外文文献翻译原文及译文

合集下载

毕业论文(设计)外文文献翻译及原文

毕业论文(设计)外文文献翻译及原文

金融体制、融资约束与投资——来自OECD的实证分析R.SemenovDepartment of Economics,University of Nijmegen,Nijmegen(荷兰内梅亨大学,经济学院)这篇论文考查了OECD的11个国家中现金流量对企业投资的影响.我们发现不同国家之间投资对企业内部可获取资金的敏感性具有显著差异,并且银企之间具有明显的紧密关系的国家的敏感性比银企之间具有公平关系的国家的低.同时,我们发现融资约束与整体金融发展指标不存在关系.我们的结论与资本市场信息和激励问题对企业投资具有重要作用这种观点一致,并且紧密的银企关系会减少这些问题从而增加企业获取外部融资的渠道。

一、引言各个国家的企业在显著不同的金融体制下运行。

金融发展水平的差别(例如,相对GDP的信用额度和相对GDP的相应股票市场的资本化程度),在所有者和管理者关系、企业和债权人的模式中,企业控制的市场活动水平可以很好地被记录.在完美资本市场,对于具有正的净现值投资机会的企业将一直获得资金。

然而,经济理论表明市场摩擦,诸如信息不对称和激励问题会使获得外部资本更加昂贵,并且具有盈利投资机会的企业不一定能够获取所需资本.这表明融资要素,例如内部产生资金数量、新债务和权益的可得性,共同决定了企业的投资决策.现今已经有大量考查外部资金可得性对投资决策的影响的实证资料(可参考,例如Fazzari(1998)、 Hoshi(1991)、 Chapman(1996)、Samuel(1998)).大多数研究结果表明金融变量例如现金流量有助于解释企业的投资水平。

这项研究结果解释表明企业投资受限于外部资金的可得性。

很多模型强调运行正常的金融中介和金融市场有助于改善信息不对称和交易成本,减缓不对称问题,从而促使储蓄资金投着长期和高回报的项目,并且提高资源的有效配置(参看Levine(1997)的评论文章)。

因而我们预期用于更加发达的金融体制的国家的企业将更容易获得外部融资.几位学者已经指出建立企业和金融中介机构可进一步缓解金融市场摩擦。

毕业论文英文参考文献与译文

毕业论文英文参考文献与译文

Inventory managementInventory ControlOn the so-called "inventory control", many people will interpret it as a "storage management", which is actually a big distortion.The traditional narrow view, mainly for warehouse inventory control of materials for inventory, data processing, storage, distribution, etc., through the implementation of anti-corrosion, temperature and humidity control means, to make the custody of the physical inventory to maintain optimum purposes. This is just a form of inventory control, or can be defined as the physical inventory control. How, then, from a broad perspective to understand inventory control? Inventory control should be related to the company's financial and operational objectives, in particular operating cash flow by optimizing the entire demand and supply chain management processes (DSCM), a reasonable set of ERP control strategy, and supported by appropriate information processing tools, tools to achieved in ensuring the timely delivery of the premise, as far as possible to reduce inventory levels, reducing inventory and obsolescence, the risk of devaluation. In this sense, the physical inventory control to achieve financial goals is just a means to control the entire inventory or just a necessary part; from the perspective of organizational functions, physical inventory control, warehouse management is mainly the responsibility of The broad inventory control is the demand and supply chain management, and the whole company's responsibility.Why until now many people's understanding of inventory control, limited physical inventory control? The following two reasons can not be ignored:First, our enterprises do not attach importance to inventory control. Especially those who benefit relatively good business, as long as there is money on the few people to consider the problem of inventory turnover. Inventory control is simply interpreted as warehouse management, unless the time to spend money, it may have been to see the inventory problem, and see the results are often very simple procurement to buy more, or did not do warehouse departments .Second, ERP misleading. Invoicing software is simple audacity to call it ERP, companies on their so-called ERP can reduce the number of inventory, inventory control, seems to rely on their small software can get. Even as SAP, BAAN ERP world, the field ofthese big boys, but also their simple modules inside the warehouse management functionality is defined as "inventory management" or "inventory control." This makes the already not quite understand what our inventory control, but not sure what is inventory control.In fact, from the perspective of broadly understood, inventory control, shouldinclude the following:First, the fundamental purpose of inventory control. We know that the so-called world-class manufacturing, two key assessment indicators (KPI) is, customer satisfaction and inventory turns, inventory turns and this is actually the fundamental objective of inventory control.Second, inventory control means. Increase inventory turns, relying solely on the so-called physical inventory control is not enough, it should be the demand and supply chain management process flow of this large output, and this big warehouse management processes in addition to including this link, the more important The section also includes: forecasting and order processing, production planning and control, materials planning and purchasing control, inventory planning and forecasting in itself, as well as finished products, raw materials, distribution and delivery of the strategy, and even customs management processes.And with the demand and supply chain management processes throughout the process, it is the information flow and capital flow management. In other words, inventory itself is across the entire demand and supply management processes in all aspects of inventory control in order to achieve the fundamental purpose, it must control all aspects of inventory, rather than just manage the physical inventory at hand.Third, inventory control, organizational structure and assessment.Since inventory control is the demand and supply chain management processes, output, inventory control to achieve the fundamental purpose of this process must be compatible with a rational organizational structure. Until now, we can see that many companies have only one purchasing department, purchasing department following pipe warehouse. This is far short of inventory control requirements. From the demand and supply chain management process analysis, we know that purchasing and warehouse management is the executive arm of the typical, and inventory control should focus on prevention, the executive branch is very difficult to "prevent inventory" for the simple reason that they assessment indicatorsin large part to ensure supply (production, customer). How the actual situation, a reasonable demand and supply chain management processes, and thus set the corresponding rational organizational structure and is a question many of our enterprisesto exploreThe role of inventory controlInventory management is an important part of business management. In the production and operation activities, inventory management must ensure that both the production plant for raw materials, spare parts demand, but also directly affect the purchasing, sales of share, sales activities. To make an inventory of corporate liquidity, accelerate cash flow, the security of supply under the premise of minimizing Yaku funds, directly affects the operational efficiency. Ensure the production and operation needs of the premise, so keep inventories at a reasonable level; dynamic inventory control, timely, appropriate proposed order to avoid over storage or out of stock; reduce inventory footprint, lower total cost of inventory; control stock funds used to accelerate cash flow.Problems arising from excessive inventory: increased warehouse space andinventory storage costs, thereby increasing product costs; take a lot of liquidity, resultingin sluggish capital, not only increased the burden of payment of interest, etc., would affect the time value of money and opportunity income; finished products and raw materials caused by physical loss and intangible losses; a large number of enterprise resource idle, affecting their rational allocation and optimization; cover the production, operation of the whole process of the various contradictions and problems, is not conducive to improve the management level.Inventory is too small the resulting problems: service levels caused a decline in the profit impact of marketing and corporate reputation; production system caused by inadequate supply of raw materials or other materials, affecting the normal production process; to shorten lead times, increase the number of orders, so order (production) costs; affect the balance of production and assembly of complete sets.NotesInventory management should particularly consider the following two questions:First, according to sales plans, according to the planned production of the goods circulated in the market, we should consider where, how much storage.Second, starting from the level of service and economic benefits to determine howto ensure inventories and supplementary questions.The two problems with the inventory in the logistics process functions.In general, the inventory function:(1)to prevent interrupted. Received orders to shorten the delivery of goods fromthe time in order to ensure quality service, at the same time to prevent out of stock.(2)to ensure proper inventory levels, saving inventory costs.(3)to reduce logistics costs. Supplement with the appropriate time interval compatible with the reasonable demand of the cargo in order to reduce logistics costs, eliminate or avoid sales fluctuations.(4)ensure the production planning, smooth to eliminate or avoid sales fluctuations.(5)display function.(6)reserve. Mass storage when the price falls, reduce losses, to respond to disasters and other contingencies.About the warehouse (inventory) on what the question, we must consider the number and location. If the distribution center, it should be possible according to customer needs, set at an appropriate place; if it is stored in central places to minimize the complementary principle to the distribution centers, there is no place certain requirements. When the stock base is established, will have to take into account are stored in various locations in what commodities.库存管理库存控制在谈到所谓“库存控制”的时候,很多人将其理解为“仓储管理”,这实际上是个很大的曲解。

