北航数值分析1_Jacobi法计算矩阵特征值
北航研究生数值分析作业第一题

北航研究⽣数值分析作业第⼀题北航研究⽣数值分析作业第⼀题:⼀、算法设计⽅案1.要求计算矩阵的最⼤最⼩特征值,通过幂法求得模最⼤的特征值,进⾏⼀定判断即得所求结果;2.求解与给定数值接近的特征值,可以该数做漂移量,新数组特征值倒数的绝对值满⾜反幂法的要求,故通过反幂法即可求得;3.反幂法计算时需要⽅程求解中间过渡向量,需设计Doolite分解求解;4.|A|=|B||C|,故要求解矩阵的秩,只需将Doolite分解后的U矩阵的对⾓线相乘即为矩阵的Det。
算法编译环境:vlsual c++6.0需要编译函数:幂法,反幂法,Doolite分解及⽅程的求解⼆、源程序如下:#include#include#include#includeint Max(int value1,int value2);int Min(int value1,int value2);void Transform(double A[5][501]);double mifa(double A[5][501]);void daizhuangdoolite(double A[5][501],double x[501],double b[501]); double fanmifa(double A[5][501]); double Det(double A[5][501]);/***定义2个判断⼤⼩的函数,便于以后调⽤***/int Max(int value1,int value2){return((value1>value2)?value1:value2);}int Min(int value1,int value2){return ((value1}/*****************************************//***将矩阵值转存在⼀个数组⾥,节省空间***/void Transform(double A[5][501],double b,double c){int i=0,j=0;A[i][j]=0,A[i][j+1]=0;for(j=2;j<=500;j++)A[i][j]=c;i++;j=0;A[i][j]=0;for(j=1;j<=500;j++)A[i][j]=b;i++;for(j=0;j<=500;j++)A[i][j]=(1.64-0.024*(j+1))*sin(0.2*(j+1))-0.64*exp(0.1/(j+1)); i++;for(j=0;j<=499;j++)A[i][j]=b;A[i][j]=0;i++;for(j=0;j<=498;j++)A[i][j]=c;A[i][j]=0,A[i][j+1]=0;}/***转存结束***///⽤于求解模最⼤的特征值,幂法double mifa(double A[5][501]){int s=2,r=2,m=0,i,j;double b2,b1=0,sum,u[501],y[501];for (i=0;i<=500;i++){u[i] = 1.0;}do{sum=0;if(m!=0)b1=b2;m++;for(i=0;i<=500;i++)sum+=u[i]*u[i];for(i=0;i<=500;i++)y[i]=u[i]/sqrt(sum);for(i=0;i<=500;i++){u[i]=0;for(j=Max(i-r,0);j<=Min(i+s,500);j++)u[i]=u[i]+A[i-j+s][j]*y[j];}b2=0;for(i=0;i<=500;i++)b2=b2+y[i]*u[i];}while(fabs(b2-b1)/fabs(b2)>=exp(-12));return b2;}//带状DOOLITE分解,并且求解出⽅程组的解void daizhuangdoolite(double A[5][501],double x[501],double b[501]) { int i,j,k,t,s=2,r=2;double B[5][501],c[501];for(i=0;i<=4;i++){for(j=0;j<=500;j++)B[i][j]=A[i][j];}for(i=0;i<=500;i++)c[i]=b[i];for(k=0;k<=500;k++){for(j=k;j<=Min(k+s,500);j++){for(t=Max(0,Max(k-r,j-s));t<=k-1;t++)B[k-j+s][j]=B[k-j+s][j]-B[k-t+s][t]*B[t-j+s][j]; }for(i=k+1;i<=Min(k+r,500);i++){for(t=Max(0,Max(i-r,k-s));t<=k-1;t++)B[i-k+s][k]=B[i-k+s][k]-B[i-t+s][t]*B[t-k+s][k]; B[i-k+s][k]=B[i-k+s][k]/B[s][k];}}for(i=1;i<=500;i++)for(t=Max(0,i-r);t<=i-1;t++)c[i]=c[i]-B[i-t+s][t]*c[t];x[500]=c[500]/B[s][500];for(i=499;i>=0;i--){x[i]=c[i];for(t=i+1;t<=Min(i+s,500);t++)x[i]=x[i]-B[i-t+s][t]*x[t];x[i]=x[i]/B[s][i];}}//⽤于求解模最⼤的特征值,反幂法double fanmifa(double A[5][501]){int s=2,r=2,m=0,i;double b2,b1=0,sum=0,u[501],y[501];for (i=0;i<=500;i++){u[i] = 1.0;}do{if(m!