整式乘法公式与因式分解单元复习教案与反思

合集下载

42第14章整式的乘法与因式分解小结与复习教案

42第14章整式的乘法与因式分解小结与复习教案

A.±6 B.±12 C.±18 D.±72
9.若 a+b=5,ab=3,则 2a2+2b2=_____.
10.计算:
(1)(x+2y)(x2-4y2)(x-2y); (2)(a+b-3)(a-b+3); (3)(3x-2y)2(3x+2y)2
解:(1)原式=(x+2y)(x-2y)(x2-4y2)=(x2-4y2)2=x4-8x2y2+16y4
A.2a3÷a=2a2
B.(-a3)2=a6
C.a4·a3=a7
D.a2·a4=a8
2.计算:0.252025×(-4)2025-8100×0.5301
解:原式=[0.25×(-4)]2025-(23)100×0.5300×0.5
=(-1)2025-(2×0.5)300×0.5
=-1-0.5
=-1.5 3.(1)已知 3m=6,9n=2,求 3m+2n,32m-4n 的值.(2)比较大小:420 与 1510. 解:(1)∵ 3m=6,9n=2
第 14 章整式的乘法与因式分解小结与复习
一、教学目标 (一)知识与技能:记住整式乘除的计算法则,平方差公式和完全平方公式,掌握因式分解的 方法和则. (二)过程与方法:会运用法则进行整式的乘除运算,会对一个多项式分解因式. (三)情感态度与价值观:培养学生的独立思考能力和合作交流意识. 二、教学重点、难点 重点:记住公式及法则. 难点:会运用法则进行整式乘除运算,会对一个多项式进行因式分解. 三、教学过程 知识梳理 一、幂的乘法运算 1.同底数幂的乘法:底数_____,指数_____. am·an =______. 2.幂的乘方:底数_____,指数_____.(am)n=______. 3.积的乘方:积的每一个因式分别_____,再把所得的幂_____.(ab)n=______. 二、整式的乘法 1.单项式乘单项式: (1)将______________相乘作为积的系数; (2)相同字母的因式,利用__________的乘法,作为积的一个因式; (3)单独出现的字母,连同它的______,作为积的一个因式. 注:单项式乘单项式,积为________. 2.单项式乘多项式: (1)单项式分别______多项式的每一项; (2)将所得的积______. 注:单项式乘多项式,积为多项式,项数与原多项式的项数______. 3.多项式乘多项式: 先用一个多项式的每一项分别乘另一个多项式的______,再把所得的积______. 三、整式的除法 1.同底数幂的除法: 同底数幂相除:底数_____,指数_____. am÷an=______. 任何不等于 0 的数的 0 次幂都等于 1. a0=am÷am=1. 三、整式的除法 2.单项式除以单项式: 单项式相除,把______、____________分别相除后,作为商的因式;对于只在被除式里含有 的字母,则连它的_______一起作为商的一个因式. 3.多项式除以单项式: 多项式除以单项式,就是用多项式的________除以这个________,再把所得的商______. 四、乘法公式 1.平方差公式: 两个数的和与这两个数的差的积,等于这两个数的平方差. (a+b)(a-b)=a2-b2 2.完全平方公式: 两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的 2 倍.

整式乘法与因式分解综合复习个性化教案

整式乘法与因式分解综合复习个性化教案

整式乘法与因式分解综合复习个性化教案一、教学目标1. 知识与技能:(1)理解整式乘法的概念和方法,掌握多项式乘多项式的法则;(2)掌握因式分解的概念和方法,能够运用提公因式法和公式法进行因式分解;(3)能够运用整式乘法和因式分解解决实际问题。

2. 过程与方法:(1)通过自主学习、合作探讨的方式,提高整式乘法和因式分解的能力;(2)培养学生的逻辑思维能力和解决问题的能力。

3. 情感态度与价值观:(1)激发学生对数学的兴趣,培养积极的学习态度;(2)培养学生勇于探索、合作交流的精神。

二、教学内容1. 整式乘法:(1)多项式乘多项式的法则;(2)单项式乘多项式的法则。

2. 因式分解:(1)提公因式法;(2)公式法。

三、教学重点与难点1. 教学重点:(1)整式乘法的法则;(2)因式分解的方法。

2. 教学难点:(1)整式乘法中的混合运算;(2)因式分解中的公式法的运用。

四、教学方法1. 自主学习:引导学生独立完成相关练习,提高自主学习的能力;2. 合作探讨:分组讨论,共同解决问题,培养合作精神;3. 案例分析:通过具体案例,让学生学会运用整式乘法和因式分解解决实际问题。