外文文献及翻译

外文文献及翻译

外文文献原稿和译文原稿DATABASEA database may be defined as a collection interrelated data store together with as little redundancy as possible to serve one or more applications in an optimal fashion .the data are stored so that they are independent of programs which use the data .A common and controlled approach is used in adding new data and in modifying and retrieving existing data within the data base .One system is said to contain a collection of database if they are entirely separate in structure .A database may be designed for batch processing , real-time processing ,or in-line processing .A data base system involves application program, DBMS, and database.THE INTRODUCTION TO DATABASE MANAGEMENT SYSTEMSThe term database is often to describe a collection of related files that is organized into an integrated structure that provides different people varied access to the same data. In many cases this resource is located in different files in different departments throughout the organization, often known only to the individuals who work with their specific portion of the total information. In these cases, the potential value of the information goes unrealized because a person in other departments who may need it does not know it or it cannot be accessed efficiently. In an attempt to organize their information resources and provide for timely and efficient access, many companies have implemented databases.A database is a collection of related data. By data, we mean known facts that can be recorded and that have implicit meaning. For example, the names, telephone numbers, and addresses of all the people you know. You may have recorded this data in an indexed address book, or you may have stored it on a diskette using a personalcomputer and software such as DBASE Ⅲor Lotus 1-2-3. This is a collection of related data with an implicit meaning and hence is a database.The above definition of database is quite general. For example, we may consider the collection of words that made up this page of text to be usually more restricted. A database has the following implicit properties:● A database is a logically coherent collection of data with some inherent meaning. A random assortment of data cannot be referred to as a database.● A database is designed, built, and populated with data for a specific purpose. It has an intended group of user and some preconceived applications in which these users are interested.● A database represents some aspect of the real world, sometimes called the miniworld. Changes to the miniworld are reflected in the database.In other words, a database has some source from which data are derived, some degree of interaction with events in the real world, and an audience that is actively interested in the contents of the database.A database management system (DBMS) is composed of three major parts: (1) a storage subsystem that stores and retrieves data in files; (2)a modeling and manipulation subsystem that provides the means with which to organize the data and to add, delete, maintain, and update the data; and (3) an interface between the DBMS and its users. Several major trends are emerging that enhance the value and usefulness of database management systems.●Managers who require more up-to-date information to make effective decisions.●Customers who demand increasingly sophisticated information services and more current information about the status of their orders, invoices, and accounts.●Users who find that they can develop custom applications with database systems in a fraction of the time it takes to use traditional programming languages.●Organizations that discover information has a strategic value; they utilize their database systems to gain an edge over their competitors.A DBMS can organize, process, and present selected data elements from the database. This capability enables decision makers to search, probe, and query database contents in order to extract answers to nonrecurring and unplanned questions that aren’t available in regular reports. These questions might initially be vague and/or p oorly defined, but people can “browse” through the database until they have the needed information. In short, the DBMS will “mange” the stored data items and assemble the needed items from the common database in response to the queries of those who aren’t programmers. In a file-oriented system, user needing special information may communicate their needs to a programmer, who, when time permits, will write one or more programs to extract the data and prepare the information. The availability of a DBMS, however, offers users a much faster alternative communications path.DATABASE QUERYIf the DBMS provides a way to interactively enter and update the database ,as well as interrogate it ,this capability allows for managing personal database. However, it does not automatically leave an audit trail of actions and does not provide the kinds of controls necessary in a multi-user organization .There controls are only available when a set of application programs is customized for each data entry and updating function.Software for personal computers that perform some of the DBMS functions has been very popular .Individuals for personal information storage and processing intended personal computers for us .Small enterprises, professionals like doctors, architects, engineers, lawyers and so on have also used these machines extensively. By the nature of intended usage ,database system on there machines are except from several of the requirements of full-fledged database systems. Since data sharing is not intended, concurrent operations even less so ,the software can be less complex .Security and integrity maintenance are de-emphasized or absent .as data volumes will be small, performance efficiency is also less important .In fact, the only aspect of a database system that is important is data independence. Data independence ,as stated earlier ,means that application programs and user queries need not recognize physical organization of data on secondary storage. The importance of this aspect , particularly for the personal computer user ,is that this greatly simplifies database usage . The user can store ,access and manipulate data at ahigh level (close to the application)and be totally shielded from the low level (close to the machine )details of data organization.DBMS STRUCTURING TECHNIQUESSpatial data management has been an active area of research in the database field for two decades ,with much of the research being focused on developing data structures for storing and indexing spatial data .however, no commercial database system provides facilities for directly de fining and storing spatial data ,and formulating queries based on research conditions on spatial data.There are two components to data management: history data management and version management .Both have been the subjects of research for over a decade. The troublesome aspect of temporal data management is that the boundary between applications and database systems has not been clearly drawn. Specifically, it is not clear how much of the typical semantics and facilities of temporal data management can and should be directly incorporated in a database system, and how much should be left to applications and users. In this section, we will provide a list of short-term research issues that should be examined to shed light on this fundamental question.The focus of research into history data management has been on defining the semantics of time and time interval, and issues related to understanding the semantics of queries and updates against history data stored in an attribute of a record. Typically, in the context of relational databases ,a temporal attribute is defined to hold a sequence of history data for the attribute. A history data consists of a data item and a time interval for which the data item is valid. A query may then be issued to retrieve history data for a specified time interval for the temporal attribute. The mechanism for supporting temporal attributes is to that for supporting set-valued attributes in a database system, such as UniSQL.In the absence of a support for temporal attributes, application developers who need to model and history data have simply simulated temporal attributes by creating attribute for the time interval ,along with the “temporal” attribute. This of course may result in duplication of records in a table, and more complicated search predicates in queries. The one necessary topic of research in history data management is to quantitatively establish the performance (and even productivity) differences betweenusing a database system that directly supports attributes and using a conventional database system that does not support either the set-valued attributes or temporal attributes.Data security, integrity, and independenceData security prevents unauthorized users from viewing or updating the database. Using passwords, users are allowed access to the entire database of the database, called subschemas. For example, an employee database can contain all the data about an individual employee, but one group of users may be authorized to view only payroll data, while others are allowed access to only work history and medical data.Data integrity refers to the accuracy, correctness, or validity of the data in the database. In a database system, data integrity means safeguarding the data against invalid alteration or destruction. In large on-line database system, data integrity becomes a more severe problem and two additional complications arise. The first has to do with many users accessing the database concurrently. For example, if thousands of travel agents book the same seat on the same flight, the first agent’s booking will be lost. In such cases the technique of locking the record or field provides the means for preventing one user from accessing a record while another user is updating the same record.The second complication relates to hardware, software or human error during the course of processing and involves database transaction which is a group of database modifications treated as a single unit. For example, an agent booking an airline reservation involves several database updates (i.e., adding the passenger’s name and address and updating the seats-available field), which comprise a single transaction. The database transaction is not considered to be completed until all updates have been completed; otherwise, none of the updates will be allowed to take place.An important point about database systems is that the database should exist independently of any of the specific applications. Traditional data processing applications are data dependent.When a DMBS is used, the detailed knowledge of the physical organization of the data does not have to be built into every application program. The application program asks the DBMS for data by field name, for example, a coded representationof “give me customer name and balance due” would be sent to the DBMS. Without a DBMS the programmer must reserve space for the full structure of the record in the program. Any change in data structure requires changes in all the applications programs.Data Base Management System (DBMS)The system software package that handles the difficult tasks associated with creating ,accessing and maintaining data base records is called a data base management system (DBMS). A DBMS will usually be handing multiple data calls concurrently.It must organize its system buffers so that different data operations can be in process together .It provides a data definition language to specify the conceptual schema and most likely ,some of the details regarding the implementation of the conceptual schema by the physical schema.The data definition language is a high-level language, enabling one to describe the conceptual schema in terms of a “data model “.At the present time ,there are four underling structures for database management systems. They are :List structures.Relational structures.Hierarchical (tree) structures.Network structures.Management Information System(MIS)An MIS can be defined as a network of computer-based data processing procedures developed in an organization and integrated as necessary with manual and other procedures for the purpose of providing timely and effective information to support decision making and other necessary management functions.One of the most difficult tasks of the MIS designer is to develop the information flow needed to support decision making .Generally speaking ,much of the information needed by managers who occupy different levels and who have different levels and have different responsibilities is obtained from a collection of exiting information system (or subsystems)Structure Query Language (SQL)SQL is a data base processing language endorsed by the American NationalStandards Institute. It is rapidly becoming the standard query language for accessing data on relational databases .With its simple ,powerful syntax ,SQL represents a great progress in database access for all levels of management and computing professionals.SQL falls into two forms : interactive SQL and embedded SQL. Embedded SQL usage is near to traditional programming in third generation languages .It is the interactive use of SQL that makes it most applicable for the rapid answering of ad hoc queries .With an interactive SQL query you just type in a few lines of SQL and you get the database response immediately on the screen.译文数据库数据库可以被定义为一个相互联系的数据库存储的集合。

外文文献翻译译稿和原文

外文文献翻译译稿和原文

外文文献翻译译稿1卡尔曼滤波的一个典型实例是从一组有限的,包含噪声的,通过对物体位置的观察序列(可能有偏差)预测出物体的位置的坐标及速度。

在很多工程应用(如雷达、计算机视觉)中都可以找到它的身影。

同时,卡尔曼滤波也是控制理论以及控制系统工程中的一个重要课题。

例如,对于雷达来说,人们感兴趣的是其能够跟踪目标。

但目标的位置、速度、加速度的测量值往往在任何时候都有噪声。

卡尔曼滤波利用目标的动态信息,设法去掉噪声的影响,得到一个关于目标位置的好的估计。

这个估计可以是对当前目标位置的估计(滤波),也可以是对于将来位置的估计(预测),也可以是对过去位置的估计(插值或平滑)。

命名[编辑]这种滤波方法以它的发明者鲁道夫.E.卡尔曼(Rudolph E. Kalman)命名,但是根据文献可知实际上Peter Swerling在更早之前就提出了一种类似的算法。