=0)b1=b2;m++;sum=0;for(i=0;i<=500;i++)sum+=u[i]*u[i];for(i=0;i<=500;i++)y[i]=u[i]/sqrt(sum);daizhuangdoolite(A,u,y);b2=0;for(i=0;i<=500;i++)b2+=y[i]*u[i];}while(fabs(b2-b1)>=fabs(b1)*exp(-12));return 1/b2;}//⾏列式的LU分解,U的主线乘积即位矩阵的DET double Det(double A[5][501]) {int i,j,k,t,s=2,r=2;for(k=0;k<=500;k++){for(j=k;j<=Min(k+s,500);j++){for(t=Max(0,Max(k-r,j-s));t<=k-1;t++)A[k-j+s][j]=A[k-j+s][j]-A[k-t+s][t]*A[t-j+s][j];}for(i=k+1;i<=Min(k+r,500);i++){for(t=Max(0,Max(i-r,k-s));t<=k-1;t++)A[i-k+s][k]=A[i-k+s][k]-A[i-t+s][t]*A[t-k+s][k];A[i-k+s][k]=A[i-k+s][k]/A[s][k];}}double det=1;for(i=0;i<=500;i++)det*=A[s][i];return det;}void main(){double b=0.16,c=-0.064,p,q;int i,j;double A[5][501];Transform(A,b,c); //进⾏A的赋值cout.precision(12); //定义输出精度double lamda1,lamda501,lamdas;double k=mifa(A);if(k>0) //判断求得最⼤以及最⼩的特征值.如果K>0,则它为最⼤特征值值,//并以它为偏移量再⽤⼀次幂法求得新矩阵最⼤特征值,即为最⼤ //与最⼩的特征值的差{lamda501=k;for(i=0;i<=500;i++)A[2][i]=A[2][i]-k;lamda1=mifa(A)+lamda501;for(i=0;i<=500;i++)A[2][i]=A[2][i]+k;}else //如果K<=0,则它为最⼩特征值值,并以它为偏移量再⽤⼀次幂法//求得新矩阵最⼤特征值,即为最⼤与最⼩的特征值的差{lamda1=k;for(i=0;i<=500;i++)A[2][i]=A[2][i]-k;lamda501=mifa(A)+lamda1;for(i=0;i<=500;i++)A[2][i]=A[2][i]+k;}lamdas=fanmifa(A);FILE *fp=fopen("result.txt","w");fprintf(fp,"λ1=%.12e\n",lamda1);fprintf(fp,"λ501=%.12e\n",lamda501);fprintf(fp,"λs=%.12e\n\n",lamdas);fprintf(fp,"\t要求接近的值\t\t\t实际求得的特征值\n");for(i=1;i<=39;i++) //反幂法求得与给定值接近的特征值{p=lamda1+(i+1)*(lamda501-lamda1)/40;for(j=0;j<=500;j++)A[2][j]=A[2][j]-p;q=fanmifa(A)+p;for(j=0;j<=500;j++)A[2][j]=A[2][j]+p;fprintf(fp,"µ%d: %.12e λi%d: %.12e\n",i,p,i,q);}double cond=fabs(mifa(A)/fanmifa(A));double det=Det(A);fprintf(fp,"\ncond(A)=%.12e\n",cond);fprintf(fp,"\ndetA=%.12e\n",det);}三、程序运⾏结果λ1=-1.069936345952e+001λ501=9.722283648681e+000λs=-5.557989086521e-003要求接近的值实际求得的特征值µ1: -9.678281104107e+000 λi1: -9.585702058251e+000µ2: -9.167739926402e+000 λi2: -9.172672423948e+000µ3: -8.657198748697e+000 λi3: -8.652284007885e+000µ4: -8.146657570993e+000 λi4: -8.0934********e+000µ5: -7.636116393288e+000 λi5: -7.659405420574e+000µ6: -7.125575215583e+000 λi6: -7.119684646576e+000µ7: -6.615034037878e+000 λi7: -6.611764337314e+000µ8: -6.104492860173e+000 λi8: -6.0661********e+000µ9: -5.593951682468e+000 λi9: -5.585101045269e+000µ10: -5.0834********e+000 λi10: -5.114083539196e+000µ11: -4.572869327058e+000 λi11: -4.578872177367e+000µ12: -4.062328149353e+000 λi12: -4.096473385708e+000µ13: -3.551786971648e+000 λi13: -3.554211216942e+000µ14: -3.0412********e+000 λi14: -3.0410********e+000µ15: -2.530704616238e+000 λi15: -2.533970334136e+000µ16: -2.020*********e+000 λi16: -2.003230401311e+000µ17: -1.509622260828e+000 λi17: -1.503557606947e+000µ18: -9.990810831232e-001 λi18: -9.935585987809e-001µ19: -4.885399054182e-001 λi19: -4.870426734583e-001µ20: 2.200127228676e-002 λi20: 2.231736249587e-002µ21: 5.325424499917e-001 λi21: 5.324174742068e-001µ22: 1.043083627697e+000 λi22: 1.052898964020e+000µ23: 1.553624805402e+000 λi23: 1.589445977158e+000µ24: 2.064165983107e+000 λi24: 2.060330427561e+000µ25: 2.574707160812e+000 λi25: 2.558075576223e+000µ26: 3.0852********e+000 λi26: 3.080240508465e+000µ27: 3.595789516221e+000 λi27: 3.613620874136e+000µ28: 4.106330693926e+000 λi28: 4.0913********e+000µ29: 4.616871871631e+000 λi29: 4.603035354280e+000µ30: 5.127413049336e+000 λi30: 5.132924284378e+000µ31: 5.637954227041e+000 λi31: 5.594906275501e+000µ32: 6.148495404746e+000 λi32: 6.080933498348e+000µ33: 6.659036582451e+000 λi33: 6.680354121496e+000µ34: 7.169577760156e+000 λi34: 7.293878467852e+000µ35: 7.680118937861e+000 λi35: 7.717111851857e+000µ36: 8.190660115566e+000 λi36: 8.225220016407e+000µ37: 8.701201293271e+000 λi37: 8.648665837870e+000µ38: 9.211742470976e+000 λi38: 9.254200347303e+000µ39: 9.722283648681e+000 λi39: 9.724634099672e+000cond(A)=1.925042185755e+003detA=2.772786141752e+118四、分析如果初始向量选择不当,将导致迭代中X1的系数等于零.但是,由于舍⼊误差的影响,经若⼲步迭代后,.按照基向量展开时,x1的系数可能不等于零。
《实验8:Jacobi法求实对称矩阵的特征值及特征向量》

实验名称实验8实验地点6A-XXX 实验类型设计实验学时 2 实验日期20 /X/X ★撰写注意:版面格式已设置好(不得更改),填入内容即可。
一、实验目的
1.Jacobi法求实对称矩阵的特征值及特征向量
二、实验内容
1.实验任务
1.Jacobi法求实对称矩阵的特征值及特征向量
2.程序设计
1)数据输入(输入哪些数据、个数、类型、来源、输入方式)
double a[N][N], int n
2)数据存储(输入数据在内存中的存储)
函数
void Jacobi(double a[N][N], int n)
3)数据处理(说明处理步骤。
若不是非常简单,需要绘制流程图)
1.输入要处理的数据进入变量中
2.进行函数处理
3.输出函数处理结果
4)数据输出(贴图:程序运行结果截图。
图幅大小适当,不能太大)
三、实验环境
1.操作系统:WINDOWS 7及以上
2.开发工具:VS 2015
3.实验设备:PC。
矩阵特征值与特征向量的计算-Jacobi方法

所在平面旋转了一个角度 , 其它坐标保持不 变, 称Upq为平面旋转矩阵.
数值分析
基于Upq的相似变换
用Upq对A作正交相似变换得到矩阵 A(1) ,即:
U
T pq
AU
pq
=
A(1)
aaq((p11qp))
= =
a pp a pp
cos2 + aqq sin2 sin2 + aqq cos2
i , j=1
则有 lki→m k = 0成立.
i j
数值分析
UTAU=D 其中 D=diag[λ1, λ2, …, λn],即D的对角元素为 A 的 特征值,对应的U的列向量即为相应的特征向量。
Jacobi方法的思路:通过一系列的旋转变换(正交 变换)把A中非对角线上的非零元变为零 。
数值分析
定义下面的 n 阶正交矩阵:
1
cos
U ( p, q, ) =
素apq; Step 2. 根据 cot 2 = app − a qq ,求出相应的旋转矩
2a pq
阵Upq;
Step 3. 根据公式计算矩阵A(1)的元素;
Step 4. 若
,则停机;否则,令A=A(1)
并返回Step 1.