五、教学过程1. 导入:(1)复习整式乘法的基本概念和方法;(2)复习因式分解的基本概念和方法。

2. 新课讲解:(1)讲解整式乘法的法则,举例说明;(2)讲解因式分解的方法,举例说明。

3. 练习与讨论:(1)布置相关练习题,让学生独立完成;(2)分组讨论,共同解决问题。

4. 案例分析:(1)给出具体案例,让学生运用整式乘法和因式分解解决;(2)分析解题过程,总结经验。

5. 课堂小结:(1)总结整式乘法的法则和注意事项;(2)总结因式分解的方法和注意事项。

6. 课后作业:(1)布置适量作业,巩固所学知识;(2)鼓励学生进行自主学习,提高能力。

六、教学评估1. 课堂问答:通过提问的方式,了解学生对整式乘法和因式分解的理解程度;2. 练习批改:对学生的练习作业进行批改,分析学生的掌握情况;3. 课后反馈:收集学生的课后反馈,了解教学效果。

整式的乘除与因式分解全单元的教案范文

整式的乘除与因式分解全单元的教案范文

整式的乘除与因式分解全单元的教案范文一、教学目标:1. 知识与技能:(1)理解整式的乘除概念,掌握整式乘除的运算方法;(2)掌握因式分解的方法,能够对简单的一元二次方程进行因式分解。

2. 过程与方法:(1)通过实例演示和练习,培养学生的运算能力;(2)通过小组讨论和探究,培养学生合作解决问题的能力。

3. 情感态度与价值观:(1)培养学生对数学学科的兴趣;(2)培养学生勇于探索、积极思考的科学精神。

二、教学内容:1. 整式的乘法:(1)单项式乘以单项式;(2)单项式乘以多项式;(3)多项式乘以多项式。

2. 整式的除法:(1)单项式除以单项式;(2)多项式除以单项式。

3. 因式分解:(1)提取公因式法;(2)十字相乘法;(3)公式法。

三、教学重点与难点:1. 教学重点:(1)整式的乘除运算方法;(2)因式分解的方法及应用。

2. 教学难点:(1)整式乘除中的复杂运算;(2)因式分解中的技巧与策略。

四、教学过程:1. 导入:通过复习相关概念,引导学生进入整式乘除与因式分解的学习。

2. 教学新课:(1)整式的乘法:通过具体例子,讲解单项式乘以单项式、单项式乘以多项式、多项式乘以多项式的运算方法;(2)整式的除法:通过具体例子,讲解单项式除以单项式、多项式除以单项式的运算方法;(3)因式分解:讲解提取公因式法、十字相乘法、公式法的运用。

3. 课堂练习:布置练习题,让学生巩固所学内容。

4. 总结与拓展:总结整式乘除与因式分解的关键点,引导学生思考如何解决实际问题。

五、课后作业:1. 完成练习册的相关题目;2. 选取一道复杂的整式乘除或因式分解题目,进行深入研究和分析。

六、教学策略与方法:1. 采用问题驱动法,引导学生主动探究整式乘除与因式分解的方法;2. 利用多媒体课件,展示整式乘除与因式分解的运算过程,增强学生的直观感受;3. 设计具有梯度的练习题,让学生在实践中巩固知识,提高运算能力;4. 组织小组讨论,鼓励学生分享解题心得,培养合作精神。

