应用于催化剂载体、过滤器、吸附剂、能源储存等领域。
本文将介绍多孔金属材料的制备方法,并综述其在不同领域的应用研究。
多孔金属材料的制备方法主要包括模板法、重浸渗法和自由空间滴定法等。
模板法是最常用的制备方法之一,其原理是利用模板物质的模板效应,在金属材料表面形成孔隙结构。
常用的模板物质包括硅胶、陶瓷和树脂等。
重浸渗法是将金属固体与液态金属浸渍剂接触,经过多次渗透后,形成多孔金属材料。
自由空间滴定法是将金属粉末悬浮液滴入高温容器中,通过控制滴定速度和温度,使金属粉末形成多孔结构。
多孔金属材料在催化剂载体领域具有广泛应用。
催化剂载体是催化剂的重要组成部分,能够提高催化反应的效率和选择性。
多孔金属材料具有高比表面积和较大的孔隙度,能够提供充足的反应活性位点和更好的传质性能,从而增强催化剂的催化活性。
研究表明,多孔铝合金材料可用作高性能汽车尾气催化剂载体,其孔隙结构能够提供更大的表面积和更好的热稳定性,从而提高汽车尾气催化剂的催化效率。
多孔金属材料在过滤器领域也有广泛的应用。
传统的过滤器材料如滤纸和滤布往往无法有效过滤微米级颗粒物。
多孔金属材料具有较大的孔隙度和高效的固液分离能力,能够有效过滤微米级颗粒物和悬浊液体。
研究表明,多孔不锈钢材料可用于水处理过滤器,其优良的固液分离性能能够有效去除水中的悬浊物和颗粒物,从而提高水的质量。
此外,多孔金属材料还应用于吸附剂和能源储存等领域。
多孔金属材料可以通过控制孔隙结构和表面化学性质,具有高效吸附和储存气体、液体和离子的能力。
研究表明,多孔铜材料可用于储氢材料,其高比表面积和可调控的孔隙结构能够提高氢气的吸附容量和释放速率,从而提高储氢材料的储氢性能。
综上所述,多孔金属材料通过不同的制备方法可以获得不同孔隙结构和性能,具有广泛的应用前景。
多孔MOFs材料的合成及性能研究
多孔MOFs材料的合成及性能研究一、本文概述金属有机框架(MOFs)材料作为一种新型多孔材料,因其独特的结构和性能,近年来在材料科学领域引起了广泛关注。
MOFs材料由金属离子或金属团簇与有机配体通过配位键连接而成,具有高度可定制性、高比表面积和良好的孔道结构。
这些特性使得MOFs材料在气体存储与分离、催化、传感、药物输送等领域展现出巨大的应用潜力。
本文旨在探讨多孔MOFs材料的合成方法、性能表征以及潜在应用,以期为MOFs材料的研究与应用提供有益的参考。
在合成方面,本文详细介绍了多种制备多孔MOFs材料的方法,包括溶剂热法、微波辅助法、机械化学法等。
这些方法各有特点,可根据具体需求选择合适的合成策略。
本文还重点讨论了合成条件对MOFs材料结构和性能的影响,为优化合成工艺提供了指导。
在性能研究方面,本文系统地评价了多孔MOFs材料的物理和化学性质,如比表面积、孔径分布、热稳定性、化学稳定性等。
通过气体吸附实验、催化实验等手段,深入探讨了MOFs材料在气体存储与分离、催化反应中的应用性能。
这些实验结果不仅有助于理解MOFs材料的性能特点,也为后续的应用研究提供了有力支持。
本文旨在全面介绍多孔MOFs材料的合成方法、性能表征及潜在应用,以期推动MOFs材料在各个领域的研究与发展。
通过不断优化合成工艺和提高材料性能,我们有望将MOFs材料应用于更多领域,为人类社会的发展做出贡献。
二、多孔MOFs材料的合成方法多孔金属有机框架(MOFs)材料的合成是一个复杂且精细的过程,它涉及到对金属离子或团簇与有机配体之间相互作用的精确控制。
MOFs 的合成方法多种多样,常见的包括溶液法、扩散法、微波法、机械化学法等。
溶液法:溶液法是最常用的MOFs合成方法,它通过在溶剂中混合金属盐和有机配体,然后调节pH值、温度和反应时间等因素,使金属离子与有机配体在溶液中自组装形成MOFs。
这种方法简单易行,适用于大规模制备MOFs。
《生物可降解多孔Zn-Mg-β-TCP复合材料支架的制备与性能研究》范文
《生物可降解多孔Zn-Mg-β-TCP复合材料支架的制备与性能研究》篇一一、引言随着医疗技术的不断进步,生物医用材料在医疗领域的应用越来越广泛。
其中,可降解的多孔支架材料因其良好的生物相容性、机械性能以及促进组织再生的特性,被广泛应用于骨组织工程中。
本篇论文将着重探讨一种新型的生物可降解多孔Zn-Mg-β-TCP复合材料支架的制备方法及其性能研究。
二、材料制备1. 材料选择与配比本研究所用的Zn-Mg-β-TCP复合材料由锌、镁和β-三磷酸钙(β-TCP)组成,各组分比例经过优化设计,以达到最佳的生物相容性和机械性能。
2. 制备方法采用熔融共混法结合高温烧结技术制备Zn-Mg-β-TCP复合材料支架。
首先,将原料按照预定比例混合均匀后进行熔融共混,然后进行高温烧结,形成多孔的复合材料支架。
三、性能研究1. 机械性能通过压缩测试和弯曲测试,评估了Zn-Mg-β-TCP复合材料支架的机械性能。
结果表明,该支架具有良好的抗压和抗弯强度,能够满足骨组织修复的需求。
2. 生物相容性通过细胞培养实验和动物植入实验,评估了Zn-Mg-β-TCP复合材料支架的生物相容性。
实验结果表明,该支架具有良好的生物相容性,能够促进细胞的增殖和分化,有助于骨组织的再生。
3. 生物降解性研究了Zn-Mg-β-TCP复合材料支架在生理环境中的降解行为。
结果表明,该支架具有良好的生物降解性,能够在体内逐渐降解并被新生的骨组织所替代。
四、结果与讨论本研究成功制备了生物可降解多孔Zn-Mg-β-TCP复合材料支架,并对其性能进行了系统研究。
结果表明,该支架具有良好的机械性能、生物相容性和生物降解性,能够满足骨组织修复的需求。
此外,该支架的制备方法简单、成本低廉,具有较好的应用前景。
然而,本研究仍存在一些局限性。
例如,对于不同生理环境下的降解行为和长期生物相容性的研究还不够充分。