数值分析
1. 令k=1,R(1)=I,给定矩阵A(=A(1)),收敛条件ε
=
a(1) qp
=
1 2 (aqq
−
app )sin 2
+
a pq
cos 2
矩阵A(a1i()j1的) =第a(j1ip) 行= a,ij ,i第, j p列p, q和第q行,第q列的元素
发生了变化,其余元素不变。 且A(1)任是实对称
北航数值分析1_Jacobi法计算矩阵特征值

准备工作➢算法设计矩阵特征值的求法有幂法、Jacobi法、QR法等,其中幂法可求得矩阵按模最大的特征值(反幂法可求得按模最小特征值),Jacobi法则可以求得对称阵的所有特征值。
分析一:由题目中所给条件λ1≤λ2≤…≤λn,可得出λ1、λn按模并不一定严格小于或大于其他特征值,且即使按模严格小于或大于其他特征值,也极有可能出现|λs|<λ1|<|λn |或|λs|<λn|<|λ1 |的情况,导致按幂法和反幂法无法求解λ1或λn二者中的一者;分析二:题目要求求解与数μk =λ1+k(λn-λ1)/40最接近的特征值λik(k=1,2,3…39),这个问题其实可以转换为求A-μk 按模最小的特征值的问题,但因为在第一个问题中无法确定能肯定的求得λ1和λn,所以第二个问题暂先搁浅;分析三:cond(A) 2 = ||A|| * ||A-1|| =|λ|max * |λ|min,这可以用幂法和反幂法求得,det(A) =λ1 *λ2 * … *λn,这需要求得矩阵A的所有特征值。
由以上分析可知,用幂法和反幂法无法完成所有问题的求解,而用Jacobi法求得矩阵所有特征值后可以求解题目中所给的各个问题。
所以该题可以用Jacobi法求解。
➢模块设计由➢数据结构设计由于矩阵是对称阵,上下带宽均为2,所以可以考虑用二维数组压缩存储矩阵上半带或下半带。
但由于Jacobi法在迭代过程中会破坏矩阵的形态,所以原来为零的元素可能会变为非零,这就导致原来的二维数组无法存储迭代后的矩阵。
基于此的考虑,决定采用一维数组存储整个下三角阵,以此保证迭代的正确进行。
完整代码如下(编译环境windows10 + visual studio2010):完整代码// math.cpp : 定义控制台应用程序的入口点。
//#include "stdafx.h"#include<stdio.h>#include<math.h>#include<time.h>#define N 501#define V (N+1)*N/2+1#define e 2.6630353#define a(i) (1.64 - 0.024 * (i)) * sin(0.2 * (i)) - 0.64 * pow(e , 0.1 / (i)) #define b 0.16#define c -0.064#define eps pow((double)10.0,-12)#define PFbits "%10.5f "#define PFrols 5#define PFe %.11e#define FK 39int p;int q;double cosz;double sinz;double MAX;int kk;//#define PTS pts#ifdef PTSvoid PTS(double *m){printf("-----------------------------------------------------------------------\n");printf(" 迭代第%d次\n",kk);for(int i = 1 ; i <= PFrols ; i++){for( int j = (i-1)*i/2+1 ; j <= (i+1)*i/2 ; j++){printf(PFbits,m[j]);}putchar(10);}for(int i = 1 ; i <= PFrols+1 ; i++){printf(" ... ");}putchar(10);printf(" . .\n");printf(" . .\n");printf(" . .\n");for(int i = 1 ; i <= PFrols+2 ; i++){printf(" ... ");}putchar(10);}#elsevoid PTS(double *m){}#endifvoid recounti(int i , int *pp, int *qq){for(int j = 0 ; j <= N-1 ; j++){if( (i - (j+1)*j/2) <= j+1){*pp = j+1;*qq = i - (j+1)*j/2;break;}}}void refreshMetrix(double *m){int ipr,ipc,iqr,iqc;m[(p+1)*p/2] = m[(p+1)*p/2] * pow(cosz,2) + m[(q+1)*q/2] * pow(sinz,2) + 2 * m[(p-1)*p/2+q] * cosz * sinz;m[(q+1)*q/2] = m[(p+1)*p/2] * pow(sinz,2) + m[(q+1)*q/2] * pow(cosz,2) - 2 * m[(p-1)*p/2+q] * cosz * sinz;for(int i = 1; i <= N ;i++){if(i != p && i != q){if(i > p){ipr = i;ipc = p;}else{ipr = p;ipc = i;}if(i > q){iqr = i;iqc = q;}else{iqr = q;iqc = i;}m[(ipr-1)*ipr/2+ipc] = m[(ipr-1)*ipr/2+ipc] * cosz + m[(iqr-1)*iqr/2+iqc] * sinz;m[(iqr-1)*iqr/2+iqc] = -m[(ipr-1)*ipr/2+ipc] * sinz + m[(iqr-1)*iqr/2+iqc] * cosz;}}m[(p-1)*p/2+q] = 0;PTS(m);}//void calCosSin(double *m){double app = m[(p+1)*p/2];double aqq = m[(q+1)*q/2];double apq = m[(p-1)*p/2+q];cosz = cos(atan(2 * apq / (app - aqq))/2);sinz = sin(atan(2 * apq / (app - aqq))/2); }//void find_pq(double *m){double max = 0.0;int pp = 0;int qq = 0;for(int i = 1 ; i <= V ; i++){if(fabs(m[i]) > max){recounti(i,&pp,&qq);if(pp != qq){max = fabs(m[i]);p = pp;q = qq;}}}MAX = max;}void init(double *m){for(int i = 1 ; i <= N ;i++)m[(i+1)*i/2] = a(i);for(int i = 2 ; i <= N ; i++)m[(i-1)*i/2+i-1] = b;for(int i = 3 ; i <= N ; i++)m[(i-1)*i/2+i-2] = c;PTS(m);}void calFinal(double *m){printf("---------------------------------------------------------------------------------------------------\n");printf("结果输出:\n\n");double