斯坦利。

施密特(Stanley Schmidt)首次实现了卡尔曼滤波器。

卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑便使用了这种滤波器。

关于这种滤波器的论文由Swerling(1958)、Kalman (1960)与Kalman and Bucy(1961)发表。

目前,卡尔曼滤波已经有很多不同的实现。

卡尔曼最初提出的形式现在一般称为简单卡尔曼滤波器。

除此以外,还有施密特扩展滤波器、信息滤波器以及很多Bierman, Thornton开发的平方根滤波器的变种。

也许最常见的卡尔曼滤波器是锁相环,它在收音机、计算机和几乎任何视频或通讯设备中广泛存在。

以下的讨论需要线性代数以及概率论的一般知识。

卡尔曼滤波建立在线性代数和隐马尔可夫模型(hidden Markov model)上。

其基本动态系统可以用一个马尔可夫链表示,该马尔可夫链建立在一个被高斯噪声(即正态分布的噪声)干扰的线性算子上的。

系统的状态可以用一个元素为实数的向量表示。

外文文献翻译(图片版)

外文文献翻译(图片版)

本科毕业论文外文参考文献译文及原文学院经济与贸易学院专业经济学(贸易方向)年级班别2007级 1 班学号3207004154学生姓名欧阳倩指导教师童雪晖2010 年 6 月 3 日目录1 外文文献译文(一)中国银行业的改革和盈利能力(第1、2、4部分) (1)2 外文文献原文(一)CHINA’S BANKING REFORM AND PROFITABILITY(Part 1、2、4) (9)1概述世界银行(1997年)曾声称,中国的金融业是其经济的软肋。

当一国的经济增长的可持续性岌岌可危的时候,金融业的改革一直被认为是提高资金使用效率和消费型经济增长重新走向平衡的必要(Lardy,1998年,Prasad,2007年)。

事实上,不久前,中国的国有银行被视为“技术上破产”,它们的生存需要依靠充裕的国家流动资金。

但是,在银行改革开展以来,最近,强劲的盈利能力已恢复到国有商业银行的水平。

但自从中国的国有银行在不久之前已经走上了改革的道路,它可能过早宣布银行业的改革尚未取得完全的胜利。

此外,其坚实的财务表现虽然强劲,但不可持续增长。

随着经济增长在2008年全球经济衰退得带动下已经开始软化,银行预计将在一个比以前更加困难的经济形势下探索。

本文的目的不是要评价银行业改革对银行业绩的影响,这在一个完整的信贷周期后更好解决。

相反,我们的目标是通过审查改革的进展和银行改革战略,并分析其近期改革后的强劲的财务表现,但是这不能完全从迄今所进行的改革努力分离。

本文有三个部分。

在第二节中,我们回顾了中国的大型国有银行改革的战略,以及其执行情况,这是中国银行业改革的主要目标。

第三节中分析了2007年的财务表现集中在那些在市场上拥有浮动股份的四大国有商业银行:中国工商银行(工商银行),中国建设银行(建行),对中国银行(中银)和交通银行(交通银行)。