因此,未来还需要进一步研究该支架在不同生理环境下的性能变化以及长期应用的安全性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘 要 :医用 多孔金属材料 ,特别是多孔钛 及钛合金能够提供 与人体骨组织相 匹配的力学性能 ,并 促进骨组织长人 以提高其
与骨 的固定度 ,在人体 硬组织修复与 替换方面具有广泛 的应用前景 。重 点围绕多孔 钛及 钛合金 的制备方 法及适 用于其 复杂孔
隙结 构 的 表 面 生 物 活化 方 法 ,综 述 了 各 种 方 法 在 多 孔 钛 及 钛 合 金 上 的应 用 现 状 。 目前 适 用 于 多 孔 钛 及 钛 合 金 制 备 的技 术 主 要 有 粉 末 冶 金 法 、钛 纤 维 烧 结 法 、 自蔓 延 高 温 合 成 法 、选 区 电 子 束 熔 化 技 术 和 选 区 激 光 熔 化 技 术 ,适 用 于 多 孔 钛 及 钛 合 金 表 面
c a e lp o ri s i ia o h h nia r pe te sm l rt uma n n r mo eg o h o n is e i t o e fte m ae il o e ha c hefx — n bo e a d p o t r wt fbo e ts u no p r s o h t ra st n n e t a i to e we n t i mpln s a d b ne a a l e i d fi p a tto in b t e heri a t n o te ry p ro s o m l na in,e hi tn r a tn ilf rt pp ia in o u— x bi g a g e tpoe ta o he a lc to fh i m a r is e i n e l c n ha d ts uer para d r p a eme t Thi p rf c s so h r pa ain me h dsa d r s a c o rs fp r ust— n. spa e u e n t e p e rto t o n e e r h pr ge so o o i o t n u a d ttni a i m n ia um lo s a d t i u a e b o a tv to e hn l i swh c r ui bl o he c mplx p r tu u e. a ly n hers r c i — cia in tc ooge i h ae s t e f rt o f a e o e sr ctr
o r u o e i a e a a e i l f Po o s Bi m d c l M t lM t r a s
LI H u . HAN n U i Yo g
( tt Ke a oaoyfrMe h ne lB h vo fMaeil,Xi nJa tn nv ri Sae yL b rtr o e a ia e a iro tr s a ’ ioo g U iest a y,Xi n71 0 9,C ia ’ 0 4 a hn ) Abs r t tac :Bime ia p ru tlmaeil ,ep cal h oo sta im n i nu aly .c ”po iete me o dcl oo smea tr s s e il te p ru i nu a d ta im l s a rvd h — a y t t o
中 图分 类 号 :R 1 . 8 3 8 0
文 献 标 识 码 :A
文 章 编 号 :17 6 4—3 6 (0 2 0 9 2 2 1 ) 5—04 0 0—1 7
R e e r h Pr g e s 0 e r to nd S f c c i a i n s a c o r s n Pr pa a i n a ur a e A tv to
第 3 1卷 第 5期 21 0 2年 5月
中 国 材 料 进 展
M ATERI ALS CH I NA
V0 . NO 5 1 31 .
M a 01 v2 2
医 用 多 孑 金 属 的 制 备 及 其 生 物 活 化 研 究 进 展 L
刘 辉 ,憨 勇
( 安交通大学 金 属材料强度 国家重点实 验室 ,பைடு நூலகம்西 西 安 7 0 4 ) 两 10 9
生物活化的技术 主要 有溶胶凝胶 法 、仿生矿化法 、电化学沉积法 和微 弧氧化法 。多孔钛 及钛合 金的 力学相 容性 和表 面生物 活
性 需 要 同时 满 足 临 床 要 求 ,才 能 进 一 步 扩 大 其 在 医 学 领 域 的应 用 范 围 。
关 键 词 :多孑钛及钛 合金 ;制备 ;力学相容性 ;表 面活化 ;生物活性 L
N w d y , h i m to ss i be r rp r gp ru tnu n tnu l y c d o d r t l g P , o a a s tema e d u a l f e ai oo sta im a d ta im a o si l ep w e a u y( M) n h t p o n i i l n u me l r taim f ess t ig slp0 aaigh ht eauesnhs i nu br i e n , e _rpgt i — mprtr ytei S ) e ci l t n ba c ig( E M) t i nr f n g e s( HS ,sl t ee cr em i hn S B e v e o n
a ds lciels r hn S M) u a eboa t ain tc n lge utbefrp ru i nu n i nu aly ,i— n ee t a e v me ig( L .S r c i—ci t e h oo iss i l o oo st a im a dt a im l s n f v o a t t o