conda;double deta = 1.0;double minlumda = pow((double)10.0,12);double maxlumda = pow((double)10.0,-12);double absminlumda = pow((double)10.0,12);for(int i = 1 ; i <=N ;i++){if(m[(i+1)*i/2] > maxlumda)maxlumda = m[(i+1)*i/2];if(m[(i+1)*i/2] < minlumda)minlumda = m[(i+1)*i/2];if(fabs(m[(i+1)*i/2]) < absminlumda)absminlumda = fabs(m[(i+1)*i/2]);deta *= m[(i+1)*i/2];}if(fabs(minlumda) < fabs(maxlumda))conda = fabs(maxlumda) / absminlumda;elseconda = fabs(minlumda) / absminlumda;printf(" Lumda(1)=%.11e Lumda(%d)=%.11e Lumda(s)=%.11e\n",minlumda,N,maxlumda,absminlumda);printf(" Cond(A)=%.11e\n",conda);printf(" Det(A)=%.11e\n\n",deta);for(int i = 1 ; i <= FK ; i++){double muk = minlumda + i * (maxlumda - minlumda) / 40;double lumdak = 0.0;double tempabsmin = pow((double)10.0,12);for(int j = 1 ; j <= N ;j++){if(fabs(muk - m[(j+1)*j/2]) < tempabsmin){lumdak = m[(j+1)*j/2];tempabsmin = fabs(muk - m[(j+1)*j/2]);}}printf(" Lumda(i%d)=%.11e ",i,lumdak);if(i%3==0)putchar(10);}putchar(10);printf("------------------------------------------------------------------------------------------------------\n");putchar(10);putchar(10);}int _tmain(int argc, _TCHAR* argv[]){double m[(N+1)*N/2+1] = {0.0};kk=0;MAX=1.0;time_t t0,t1;t0 = time( &t0);init(m);#ifndef PTSprintf("正在计算...\n\n");#endifwhile(true){kk++;find_pq(m);if(MAX<eps)break;#ifdef PTSprintf(" p=%d q=%d |max|=%e\n",p,q,MAX);printf("-----------------------------------------------------------------------\n\n"); #endifcalCosSin(m);refreshMetrix(m);}#ifdef PTSprintf(" p=%d q=%d |max|=%e\n",p,q,MAX);printf("-----------------------------------------------------------------------\n\n");#endifprintf("矩阵最终形态...\n");for(int i = 1 ; i <= PFrols ; i++){for( int j = (i-1)*i/2+1 ; j <= (i+1)*i/2 ; j++){printf(PFbits,m[j]);}putchar(10);}for(int i = 1 ; i <= PFrols+1 ; i++){printf(" ... ");}putchar(10);printf(" . .\n");printf(" . .\n");printf(" . .\n");for(int i = 1 ; i <= PFrols+2 ; i++){printf(" ... ");}putchar(10);t1 = time(&t1);#ifdef PTSprintf("计算并输出用时%.2f秒\n\n",difftime(t1,t0));#elseprintf("迭代次数%d,计算用时%.2f秒\n\n",kk,difftime(t1,t0)); #endifcalFinal(m);return 0;}运行结果如下:中间运行状态如下:结果分析➢有效性分析1.由输出结果可见矩阵经过21840次迭代后,非对角元全部为零或接近于零;2.代码中有定义预编译宏//#define PTS控制程序运行过程是否输出中间迭代结果,如果输出中间迭代结果,可以发现对角元素在迭代的后期变化非常小,达到收敛的效果;3.算法在多次运行中基本可以在45秒左右完成计算(酷睿i5双核处理器,10G存,64位windows10操作系统)。
用共轭梯度法解方程,用Jacobi方法求矩阵的全部特征值和特征向量

end
A(1,1)=4;
A(n,n)=4;
A(n,n-1)=1;
X=zeros(n,1);
fori=1:n
X(i,1)=1;
end
%用共轭梯度法求解方程
fprintf('方程的精确解\n');
X
fprintf('用共轭法求解方程\n');
x=cg(A,b)
%用方法求解方程的特征值和特征向量
-0.1859 -0.0000 0.0000 0.0000 5.6180 -0.0000 -0.0000
-0.2236 0.0000 -0.0000 0.0000 0.0000 5.4142 0.0000
-0.2558 0.0000 -0.0000 0.0000 0.0000 0.0000 5.1756
0.1859 -0.0000 -0.0000 -0.0000 -0.0000 0.0000 -0.0000
0.1436 -0.0000 -0.0000 -0.0000 0.0000 -0.0000 0.0000
-0.0977 0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000
0.6634
1.1794
0.6188
1.3453
用方法Jacobi求解矩阵的全部特征值及特征向量
D =
Columns 1 through 7
4.0000 0 0 0 0 0 0
0.1382 5.9021 0.0000 0.0000 -0.0000 0.0000 0.0000
-0.2629 0.0000 5.6180 0.0000 0.0000 -0.0000 -0.0000
雅克比法解特征值

A1 仍然是实对称阵,且 A1与 A 的特征值相同。
把式(3.12)的右端乘开,并与左端比较,得到A1 的元素计算公式:
A
(1)
a a (p11) a (1) q1 a (1) n1
(1) 11
a a a a
(1) 1p
4
sgn(a pq ).