引人注目的是中国农业银行,它仍然处于重组上市过程中得适当时候的后期。

第四节总结一个对银行绩效评估。

国际贸易对碳排放的影响外文文献翻译中英文

国际贸易对碳排放的影响外文文献翻译中英文

外文文献翻译(含:英文原文及中文译文)英文原文The effects of international trade on Chinese carbon emissionsB Wei ,X Fang ,Y WangAbstractInternational trade is an important impact factor to the carbon emissions of a country. As the rapid development of Chinese foreign trade since its entry into the WTO in 2002, the effects of international trade on carbon emissions of China are more and more significant. Using the recent available input-output tables of China and energy consumption data, this study estimated the effects of Chinese foreign trade on carbon emissions and the changes of the effects by analyzing the emissions embodied in trade between 2002 and 2007. The results showed a more and more significant exporting behavior of embodied carbon emissions in Chinese international trade. From 2002 to 2007, the proportion of net exported emissions and domestic exported emissions in domestic emissions increased from 18.32% to 29.79% and from 23.97% to 34.76%, respectively. In addition, about 22.10% and 32.29% of the total imported emissions were generated in processing trade in 2002 and 2007, respectively, which were imported and later exported emissions. Although, most of the sectors showed a growth trend in imported and exportedemissions, sectors of electrical machinery and communication electronic equipment, chemical industry, and textile were still the biggest emission exporters, the net exported emissions of which were also the largest. For China and other developing countries, technology improvement may be the most favorable and acceptable ways to reduce carbon emissions at present stage. In the future negotiations on emissions reduction, it would be more fair and reasonable to include the carbon emissions embodied in international trade when accounting the total emissions of an economy. Keywords: input-output analysis, carbon emissions, international trade, ChinaIntroductionGlobal warming has been considered an indisputable fact. The main reason is that the warming of the global climate system is due to the continuous increase in the concentration of greenhouse gases in the atmosphere, the result of human activities (IPCC, 2007). In order to avoid the possible negative impact on human society's global warming, a series of measures have been taken to reduce global greenhouse gas emissions to slow down global warming. However, around the CO2 emission reduction and the future allocation of carbon emission rights, the game plays a different interest group.With the development of globalization, the impact on the international trade of the environment is becoming more and moresignificant, including the potential impact of carbon emissions from geographical relocation. Many researchers estimate that it is reflected in international trade in certain countries as well as in the world economy (Wykoff and Rupp, carbon emissions in 1994; Schaefer and Lealdesa, 1996, Machado et al., 2001 Year; Munksgaard, Peder and Sen, 2001; Ahmed and Wykov, 2003; Sanchez-Chóliz and Duarte, 2004; Peters and Hess, 2006, 2008; Mäenpää et al, 2007; Keman et al., 2007). The general conclusion is that in a more open economy, the impact of large foreign trade on the carbon emissions of a country. In addition, all these studies have pointed out that import and export trade cannot ignore a relatively open economy; otherwise, energy and carbon emissions figures may be seriously distorted by this economy (Machado et al., 2001). In terms of total volume, the value of China’s trade surplus increased from US$30.43 billion in 2002 to US$261.83 billion in 2007 (National Bureau of Statistics, 2008). The rapid growth of China’s foreign trade will have a significant effect on China’s carbon emissions.As one of the countries with the highest carbon emissions, China is facing increasing pressure to reduce emissions. However, China is also a big country in international trade. The rapid development of China’s economy has led to steady growth in foreign trade. From 1997 to 2002, China’s total import and export value increased by an average annual growth rate of 14.35%. Since joining the World Trade Organization, theaverage annual growth rate of China’s trade has jumped to 28.64%. From 2002 to 2007, the value of exports compared with 2002, it increased by 2.7 times in 2007 to reach US$1.2177.8 billion. Imports also soared to US$955.95 billion in 2007, which was 2.2 times higher than the 2002 imports. In terms of total volume, the value of China’s trade surplus increased from US$30.43 billion in 2002 to US$261.83 billion in 2007 (National Bureau of Statistics, 2008). The rapid growth of China’s foreign trade will have a significant effect on China’s carbon emissions.However, quantitative assessment of the impact of China's international trade in energy use and carbon emissions has only recently begun. Estimates from the IEA (2007) show that China's domestic production and export of energy-related carbon dioxide emissions account for 34% of total emissions, and if it is used in 2004, the weighted average carbon intensity of commodity countries imported from China is estimated. China's net exports of EM-rich CO2 may be more than 17% of total emissions in 2004 (Levin, 2008). Using a single-area input-output model, Pan et al. (2008) estimated that their production of energy and emissions in 2002 accounted for 16% and 19% of China’s net exports of primary energy consumption, respectively, in 2002. In the input-output analysis, China reported that the discharge volume of pre-grid discharges to the United States accounted for about 5%. Weber et al. (2008), ESTI mating production exported from China's carbon dioxide emissions from1987 to 2005. In 2005, about one-third of China's emissions were due to production exports, and this proportion has risen from 12% in 1987 to 21% in 2002. In developed countries, consumption is driving this trend. Wei et al.'s estimation (2009a) also found that the presence of emissions in China's economy in 2002 reflected significant export behavior; in addition, subsequent exports (processing trade played by EMIS--) were total imports of 20 %the above. In addition, using a multi-area input-output model, Peters and Hewei (2008) also found that export emissions represented 24.4% of China's domestic emissions, and the proportion of imports in 2001 was only 6.6%. A similar study by Atkinson et al. (2009) also shows that China is a net exporter of carbon emissions in international trade. In recent years, using ecological input-output based on physical access programs, MOD-Y eling, Chen and Chen (2010) estimated that in 2007 China's export of carbon dioxide emissions and total energy were respectively 32.31% and 33.65% of total emissions.Both the United States and European countries are major importers of China’s export carbon emissions. Using the economic input-output life cycle assessment software, Ruihe Harris (2006) found that about 7% of China’s carbon dioxide emissions from exports to the United States during the period of 1997-2003 were produced by 14% of the total; the US’s CO2 emissions will At 3%-6%, if increased imports from Chinahave been produced in the United States. AP-walking a similar approach, Lee Hewitt found that bilateral trade between the United Kingdom and China (2008) produced about 4% of CO2 emissions. In 2004, China's CO2 emissions were for the UK market to produce goods and the UK trade decreased. About 11%. Weber et al. (2008) also found that most of China’s recent export emissions went to developed countries, approximately 27% of the United States, 19% of the EU-27, and 14% of the remaining Annex B countries, mainly Japan and Australia. And New Zealand. Recently, Xu et al. (2009) studied the impact of energy consumption and exhaust emissions on the environment. From 2002 to 2007, the use of environmental input-output analysis and adjustment of bilateral trade data reflected trade in the East (from China to the United States). Zhang (2009) has also obtained similar results. Energy and CO2 account for about 12% and 17% of China's energy consumption, and China's CO2 emissions are 8% and 12%, respectively.Although China's international trade is a meaningful research on carbon emissions, further related research is necessary because of the rapid development of China's foreign trade, especially the development of processing trade. According to statistics (National Bureau of Statistics, 2008), the export share of processing trade has been more than 50% of total exports since 1996. In 2002 and 2007, the share of processing trade reached 55.26% and 50.71%, which will be processing trade. Thenecessary distinction between the impact of general trade and China's carbon emissions.Since China's input-output table is only 5 years, we have chosen from 2002 (entry to the WTO) to 2007 (the latest issue), and China's international trade input-output table has impact on carbon emissions with the view of the last requirement of this paper. Influence changes. In addition, we distinguish between domestic processing trade and import investment in the assessment of production processes (import emissions and re-exports), which will help us to further understand the impact of international trade on emissions status. In this study, we tried to answer three questions: 1) What is the net emissions generated by foreign trade in China as a big country's foreign trade? 