整式的乘除与因式分解全单元的教案范文

整式的乘除与因式分解全单元的教案范文

整式的乘除与因式分解全单元的教案范文一、教学目标1. 理解整式的乘除运算规则,能够熟练进行整式的乘除计算。

2. 掌握因式分解的基本方法,能够将多项式正确地进行因式分解。

3. 培养学生的逻辑思维能力和解决问题的能力。

二、教学内容1. 整式的乘法:多项式乘以多项式,多项式乘以单项式,单项式乘以单项式。

2. 整式的除法:多项式除以多项式,多项式除以单项式,单项式除以单项式。

3. 因式分解:提取公因式法,十字相乘法,公式法。

三、教学重点与难点1. 教学重点:整式的乘除运算规则,因式分解的方法。

2. 教学难点:因式分解中的提取公因式法和十字相乘法的运用。

四、教学方法1. 采用讲解法、示范法、练习法、讨论法等教学方法,引导学生理解和掌握整式的乘除与因式分解。

2. 通过例题讲解和练习题的训练,提高学生的计算能力和解决问题的能力。

五、教学准备1. 教案、PPT、教学素材。

2. 练习题、测试题。

3. 教学设备:投影仪、电脑等。

教案第一课时:整式的乘法1. 导入:引导学生回顾单项式和多项式的概念,为新课的学习打下基础。

2. 讲解:讲解整式乘法的基本规则,举例说明多项式乘以多项式、多项式乘以单项式、单项式乘以单项式的计算方法。

3. 示范:教师示范计算过程,引导学生跟随老师一起动手操作。

4. 练习:学生独立完成练习题,教师巡回指导。

第二课时:整式的除法1. 导入:回顾上节课的内容,引出整式除法的概念。

2. 讲解:讲解整式除法的基本规则,举例说明多项式除以多项式、多项式除以单项式、单项式除以单项式的计算方法。

3. 示范:教师示范计算过程,引导学生跟随老师一起动手操作。

4. 练习:学生独立完成练习题,教师巡回指导。

第三课时:提取公因式法1. 导入:引导学生发现多项式中的公因式,引出提取公因式法。

2. 讲解:讲解提取公因式法的步骤和注意事项。

3. 示范:教师示范提取公因式的过程,引导学生跟随老师一起动手操作。

4. 练习:学生独立完成练习题,教师巡回指导。

初中数学教案整式的乘法与因式分解

初中数学教案整式的乘法与因式分解

初中数学教案整式的乘法与因式分解初中数学教案整式的乘法与因式分解一、知识导入整式是由系数与字母的乘积通过加法与减法相连接而成的代数式。

在此之前,我们先来复习一下整数、变量与字母的概念。

1. 整数:自然数、零和负整数的统称,用符号表示,例如-3,-2,0,1,2等。

2. 变量:用字母表示的数,表示一个未知数或可变化的数。

例如,x,y,a,b等。

3. 字母:用来表示数的符号。

二、整式的乘法整式的乘法是将两个或多个整式通过乘法运算相乘得到的结果。

在乘法运算中,我们需要注意如下几点:1. 乘法法则:同底数幂相乘,底数相同,则幂相加,系数相乘。

例如:(2x^2)(3x^3) = 6x^(2+3) = 6x^52. 使用分配律:整式乘以整数时,可以将整数分别乘以整式的各项,再把乘积相加。

例如:3x(2x+5y) = 6x^2 + 15xy三、因式分解因式分解是将整式表示为若干个因式相乘的形式。

通过因式分解,可以简化整式的计算与运算,并深入理解整式的结构与特点。

1. 提取公因式:将整式中的公因式提取出来,从而简化整式。

例如:2x^2 + 4xy = 2x(x + 2y)2. 利用分配律:将整式中的公因式与剩余部分进行因式分解。

例如:2x(x + 2y) = 2x^2 + 4xy3. 完全平方公式:对于形如(a+b)^2或(a-b)^2的整式,可以利用完全平方公式进行因式分解。

例如:x^2 - 4 = (x+2)(x-2)4. 平方差公式:对于形如a^2 - b^2的整式,可以利用平方差公式进行因式分解。

例如:x^2 - 4 = (x+2)(x-2)四、练习与拓展请同学们根据以下问题进行练习与拓展,加深对整式的乘法与因式分解的理解:1. 计算以下整式的乘积:(2x+3y)(4x-5y)2. 计算以下整式的乘积:(a+b)^23. 将以下整式进行因式分解:3x^2 + 6xy4. 将以下整式进行因式分解:2x^2 - 185. 利用因式分解计算以下整式:6x(x+2y) - 3(x+2y)6. 将以下整式进行因式分解:x^2 + 10x + 25五、总结与反思通过本节课的学习,我们掌握了整式的乘法与因式分解的基本方法与技巧。