2 tan 1 2 1 tan c
4
, 故 tan 1,
故可取 tan
sgn(c ) c c2 1
t
t sin t cos 1 t 2 则 1 1 cos 1 tan 2 1 t 2
i2 ( B) B .
2 i 1
F
n
对于 n 维列向量 x, Upq x 相当于把坐标轴Oxp和 Oxq于所在平面内旋转角度 。 记矩阵 A = [aij]n×n ,对A作一次正交相似变换, 得到矩阵A1。
记
A1= UpqT A Upq = [aij(1)]n×n
(3.12)
故可选择角θ,使
c12 c21 (a22 a11 ) sin cos a12 (cos sin ) 0
2 2
c12 c21 (a22 a11 ) sin cos a12 (cos2 sin 2 ) 0
即 tan 2 2a12 , a11 a22
1 2 a aij n(n 1) i j
2 pq
从而
a
i j
(1) 2 ij
2 2 1 aij n(n 1) i j
北航数值分析计算实习第一题编程

i − t + s +1,t t − k + s +1, k t = max(1,i − r ,k − s )
∑c
c
) / cs +1, k
[i = k + 1, k + 2,⋯ , min( k + r , n); k < n]
(2) 求解 Ly = b,Ux = y (数组 b 先是存放原方程右端向量,后来存放中间向量 y)
0 b a2
b c
c b a3 b c
⋯ ⋯ ⋯ ⋯ ⋯
c b a499 b c
c b a500 b 0
c ⎤ b ⎥ ⎥ a501 ⎥ ⎥ 0 ⎥ 0 ⎥ ⎦
在数组 C 中检索矩阵 A 的带内元素 aij 的方法是: A 的带内元素 aij =C 中的元素 ci − j + s +1, j
2
数值分析计算实习题目一
i −1
bi := bi −
பைடு நூலகம்
i − t + s +1,t t t = max(1,i − r )
∑c
b
(i = 2,3,⋯ , n)
xn := bn / cs +1, n
min( i + s )
xi := (bi −
t = i +1
∑c
i −t + s +1,t t
x ) / cs +1,i
(i = n − 1, n − 2,⋯ ,1)
3、Doolittle 分解求解 n 元带状线性方程组(doolittle()函数)
按照上述对带状矩阵 A 的存储方法和元素 aij 的检索方法,并且把三角分解的结果 ukj 和 lik 分 别存放在 akj 和 aik 原先的存储单元内,那么用 Doolittle 分解法求解 n 元带状线性方程组的算法 可重新表述如下(其中“:=”表示赋值) : (1) 作分解 A = LU 。 对于 k=1,2, ……,n 执行
北京航空航天大学数值分析课程知识点总结

1 ,其中 1 和 n 分别是矩阵 A 的 n
2.4 迭代法
2.4.1 迭代法的一般形式及其收敛性
x ( k 1) Gx ( k ) d (k 0,1,...)