2) China from 2002 to 2007, International How does trade affect carbon emissions? 3) From 2002 to 2007, which departments were the major emitters of China's import and export trade and their roles?Uncertainty in the calculation of carbon emissionsThe calculation of emissions from China's trade reflects a certain degree of uncertainty. One is that the input-output analysis itself has many inherent uncertainties (more discussion in Lenzen, 2001). Based on an input-output table for China's single region, it allows us to obtain a relatively accurate assessment of the emissions that are reflected in China's exports, but this error may be more pronounced when estimatingthe emissions of goods and services exported to China. (Lenzen , 2001; Lenzen et al., 2004). Another important factor of uncertainty is that the calculations come from different regions, which may underestimate the method of importing the carbon intensity factor that is reflected in the import of larger proportion of finished product producing countries and tertiary industries, and the smaller proportion of secondary industries. In addition, the method of pro-grade introduction of the column will inevitably result in some errors in order to obtain a matrix from the inlet of the original import and export table.At present, for reasons of data availability, we cannot fully quantify the accuracy of our calculations, but preliminary estimates suggest that the use of more accurate data results from research will not significantly change the conclusions of this analysis. These restrictions will be improved through the use of multi-zone import and export tables and out-of-zone more detailed industry carbon intensity and sector-to-sector production processes in the future for detailed analysis.Understand the impact of international trade on carbon emissions in ChinaFrom 2002 to 2007, the impact of foreign trade on China’s carbon emissions has greatly expanded. It may be largely related to two factors. The first is the coal-based energy consumption structure. The secondary industry-based production structure will maintain high domestic energyintensity. In 2002, the coal consumption exchange was only 66.3% of the total energy consumption. The 44.8% of China's gross domestic product (GDP) is due to the secondary industry in 2002 (National Bureau of Statistics, 2008). In 2007, related stock prices rose as high as 69.5% and 48.6%, respectively, which will lead to the fact that the unit exports are higher than the carbon emissions reflected in unit imports. The second factor, which may be a more important factor, is the rapid growth of export trade. From 2002 to 2007, China’s exports increased by 246.80%, while imports increased by 199.97% (National Bureau of Statistics, 2008). Export growth is significantly higher than imports, which may lead to a sharp increase in net exports. Decomposition analysis using input and output structures, Liu et al. (2010) also found that the total export expansion of export and energy-intensive products tends to expand, reflecting the export of energy from 1992 to 2005, but the improvement and change of energy efficiency in the primary energy consumption structure can offset part of the impact on export energy. The above driving force is implemented.Although, based on the coal-based energy consumption structure, the carbon dioxide emissions produced by the secondary industry-based production structure, the more important role, it may be difficult for China to adjust because of its endowment characteristics, and in a very short time Its structural characteristics and its current economicdevelop ment stage. In addition, the expansion of China’s foreign trade, including the expansion of the trade surplus, is mainly the result of the market economy’s maximizing its comparative advantage. The development-replacement of China's economy not only provided many of the world's goods and services, but also reduced the nation's production-based relative costs in developed countries. China’s foreign trade has always played an important role in the development of the world economy, due to its huge market, stable government system and abundant cheap labor. Therefore, it can be argued that at the current stage, for China's better methods to reduce the impact of international trade on national or global CO2 emissions should be to improve its production technology, reduce the intensity of energy consumption as a whole, not only to control China The amount of foreign trade. In addition, the imported goods from China should take part in China's carbon emission responsibilities, because the CON-consumer demand of foreign consumers has generated a large amount of China's carbon emissions, especially for consumers in developed countries.ConclusionDespite some uncertainties in this study, most areas produced from the details of the data, we can conclude that international trade has a significant impact on China's carbon emissions, and changed the impact of time on going. Compared with 2002 emissions, domestic exportemissions in 2007 increased from 267.07 MTC to 718.31 MTC, with a speed increase of over 160%; net exports also increased correspondingly, from 204.08 MTC up to 615.65 MTC, over 200% growth rate Now. From 23.97% in 2002, the share of domestic emissions from domestic emissions jumped to 34.76% in 2007. The share of pre-net transplants that exceeded domestic emissions also rose from 18.32% in 2002 to 29.79% in 2007. The results show that more and more significant net export behaviors of implied carbon emissions exist in China's economy and processing trade have more and more significant effects on carbon emissions.Regardless of the emissions of imported emissions or exports, most industries showed a growth trend in 2007. Compared with 2002, emissions although the sectoral emissions have changed for the entire economy from 2002 to 2002, The impact, of which the largest percentage of imported major department or China's export emissions remain unchanged. The largest import emissions (all or actual imports) come from the industries of electrical machinery and communications electronics, chemicals, smelting and rolling plus metals. Electrical machinery and communications electronics equipment, chemicals, textiles and other sectors are the largest emitters of exports, net exports of which are also the largest. Technological progress may be the most favorable and acceptable way for China and other developing countries toreduce their carbon emissions. Considering that the world’s largest carbon emissions and the recent increase in emissions are in developing countries, the historical responsibility for the current responsibilities, developed countries should also take more efforts to help developing countries reduce their carbon emissions. Economic growth through technical assistance And financial support. In the car's list of future emissions reductions, which include the total economic output, the carbon emissions reflected in international trade will be fair and reasonable.中文译文国际贸易对中国碳排放的影响: 一份具有经验性的分析作者:B Wei ,X Fang ,Y Wang摘要国际贸易是一个国家碳排放量重要的影响因素,自2002年加入世贸组织,中国对外贸易的快速发展对碳排放的影响越来越显著。