整式的乘除与因式分解全单元的教案范文

整式的乘除与因式分解全单元的教案范文

整式的乘除与因式分解全单元的教案范文第一章:整式的乘法1.1 教学目标理解整式乘法的基本概念掌握整式乘法的基本法则能够正确进行整式乘法运算1.2 教学内容整式乘法的定义和基本概念整式乘法的基本法则整式乘法的运算步骤1.3 教学方法通过示例和练习,让学生理解整式乘法的概念和法则使用多媒体教学工具,展示整式乘法的运算过程提供充足的练习机会,让学生巩固整式乘法的运算技巧1.4 教学评估通过课堂练习和作业,检查学生对整式乘法的理解和掌握程度设计一些综合性的题目,评估学生对整式乘法的应用能力第二章:整式的除法2.1 教学目标理解整式除法的基本概念掌握整式除法的基本法则能够正确进行整式除法运算2.2 教学内容整式除法的定义和基本概念整式除法的基本法则整式除法的运算步骤2.3 教学方法通过示例和练习,让学生理解整式除法的概念和法则使用多媒体教学工具,展示整式除法的运算过程提供充足的练习机会,让学生巩固整式除法的运算技巧2.4 教学评估通过课堂练习和作业,检查学生对整式除法的理解和掌握程度设计一些综合性的题目,评估学生对整式除法的应用能力第三章:因式分解3.1 教学目标理解因式分解的基本概念掌握因式分解的基本方法能够正确进行因式分解运算3.2 教学内容因式分解的定义和基本概念因式分解的基本方法因式分解的运算步骤3.3 教学方法通过示例和练习,让学生理解因式分解的概念和法则使用多媒体教学工具,展示因式分解的运算过程提供充足的练习机会,让学生巩固因式分解的运算技巧3.4 教学评估通过课堂练习和作业,检查学生对因式分解的理解和掌握程度设计一些综合性的题目,评估学生对因式分解的应用能力第四章:多项式的乘法4.1 教学目标理解多项式乘法的基本概念掌握多项式乘法的基本法则能够正确进行多项式乘法运算4.2 教学内容多项式乘法的定义和基本概念多项式乘法的基本法则多项式乘法的运算步骤4.3 教学方法通过示例和练习,让学生理解多项式乘法的概念和法则使用多媒体教学工具,展示多项式乘法的运算过程提供充足的练习机会,让学生巩固多项式乘法的运算技巧4.4 教学评估通过课堂练习和作业,检查学生对多项式乘法的理解和掌握程度设计一些综合性的题目,评估学生对多项式乘法的应用能力第五章:多项式的除法5.1 教学目标理解多项式除法的基本概念掌握多项式除法的基本法则能够正确进行多项式除法运算5.2 教学内容多项式除法的定义和基本概念多项式除法的基本法则多项式除法的运算步骤5.3 教学方法通过示例和练习,让学生理解多项式除法的概念和法则使用多媒体教学工具,展示多项式除法的运算过程提供充足的练习机会,让学生巩固多项式除法的运算技巧5.4 教学评估通过课堂练习和作业,检查学生对多项式除法的理解和掌握程度设计一些综合性的题目,评估学生对多项式除法的应用能力第六章:平方差公式与完全平方公式6.1 教学目标理解平方差公式和完全平方公式的基本概念掌握平方差公式和完全平方公式的运用能够运用平方差公式和完全平方公式进行整式的运算6.2 教学内容平方差公式的定义和基本概念完全平方公式的定义和基本概念平方差公式和完全平方公式的运用6.3 教学方法通过示例和练习,让学生理解平方差公式和完全平方公式的概念使用多媒体教学工具,展示平方差公式和完全平方公式的运用过程提供充足的练习机会,让学生巩固平方差公式和完全平方公式的运用技巧6.4 教学评估通过课堂练习和作业,检查学生对平方差公式和完全平方公式的理解和掌握程度设计一些综合性的题目,评估学生对平方差公式和完全平方公式的应用能力第七章:分式的乘除法7.1 教学目标理解分式乘除法的基本概念掌握分式乘除法的运算方法能够正确进行分式乘除法的运算7.2 教学内容分式乘除法的定义和基本概念分式乘除法的运算方法分式乘除法的运算步骤7.3 教学方法通过示例和练习,让学生理解分式乘除法的概念和方法使用多媒体教学工具,展示分式乘除法的运算过程提供充足的练习机会,让学生巩固分式乘除法的运算技巧7.4 教学评估通过课堂练习和作业,检查学生对分式乘除法的理解和掌握程度设计一些综合性的题目,评估学生对分式乘除法的应用能力第八章:分式的化简与分解8.1 教学目标理解分式化简与分解的基本概念掌握分式化简与分解的方法能够正确进行分式的化简与分解运算8.2 教学内容分式化简与分解的定义和基本概念分式化简与分解的方法分式化简与分解的运算步骤8.3 教学方法通过示例和练习,让学生理解分式化简与分解的概念和方法使用多媒体教学工具,展示分式化简与分解的运算过程提供充足的练习机会,让学生巩固分式化简与分解的运算技巧8.4 教学评估通过课堂练习和作业,检查学生对分式化简与分解的理解和掌握程度设计一些综合性的题目,评估学生对分式化简与分解的应用能力第九章:整式与分式的综合应用9.1 教学目标理解整式与分式的综合应用的基本概念掌握整式与分式的综合应用的方法能够正确进行整式与分式的综合应用运算9.2 教学内容整式与分式的综合应用的定义和基本概念整式与分式的综合应用的方法整式与分式的综合应用的运算步骤9.3 教学方法通过示例和练习,让学生理解整式与分式的综合应用的概念和方法使用多媒体教学工具,展示整式与分式的综合应用的运算过程提供充足的练习机会,让学生巩固整式与分式的综合应用的运算技巧9.4 教学评估通过课堂练习和作业,检查学生对整式与分式的综合应用的理解和掌握程度设计一些综合性的题目,评估学生对整式与分式的综合应用的应用能力第十章:复习与提高10.1 教学目标巩固本单元所学知识提高学生解决实际问题的能力培养学生的数学思维和综合运用能力10.2 教学内容复习整式、分式的乘除法、因式分解、平方差公式、完全平方公式等基本概念和运算方法通过实际问题,引导学生运用所学知识解决实际问题总结本单元的重点知识和难点知识10.3 教学方法通过练习题和实际问题,让学生巩固所学知识使用多媒体教学工具,展示实际问题的解决过程组织小组讨论,培养学生的合作学习和解决问题的能力10.4 教学评估通过课堂练习和作业,检查学生对复习内容的掌握程度设计一些综合性的题目重点解析本文全面介绍了整式的乘除法、因式分解、平方差公式、完全平方公式、分式的乘除法、分式的化简与分解、整式与分式的综合应用等基本概念、运算方法和实际应用。