定义 设 n n 矩阵 G 的特征值是 1 , 2 ,..., n ,称 (G ) max | i | 为矩阵 G 的谱半径。
n T
x 1 xi
i 1
n
x2 x
则 1 , 2 和 都是向量范数。 定理 1.2 设
x
i 1 1 i n
n
2 i
max xi
和
是 R 上的任意两种向量范数,则存在与向量 x 无关的常数 m 和
n
M(0<m<M),使下列关系式成立
m x
1.3.2 矩阵范数
~
若 f '(a ) 0 且 | f ''( a ) | / | f '( a ) | 不很大,则有误差估计
e(u ) f '(a )e(a )
~
(u ) f '(a) (a)
~
。
若 f '(a ) f ''(a ) ... f
( k 1)
(a ) 0, f
(k )
... ... ... ... ln ,n 1
为节省空间,用 C(m,n)存储 A 的带内元素,其中 m=r+s+1,并且 aij ci j s 1, j 。 2.2.5 拟三对角线性方程组的求解方法
a1 d 2 A cn p1 d 2 r1
e xa e ,称 er 为近似值 a 的相对误差。由于 x 未知,实际上总把 作为 a 的 x x a e xa , 相对误差一般用百分比表示。er 的上界, 即r a a |a|
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
准备工作➢算法设计矩阵特征值的求法有幂法、Jacobi法、QR法等,其中幂法可求得矩阵按模最大的特征值(反幂法可求得按模最小特征值),Jacobi法则可以求得对称阵的所有特征值。
分析一:由题目中所给条件λ1≤λ2≤…≤λn,可得出λ1、λn按模并不一定严格小于或大于其他特征值,且即使按模严格小于或大于其他特征值,也极有可能出现|λs|<λ1|<|λn |或|λs|<λn|<|λ1 |的情况,导致按幂法和反幂法无法求解λ1或λn二者中的一者;分析二:题目要求求解与数μk =λ1+k(λn-λ1)/40最接近的特征值λik(k=1,2,3…39),这个问题其实可以转换为求A-μk 按模最小的特征值的问题,但因为在第一个问题中无法确定能肯定的求得λ1和λn,所以第二个问题暂先搁浅;分析三:cond(A) 2 = ||A|| * ||A-1|| =|λ|max * |λ|min,这可以用幂法和反幂法求得,det(A) =λ1 *λ2 * … *λn,这需要求得矩阵A的所有特征值。
由以上分析可知,用幂法和反幂法无法完成所有问题的求解,而用Jacobi法求得矩阵所有特征值后可以求解题目中所给的各个问题。
所以该题可以用Jacobi法求解。
➢模块设计由➢数据结构设计由于矩阵是对称阵,上下带宽均为2,所以可以考虑用二维数组压缩存储矩阵上半带或下半带。
但由于Jacobi法在迭代过程中会破坏矩阵的形态,所以原来为零的元素可能会变为非零,这就导致原来的二维数组无法存储迭代后的矩阵。
基于此的考虑,决定采用一维数组存储整个下三角阵,以此保证迭代的正确进行。
完整代码如下(编译环境windows10 + visual studio2010):完整代码// math.cpp : 定义控制台应用程序的入口点。
//#include "stdafx.h"#include<stdio.h>#include<math.h>#include<time.h>#define N 501#define V (N+1)*N/2+1#define e 2.6630353#define a(i) (1.64 - 0.024 * (i)) * sin(0.2 * (i)) - 0.64 * pow(e , 0.1 / (i)) #define b 0.16#define c -0.064#define eps pow((double)10.0,-12)#define PFbits "%10.5f "#define PFrols 5#define PFe %.11e#define FK 39int p;int q;double cosz;double sinz;double MAX;int kk;//#define PTS pts#ifdef PTSvoid PTS(double *m){printf("-----------------------------------------------------------------------\n");printf(" 迭代第%d次\n",kk);for(int i = 1 ; i <= PFrols ; i++){for( int j = (i-1)*i/2+1 ; j <= (i+1)*i/2 ; j++){printf(PFbits,m[j]);}putchar(10);}for(int i = 1 ; i <= PFrols+1 ; i++){printf(" ... ");}putchar(10);printf(" . .\n");printf(" . .\n");printf(" . .\n");for(int i = 1 ; i <= PFrols+2 ; i++){printf(" ... ");}putchar(10);}#elsevoid PTS(double *m){}#endifvoid recounti(int i , int *pp, int *qq){for(int j = 0 ; j <= N-1 ; j++){if( (i - (j+1)*j/2) <= j+1){*pp = j+1;*qq = i - (j+1)*j/2;break;}}}void refreshMetrix(double *m){int ipr,ipc,iqr,iqc;m[(p+1)*p/2] = m[(p+1)*p/2] * pow(cosz,2) + m[(q+1)*q/2] * pow(sinz,2) + 2 * m[(p-1)*p/2+q] * cosz * sinz;m[(q+1)*q/2] = m[(p+1)*p/2] * pow(sinz,2) + m[(q+1)*q/2] * pow(cosz,2) - 2 * m[(p-1)*p/2+q] * cosz * sinz;for(int i = 1; i <= N ;i++){if(i != p && i != q){if(i > p){ipr = i;ipc = p;}else{ipr = p;ipc = i;}if(i > q){iqr = i;iqc = q;}else{iqr = q;iqc = i;}m[(ipr-1)*ipr/2+ipc] = m[(ipr-1)*ipr/2+ipc] * cosz + m[(iqr-1)*iqr/2+iqc] * sinz;m[(iqr-1)*iqr/2+iqc] = -m[(ipr-1)*ipr/2+ipc] * sinz + m[(iqr-1)*iqr/2+iqc] * cosz;}}m[(p-1)*p/2+q] = 0;PTS(m);}//void calCosSin(double *m){double app = m[(p+1)*p/2];double aqq = m[(q+1)*q/2];double apq = m[(p-1)*p/2+q];cosz = cos(atan(2 * apq / (app - aqq))/2);sinz = sin(atan(2 * apq / (app - aqq))/2); }//void find_pq(double *m){double max = 0.0;int pp = 0;int qq = 0;for(int i = 1 ; i <= V ; i++){if(fabs(m[i]) > max){recounti(i,&pp,&qq);if(pp != qq){max = fabs(m[i]);p = pp;q = qq;}}}MAX = max;}void init(double *m){for(int i = 1 ; i <= N ;i++)m[(i+1)*i/2] = a(i);for(int i = 2 ; i <= N ; i++)m[(i-1)*i/2+i-1] = b;for(int i = 3 ; i <= N ; i++)m[(i-1)*i/2+i-2] = c;PTS(m);}void calFinal(double *m){printf("---------------------------------------------------------------------------------------------------\n");printf("结果输出:\n\n");double conda;double deta = 1.0;double minlumda = pow((double)10.0,12);double maxlumda = pow((double)10.0,-12);double absminlumda = pow((double)10.0,12);for(int i = 1 ; i <=N ;i++){if(m[(i+1)*i/2] > maxlumda)maxlumda = m[(i+1)*i/2];if(m[(i+1)*i/2] < minlumda)minlumda = m[(i+1)*i/2];if(fabs(m[(i+1)*i/2]) < absminlumda)absminlumda = fabs(m[(i+1)*i/2]);deta *= m[(i+1)*i/2];}if(fabs(minlumda) < fabs(maxlumda))conda = fabs(maxlumda) / absminlumda;elseconda = fabs(minlumda) / absminlumda;printf(" Lumda(1)=%.11e Lumda(%d)=%.11e Lumda(s)=%.11e\n",minlumda,N,maxlumda,absminlumda);printf(" Cond(A)=%.11e\n",conda);printf(" Det(A)=%.11e\n\n",deta);for(int i = 1 ; i <= FK ; i++){double muk = minlumda + i * (maxlumda - minlumda) / 40;double lumdak = 0.0;double tempabsmin = pow((double)10.0,12);for(int j = 1 ; j <= N ;j++){if(fabs(muk - m[(j+1)*j/2]) < tempabsmin){lumdak = m[(j+1)*j/2];tempabsmin = fabs(muk - m[(j+1)*j/2]);}}printf(" Lumda(i%d)=%.11e ",i,lumdak);if(i%3==0)putchar(10);}putchar(10);printf("------------------------------------------------------------------------------------------------------\n");putchar(10);putchar(10);}int _tmain(int argc, _TCHAR* argv[]){double m[(N+1)*N/2+1] = {0.0};kk=0;MAX=1.0;time_t t0,t1;t0 = time( &t0);init(m);#ifndef PTSprintf("正在计算...\n\n");#endifwhile(true){kk++;find_pq(m);if(MAX<eps)break;#ifdef PTSprintf(" p=%d q=%d |max|=%e\n",p,q,MAX);printf("-----------------------------------------------------------------------\n\n"); #endifcalCosSin(m);refreshMetrix(m);}#ifdef PTSprintf(" p=%d q=%d |max|=%e\n",p,q,MAX);printf("-----------------------------------------------------------------------\n\n");#endifprintf("矩阵最终形态...\n");for(int i = 1 ; i <= PFrols ; i++){for( int j = (i-1)*i/2+1 ; j <= (i+1)*i/2 ; j++){printf(PFbits,m[j]);}putchar(10);}for(int i = 1 ; i <= PFrols+1 ; i++){printf(" ... ");}putchar(10);printf(" . .\n");printf(" . .\n");printf(" . .\n");for(int i = 1 ; i <= PFrols+2 ; i++){printf(" ... ");}putchar(10);t1 = time(&t1);#ifdef PTSprintf("计算并输出用时%.2f秒\n\n",difftime(t1,t0));#elseprintf("迭代次数%d,计算用时%.2f秒\n\n",kk,difftime(t1,t0)); #endifcalFinal(m);return 0;}运行结果如下:中间运行状态如下:结果分析➢有效性分析1.由输出结果可见矩阵经过21840次迭代后,非对角元全部为零或接近于零;2.代码中有定义预编译宏//#define PTS控制程序运行过程是否输出中间迭代结果,如果输出中间迭代结果,可以发现对角元素在迭代的后期变化非常小,达到收敛的效果;3.算法在多次运行中基本可以在45秒左右完成计算(酷睿i5双核处理器,10G存,64位windows10操作系统)。