外文文献及翻译

外文文献及翻译

外文文献及翻译1. 文献:"The Effects of Exercise on Mental Health"翻译:运动对心理健康的影响Abstract: This article explores the effects of exercise on mental health. The author discusses various studies that have been conducted on this topic, and presents evidence to support the claim that exercise can have positive impacts on mental well-being. The article also examines the mechanisms through which exercise affects mental health, such as the release of endorphins and the reduction of stress hormones. Overall, the author concludes that exercise is an effective strategy for improving mental health and recommends incorporating physical activity into daily routines.摘要:本文探讨了运动对心理健康的影响。

作者讨论了在这个主题上进行的各种研究,并提出证据支持运动对心理健康有积极影响的观点。

该文章还探讨了运动如何影响心理健康的机制,如内啡肽的释放和压力激素的减少。

总的来说,作者得出结论,运动是改善心理健康的有效策略,并建议将体育活动纳入日常生活。

2. 文献: "The Benefits of Bilingualism"翻译:双语能力的好处Abstract: This paper examines the benefits of bilingualism. The author presents research findings that demonstrate the cognitiveadvantages of being bilingual, such as enhanced problem-solving skills and improved attention control. The article also explores the social and cultural benefits of bilingualism, such as increased cultural awareness and the ability to communicate with people from different backgrounds. Additionally, the author discusses the positive effects of bilingualism on mental health, highlighting its role in delaying the onset of cognitive decline and in providing a buffer against age-related memory loss. Overall, the author concludes that bilingualism offers a range of advantages and recommends promoting bilingual education and language learning. 摘要:本文研究了双语能力的好处。

外文文献翻译译稿

外文文献翻译译稿

外文文献翻译译稿1可用性和期望值来自Willliam S.Green, Patrick W.Jordan.产品的愉悦:超越可用性根据人机工程学会(HFES)的观点,人机工程学着眼于“发现和共享可用于各种系统和设备设计的、关于人的特点的知识”。