整式乘除与因式分解复习教案

整式乘除与因式分解复习教案

整式乘除与因式分解复习教案第一篇:整式乘除与因式分解复习教案整式的乘除与因式分解复习菱湖五中教学内容复习整式乘除的基本运算规律和法则,因式分解的概念、方法以及两者之间的关系。

通过练习,熟悉常规题型的运算,并能灵活运用。

教学目标通过知识的梳理和题型训练,提高学生观察、分析、推导能力,培养学生运用数学知识解决问题的意识。

教学分析重点根据新课标要求,整式的乘除运算法则与方法和因式分解的方法与应用是本课重点。

难点整式的除法与因式分解的应用是本课难点。

教学方法与手段采用多媒体课件,由于本课内容较多,故设计了大量的练习,使学生理解各种类型的运算方法。

本课教学以练习为主。

教学过程一.回顾知识点(一)整式的乘法1、同底数的幂相乘2、幂的乘方3、积的乘方4、同底数的幂相除5、单项式乘以单项式6、单项式乘以多项式7、多项式乘以多项式8、平方差公式9、完全平方公式(二)整式的除法1、单项式除以单项式2、多项式除以单项式(三)因式分解1、因式分解的概念2、因式分解与整式乘法的关系3、因式分解的方法4、因式分解的应用二.练习巩固(一)单项式乘单项式(1)(5x3)⋅(-2x2y),(2)(-3ab)2⋅(-4b3)(3)(-am)2b⋅(-a3b2n),231(4)(-a2bc3)⋅(-c5)⋅(ab2c)343(二)单项式与多项式的乘法(1)(-2a)⋅(x+2y-3c),(2)(x+2)(y+3)-(x+1)(y-2)(3)(x+y)(-2x-1y)2(三)乘法公式应用(1)(-6x+y)(-6x-y)(2)(x+4y)(x-9y)(3)(3x+7y)(-3x-7y)(四)整式的除法1(1)(-a6b4c)÷((2a3c)41(2)6(a-b)5÷[(a-b)2]3(3)(5x2y3-4x3y2 +6x)÷(6x)13(4)x3my2n-x2m-1y2+x2m+1y3)÷(-0.5x2m-1y2)3 4(五)提取公因式法因式分解(1)3ay-3by+3y(2)-4a3b2+6a2b-2ab(3)3(x-y)3-6(x-y)2(4)5m(a-b)4-4m2(b-a)3(六)乘法公式因式分解(1)25-16x2(2)-81x2+4(y-1)2(3)x2-14x+49(4)(x+y)2-6(x+y)+9(七)因式分解的应用1、解方程(1)9x2+4x=0(2)x2=(2x-5)22、计算(1)(2mp-3mq+4mr)÷(2p-3q+4r)(2)(16-x4)÷(4+x2)÷(x-2)探究活动:求满足4x2-9y2=31的正整数解。