人们通常只是把它作为生物力学和人体测量所关注的内容,实际上它是从更广泛的意义上的一种对人(产品用户)的全面和综合的理解。

HFES从二战中有军方从事的系统分析中发展而来。

其中的三种主要研究的是人体测量、复杂信息的解释和管理,以及在部队和装备调配中应用的系统分析。

系统分析在尺度和复杂性方面跨度很大,大的系统分析有类似于诺曼底登陆准备的大型系统规划,小到去理解如何从合理性和规模的角度才最佳的布置和装备人员。

诺曼底登陆是20世纪最复杂的事件之一。

他要求建立一个在战斗开始之前还不确定的庞大的人员和物资的合理分配系统。

在更小的规模上,装备和军事人物的布置意味着如何去组织、训练和安排战士,最大限度的发挥他们的长处。

士兵必须迅速地接受训练,并且能够有效地使用和维护在二战中发展起来的一系列技术装备。

其中,对于飞行员、潜艇人员和坦克驾驶员有神采的限制。

复杂的新装备的开发要求找到最好的税收、密码便医院、破译人员、雷达和声纳操作员、轰炸机驾驶员和机组人员。

在战后,随着公司及其产品在尺度、领域和复杂性方面的增长,很多系统分析人员在商用领域找到了发展机会。

尽管是战后的发展才导致了1957年人机工程协会(HFES)的建立,但人机研究的起源可以追溯到大批量生产方式的成型阶段,是当时提高生产效率的要求。

随着工作方式从手工生产和农业生产中的转移,新的工厂工作的概念逐步发展起来。

福特的流水生产线和泰勒的效率理论开始对生产的规划和教育产生影响。

即使在家庭生活中,妇女们也开始接受了现代家庭管理理论,并运用这些理论来组织和规划家庭。

在20世纪末,一种涵盖面更广的人机工程正在发展之中。

新的人机工程学是为了适应已经被广泛意识到的对用户行为模式更深入的需求而诞生的,它开始应用定型研究方法,并探索人的情感和认知因素。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华北电力大学毕业设计(论文)附件外文文献翻译学号: 200701000324 姓名:杨曦所在院系:电力工程系专业班级:电气化0707指导教师:安勃原文标题: Research on Smart Grid in China2011年06月20日对中国智能电网的研究1摘要——智能电网是电力系统的未来发展的新方向。

在本文中,首先是智能电网的背景,意义,以及概念和结构。

典型的智能电网图如下所示.然后,在美国和欧洲智能电网的发展现状进行了描述,并对这些国家未来发展思路的趋势进行了总结和比较及分析。

此外,分析了中国智能电网发展的必要性,详细介绍了在目前与中国与有关项目,并对特高压电网和智能电网之间的的关系进行了讨论。

最后,对智能电网在未来在中国电网的潜在作用进行了展望和并为中国的智能电网发展指明新方向.索引词,智能电网,特高压电网,规划,经营,管理一导言随着世界经济全球化的推广,石油价格一直维持在一个上升的趋势。

还值得注意的是世界范围内的的能源供应短缺,对资源和环境的压力越来越大,同时,由于目前电网的低效率,在能源输送过程中损失了巨大的电力。

此外,由于不断增长的电力需求和用户对电力可靠性和质量日益增长的要求,电力工业正面临着前所未有的挑战和机遇。

因此,一个有环境友好,经济,高性能,低投资,安全性,可靠性和灵活性特点的的电力系统一直是电力工程师的目标。

尽管如此,基础设施和先进的仪表出现互联网更广泛地的使用加速了这个过程[1]。

自1990年以来随着分布式发电越来越多地使用,已经对对电网的强度提出更多的需求和要求[2][3]。

对于这些问题,为了找出最佳的解决方案,电力公司应接受新的思路,采用新技术,对现有的能源系统进行潜力挖掘,对技术和应用加以改进。

来自不同国家的学者和专家已经达成共识:未来电网的必须能够满足不同的需求及能源发电,高度市场化的电力交易的需求,由此可以满足客户的自我选择。

所有这些都将成为未来智能电网的发展方向。

本文的重点是智能电网发展的现状,分析了智能电网的驱动力和也介绍中国当前的示范项目。

它也讨论了特高压电网和智能电网关系,并展望了在将来智能电网的意义。

智能电网中发展的一个新方向也被描绘,这可以为中国的智能电网的发展提供参考。

二智能电网概念智能电网是一个渐进发展的过程,伴随着随着技术创新,节约能源的需求和管理层的需要。

每个人都会有自己对的智能电网的理解,不管他们是设施供应商,IT公司,咨询公司,公共权力公司或发电公司。

从早先的智能电表到智能计量,从1Jingjing Lu, Da Xie, Member, IEEE and Qian Ai, Member, IEEE输电和配电自动化到全智能化过程中,智能电网的概念得到了极大程度的丰富[4]。

2006年,美国IBM公司提出了“智能电网"解决方案。

这是一个目前相对完整的概念,表明了智能电网的正式诞生[5]。

如图1所示,智能电网基本上覆盖了与信息系统与物理电源系统链接的设备及多种资产连同传感器,形成一个客户服务平台.它允许公用事业及消费者不断监测和调整用电。

公司经营管理将根据用户方和供应方能需求动态分析的基础上更加智能化和科学化,从而由于投资效率提高和更严格的设计标准优化电网资产的使用。

与传统电网相比,智能电网包括综合通信系统,先进的传感,计量,测量基础设施,完全决策支持和人性化界面.三目前的研究活动A:比较欧洲和美国智能电网领域的研究,在美国,近几年有几个大的电力中断事故,因此电力行业自身更加重视电力质量和可靠性,客户制定出电力供应更多的请求。

不断增长的需求和国环保政策要求对电网的建设与管理提出更高标准[6]。

与此同时,近年来,对基础材料,电力和信息技术,对已取得突破,表现出了了显着改善的可靠性及在电力网络的效率。

例如超导电缆的出现,让奥巴马对美国新政府已经看到了的智能电网的希望。

同样,欧洲也对电力供应与电能质量提出更高要求[7]。

由于对环境保护的极端重视,相对于美国的权力电网建设,欧洲人对建设更多的关注可再生能源的取得,对野生动物的影响,以及积极研究实时监测和终端控制。

一切都即将以“即插即用使用”的理念,确保对电网更加友好,灵活的访问与用户互动。

在欧洲和美国,为电网的发展寻求新能源和可再生来源发电是最常见的方向.然而,智能电网不是一个固定的,静态的项目,根据其特殊的地位和存在的主要问题,所有国家都需要简化智能电网,并使其调整到适合自己的特点。