整式的乘法与因式分解全章教案

整式的乘法与因式分解全章教案

整式的乘法与因式分解全章教案一、教学目标:1. 理解整式乘法的基本概念和方法,能够熟练进行整式的乘法运算。

2. 掌握因式分解的基本原理和方法,能够对简单的一元二次方程进行因式分解。

3. 能够应用整式的乘法与因式分解解决实际问题。

二、教学内容:1. 整式乘法的基本概念和方法。

2. 整式乘法的运算规则。

3. 因式分解的基本原理和方法。

4. 因式分解的运算规则。

5. 应用整式的乘法与因式分解解决实际问题。

三、教学重点与难点:1. 整式乘法的运算规则。

2. 因式分解的方法和技巧。

3. 应用整式的乘法与因式分解解决实际问题。

四、教学方法:1. 采用讲解法,讲解整式乘法与因式分解的基本概念和方法。

2. 采用示范法,示范整式乘法与因式分解的运算过程。

3. 采用练习法,让学生通过练习来巩固所学知识。

4. 采用问题解决法,引导学生应用整式的乘法与因式分解解决实际问题。

五、教学准备:1. 教案、教材、PPT等教学资源。

2. 练习题、测试题等教学资料。

3. 教学黑板、粉笔等教学工具。

4. 投影仪、电脑等教学设备。

六、教学进程:1. 导入:通过复习整式的加减法,引出整式乘法的重要性,激发学生的学习兴趣。

2. 讲解:讲解整式乘法的基本概念和方法,重点讲解运算规则。

3. 示范:示范整式乘法的运算过程,让学生理解并掌握运算规则。

4. 练习:布置练习题,让学生通过练习巩固所学知识。

5. 总结:对本节课的内容进行总结,强调整式乘法的重要性。

七、作业布置:1. 完成练习题,巩固整式乘法的运算规则。

2. 预习下一节课的内容,为学习因式分解做准备。

八、课堂反馈:1. 课堂提问:通过提问了解学生对整式乘法的掌握情况。

2. 练习批改:及时批改学生的练习题,指出错误并给予讲解。

3. 学生反馈:听取学生的意见和建议,调整教学方法。

九、课后反思:1. 总结本节课的教学效果,反思教学方法的优缺点。

2. 根据学生的反馈,调整教学策略,提高教学质量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:《整式乘法公式与因式分解单元复习》教学设计
知识与技能:理解乘法公式、因式分解。

能熟练利用乘法公式进行整式的乘法运算和因式分解,并能够应用所学的知识解决一些数学问题。

过程与方法:经历进一步学习整式的乘法公式和因式分解的过程,体会两个互逆运算之间的转换关系。

通过学生自主学习和课堂讨论,培养学生的独立思考能力
和合作交流意识。

情感态度与价值观:通过本节教学,逐步培养学生的独立思考能力和合作交流意识
教学重点:理解乘法公式与分解因式的基础上,提高分析能力和解决问题的能力
教学难点:会运用乘法公式进行整式乘法运算,会对一个多项式进行因式分解
教学过程:
一、知识重现(理解和应用)
(一)乘法公式:
平方差公式:(a+b)(a-b)=a2-b2
完全平方公式:(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2
一次项系数为1的一次二项式乘法公式:(x+a)(x+b)=x2+(a+b)x+ab
基础训练(看看你忘记了吗?):
1、下列各式中,相等关系一定成立的是( )
A.(x+y)2=x2+y2
B.(x+6)(x-6)=x2-6
C. (-4a-1)(4a-1)=1-16a2
D. (x-2y)2=x2-2xy+4y2
2、如果(x-2)(x-3)=x2+px+q,那么p,q的值是 ( )
A.p=-5,q=6 B.p=1,q=-6 C.p=1,q=6 D.p=5,q=-6
典型例题:
例1、化简:()()()n
m
n
m
n
m-
+
-
-2
(二)分解因式
(1)概念:把一个多项式化成几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式
(2)分解因式的方法:①提公因式法:ma+mb+mc=m(a+b+c)
②公式法:平方差公式:a2-b2=(a+b)(a-b)
完全平方公式:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2
③简单的十字相乘法:x2+px+q=(x+a)(x+b)
④简单的分组分解法:
(3)因式分解与整式乘法的关系:
基础训练(看看你忘记了吗?)
3、下列从左到右的变形是因式分解的是 ( )
A .ma +mb -c =m (a +b )-c
B .(a -b )(a 2+ab +b 2)=a 3-b 3
C .a 2-4ab +4b 2-1=a (a -4b )+(2b +1)(2b -1)
D .4x 2-25y 2=(2x +5y )(2x -5y )
4、因式分解 2x 2-4xy -2x = _______(x -2y -1)
5、下列各式中,能用平方差公式分解因式的是 ( )
A .a 3-b 3
B .-a 2-b 2
C .a 2+b 2
D .-a 2+b 2
6、因式分解:25m 2-10mn +n 2=
7、多项式x 2+kx+25是另一个多项式的平方,则k= .
典型例题:
例2、把下列多项式因式分解:
(1)x 4-36 (2)4x 3y+4x 2y 2+xy 3 (教材八上P40)
(3)1282+-x x (4)x 2+6x+9-y 2
变式练习(相信你自己):
8、化简: 2
22
222b a b ab a ab a b a -+-÷+-
例3、已知a 2+b 2-6a -10b+34=0,且c=4,问以a 、b 、c 为三边三角形是什么形状的三角形。

并说明理由。

巩固应用:(体验中考)
9、(2013乐山).把多项式分解因式:ax 2-ay 2=
10、(2010乐山)下列因式分解:①324(4)x x x x -=-;②232(2)(1)a a a a -+=--;③222(2)2a a a a --=--;④2211()42
x x x ++=+.其中正确的是_______.(只填序号) 11、(2009乐山变式)若实数x y 、满足26190x x x y ++-++=.求代数式
(-2x -y)(2x -y)的值.(要求对代数式先化简,再求值.)
四、小结:①重点内容: ②数学思想:
五、分层布置作业:
A 组:12、化简(1)(x -5)(x+5) (2)(x - 2y)2 (3)(a -5)(a+2)
13、因式分解:(1)x 2-36 (2)a 2-8a+16
B 组12、已知,10,3022=-=-n m n m 则=+n m
13、已知:x 2-3xy-10y 2=0,则
=y x 14、已知:3=+b a ,则 222
121b ab a ++= 15、(2011乐山)若m 为正实数,且13m m -=,221m m
-则= 16、已知:(a 2+b 2)2-(a 2+b 2)-12=0,则a 2+b 2=
17、(-2)2013+(-2)2014等于( )
A 、-22013
B 、22012
C 、22013
D 、22014
18、(2011峨眉二调)已知:n m n m ≠>>,0,0,试比较分式2n m +与分式n
m mn +2的大小 六、教学反思:
1、本节课容量大,内容多,使得时间安排很紧凑,节凑较快;
2、选题精,例题典型,基础面向全体学生;难度高的对于优生较适当;
3、对于复习巩固的7个练习题,可以适当做一定的删减第5题,以期达到更好的效果;
4、在教学过程中,对于少数的题的讲评可以放手让学生自己独立完成,老师做适当的点评即可;
5、对于例3,应当进一步的培养学生阅读题的能力,在提示时紧紧抓住根号的用处,它与非负数的联系,从而得到化为非负数解题,然后再对34进行折项,即可解出a 、b 值,从另一方面抓住三角形的形状,无非是直角三角形、等腰或等边三角形,把a 、b 、c 的数值再联系起来,与勾股定理的逆定理有关,就完成了这个题的解。

6、针对本节内容在中考中的地位与作用,选题针对考点,具有针对性。

7、讲练结合,对知识点的过手能力强。

相关文档
最新文档