B中国的智能电网发展的驱动力智能电网建设的推动力可以总结为市场,环境,安全和电能质量。

中国的电力行业也面临着类似的情况在欧洲和美国:以市场为导向的改革层面上,国家级的网络和全国统一的电力市场尚未完全形成。

从长远看来,中国的电力市场交易方式和价格结构都在发展,市场需求和供给双方将有更频繁的互动。

为了吸引更多的用户加入市场竞争,电力公司要改善服务,加强互动,用户和提供更多的产品供选择,以满足不同类型的用户的需求。

在宏观政策层面,电力行业需求,满足资源节约型,要求环保社会的建设,适应气候变化,促进可持续发展。

中国电网没有建成一个强大后盾的网络,而且还不能够承受多种故障情况。

区域骨干电网也是这样,稳定在一个较低的水平,在一个有限的系统操作中缺乏灵活性。

2008年初雪沙尘暴天气,导致了中国生动地面积停电,暴露了目前中国电网的电力供应保障方面的弱点。

此外,智能电源区域性分布缺乏,导致季节性电力短缺和既盈共存一些地区的电力。

仍然存在挑战,如何提高效率的电力投资和建设,如何确保安全和电网的运行可靠性,保证电能质量,如何提高维护电力系统的能力,如何提高服务质量,以及如何改善中国电网管理,对于这些问题,智能电网将是一个理想的解决方案。

C.目前在中国的研究活动2006年,IBM公司公布了'建立智能电网和创新管理方法---——对电力发展的新思路中国'命名的关于中国电力发展的新思路。

当前的机遇和挑战下建议中国电网公司加强对智能电网的建设和管理方法的创新,提高投资效率和电网建设,电网的稳定性,公司的服务和管理水平。

同时,IBM提出,它可以提供一个计划—能源解决方案架构(SAFT理论)来帮助中国电力公司有效的使用智能电网。

SAFT理论包含几个部分:第一是改善连接的设备与传感器数字水平;二是建立数据收集和整合系统;三是分析:SAFT在优化经营上改善的和数据分析基础上的管理。

这是在中国智能电网的未来的希望。

2007年10月,华东电网公司进行了区域智能电网可行性的研究。

这个研究项目,不仅相关这些先进企业和国外设施研究的进展,而且还需要考虑到华东电网采取的现状和未来。

结果是,在装备水平和较强的高技术创新能力的基础上,在华东建设智能电网是可行的。

华东电网公司在智能电网的建设上格将遵循“关于与未来的需求和变化速度快,提供优质服务”的信念。

目前有一个三步战略,2010年之前建立一个先进的电网输配中心, 2020年前建设完成有一定智能的数字电网,到2030年一个具有自我修复能力的智能电网建成[7].项目建设计划仍在考虑中。

2009年2月28日,作为华东智能电网的一部分,稳定状态,瞬态状态和动态状态作为安全防御的三态的和发电监控系统在北京通过了验收。

该系统第一次同时将三个简单的系统统一,其中包括电源管理系统,电网动态监测系统和网络的稳定性分析和预警系统.系统可以获得电网整体观运营状况并在不改变系统或平台的情况下作出决策.此外,该系统通过建立检查的管理平台和市场服务质量分析平台,有效地提高了管理的规范化和相关电厂电流等级。

中国的智能电网发展缓慢,远远落后于西方。

到目前为止,只有华东电网公司,南方电网公司和华北电网公司开展有关的研究开发和实施计划。

中国向来强调技术的发展,而事实上,在中国的设备制造先进于发达国家.因此,智能电网在中国有一个光明的前景。

四发展展望中国智能电网为了解决资源分配和电力负荷发电失衡问题的,通过建设长途和大容量电力传输系统,输电能力应该得到加强。

整体或者联合的特高压电网建设应根据协调好的计划建设.从中国西部和北部向中国中部和东部地区可以大规模的电力传输,减少在中国东部的能源和环境保护压力。

与此同时可以加速从资源优势向挥经济优势优势的转变,实现民族经济的协调发展.中国政治制度,经济环境和管理制度同样促进发展特高压电网。

目前,中国在研究未来的大电网的技术并具有构建全国统一电网能力。

在2009年1月16日,在中国首个特高压电力线已经完成,并投入运行。

统一或联合特高压电网,分布式电源或分散供电电网的是发展的趋势.中国,作为统一或联合特高压电网发展的典范,不同于任何西方国家。

在中国,同时发展特高压电网和智能电网是否存在矛盾?虽然大电网联动效应具有优化资源的优势,但它具有在大面积停电的潜在危险。

能够控制大功率电网并保持保持稳定的能力,是电网快速发展的要求.而智能电网自我修复和高可靠性就满足这样的要求。

因此,建设特高压电网和同时发展不同等级的电网,并改善经营和电网管理水平智能电网是中国电网的方向。

根据特高压前提和背景在当前中国电力电网的发展,这方面应更加重视对如下:智能规划:电网应逐渐具有自愈和智能的能力。

电网规划能力应该得到加强。

所以在特高压交/直流馈入不同电压等级协调发展的前提下,增加电网接收端能力。

最重要的是要转变观念和电力规划方法,并提出在传统基础上有所行长的概念,比如把建设新的变电站作为一个资源广泛的概念分布的资源分配端 .智能操作:调度模式为了增强控制和掌控大功率电网,在向着协调控制方向发展。

未来的智能电网为改善现有的在一个完整系统内的发动机管理系统,集成电力系统,定位系统功能和性能同时追查不同的电网监测和控制指标的相关关系, 并建立一个逻辑结构为基础的电力系统监测和控制指标体系,应该与具有先进管理能力的控制中心相协调。

通过渐进的过程的动态安全实施监测,电力系统预报警处理和预控,可以获取更精确和全面的数据,在此基础上,采取符合电力系统控制和调度最有效和及时措施和行动,最后,提高保障整个电力系统的稳定和安全。

智能管理:电源管理模式系统正在经历一个从垂直模式到分布式模式,从职能管理到流程管理,从电网建设大盘同时建设和运作模式的演变。

五总结智能电网是当今电力系统中的热点,也算是21世纪科技创新与发展的主要方面之一。

世界上许多国家都参与了这个大趋势,并建立了大量的智能电网示范项目和测试平台.此外,理论研究也在智能电网和实验研究取得了一些成就。

国际交流,极大地促进了智能电网的发展。

由于中国的电力输送及分布极不均衡用电负荷,这是一个正确的时间来发展特别高电压电网。

智能电网在我们国家仍然处于起步阶段的,如何结合特高压电网与智能电网是面临的主要问题。

中国智能电网的发展和特点仍有待我们的专家学者进一步研究探索。

相关文档
最新文档