数学中的几大平均数
5种平均数的几何意义

5种平均数的几何意义
平均数是数学统计中,一组数据中,所有数据除以其总和的中间值。
它是用来衡量统计数据集中值的形式,代表数据集的中心特征。
平均数有
多种形式,其中常见的五种是算术平均数,几何平均数,几何中位数,调
和平均数和均方根。
本文将讨论五种不同平均数的几何意义。
算术平均数是最常用的,也称为总和平均值。
它是一组数据的平均值,算法如下:从给定数据中取出总和,然后将总和除以给定数据的数量。
算
术平均数有一个明确的几何意义,即它反映了给定数据的中心位置。
几何平均数是指一组数据的乘积除以这一组数据的个数。
几何平均数
的几何意义是反映数据集的大小。
例如,一个数据集中有两个值,如果它
们的几何平均数等于它们的算术平均数,则这意味着这两个值相等,因此
它们的大小也相等。
几何中位数是一组数据的乘积的开方。
它代表数据集中值的相对位置,反映出一组数据的变化趋势,从而可以比较数据集中值的大小和变化度。
调和平均数是一组数据的倒数之和的倒数。
它可以反映出数据集中值
的相对变化率,用来比较一组数据中值的大小和变化率的变化。
均方根是一组数据的平均平方和的平方根。
它衡量数据离中心的程度,反映出数据集中值的变化范围。
人教八年级数学平均数、加权平均数、中位数、众数、极差和方差归纳与复习

平均数、加权平均数、中位数、众数、极差和方差归纳与复习一、回顾与梳理。
平均数:一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。
即x=(x1+x2+……+xn)÷n中位数:将一组数据按大小顺序排列,处在最中间位置的一个数或最中间的两个数的平均数叫做这组数据的中位数。
众数:在一组数据中出现次数最多的数叫做这组数据的众数。
平均数:一组数据的平均值,平均水平.平均数是描述一组数据的一种常用指标,反映了这组数据中各数据的平均大小。
平均数的大小与一组数据里的每个数据都有关系,其中任何数据的变动都会引起平均数的相应变动.平均数一般的计算方法为:用一组数据的总和除以这组数据的个数.平均数的优点。
反映一组数的总体情况比中位数、众数更为可靠、稳定.平均数的缺点。
平均数需要整批数据中的每一个数据都加人计算,因此,在数据有个别缺失的情况下,则无法准确计算,计算的工作量也较大。
平均数易受极端数据的影响,从而使人对平均数产生怀疑。
中位数:在有序排列的一组数据中最居中的那个数据中等水平.中位数是描述数据的另一种指标,如果将一组数按从小到大排列那么中位数的左边和右边恰有一样多的数据。
中位数仅与数据的大小排列位置有关,某些数据的变动对它的中位数没有影响.中位数是将数据按大小顺序依次排列(相等的数也要全部参加排序)后“找”到的.当数据的个数是奇数时,中位数就是最中间的那个数据;当数据的个数是偶数时,就取最中间的两个数据的平均数作为中位数.中位数的优点。
简单明了,很少受一组数据的极端值的影响。
中位数的缺点。
中位数不受其数据分布两端数据的影响,因此中位数缺乏灵敏性,不能充分利用所有数据的信息。
当观测数据已经分组或靠近中位数附近有重复数据出现时,则难以用简单的方法确定中位数。
众数:一组数据中出现次数最多的那个数据。
集中趋势众数告诉我们,这个值出现次数最多,一组数据可以有不止一个众数,也可以没有众数。
众数着眼于对各数据出现的频数的考查,其大小只与这组数据中的部分数据有关.一组数据中的众数不止一个.当一组数据中有相同数据多次出现时,其众数往往是我们关心的.众数的优点。
小学数学中的平均数认识平均数与求平均的方法

小学数学中的平均数认识平均数与求平均的方法数学是一门综合性极强的学科,在小学阶段,数学的基础知识对于孩子们的日常生活和未来学习都有着重要的作用。
而其中,平均数是一个常见且重要的概念。
本文将详细介绍小学数学中的平均数的认识以及求平均的方法。
一、平均数的概念平均数是一组数的总和除以这组数的个数所得到的值。
通俗地说,平均数就是一组数的"平均水平"。
在小学数学的教学中,我们通常用平均数来表示一组数据的总体趋势。
二、平均数的种类在小学数学中,我们常见的平均数有三种,分别是算术平均数、几何平均数和众数。
1. 算术平均数算术平均数在小学数学中是最常见的一种平均数。
它的求解方法是将一组数的和除以这组数的个数。
例如,5、6、7、8、9这组数的算术平均数为(5+6+7+8+9)/5 = 7。
2. 几何平均数几何平均数是指一组正数的连乘积开n次方根,其中n为这组数的个数。
例如,2、4、8、16这组数的几何平均数为√(2×4×8×16)=8。
3. 众数众数是指一组数据中出现次数最多的数值。
在小学数学中,我们常用众数来表示一组数据中最常出现的数。
例如,2、3、4、4、5、6这组数的众数为4。
三、如何求平均数下面将详细介绍计算平均数的方法,以算术平均数为例。
1. 求一组数的算术平均数的步骤如下:(1)将这组数逐个相加,得到总和。
(2)再将总和除以这组数的个数,得到平均数。
2. 求解平均数的例子:例如,小明每天从周一到周五的作业分别得了87、92、85、90、88分。
我们来求解这个一周的作业平均分。
步骤一:将这组数逐个相加,得到总和:87 + 92 + 85 + 90 + 88 = 442步骤二:将总和除以这组数的个数,得到平均数:442÷5 = 88.4所以,小明这周的作业平均分为88.4分。
四、小学数学中平均数的应用平均数在小学数学教学中有着广泛的应用,下面以一些实际例子来说明平均数的使用方法。
算数平均值几何平均值调和平均值大小比较及证明

算数平均值几何平均值调和平均值大小比较及证明
三种平均值比较
对数学来说,平均数是描述一组数据特征的一个重要的汇总数据,它
能够准确反映数据的集中程度和分布形状。
咱们通常用来衡量一组数
据的三种常见的平均数分别是计算数平均值、几何平均值和调和平均值,以此来研究不同类型数据的分布特征,所以再谈到三角平均数的
比较讨论更不可或缺了。
首先,若所求分母和分子均为正,计算数平均数就为最大,几何平均
数次之,而调和平均数最小。
随着分子和分母的增大,组数增多,由
于调和平均数中分母项分子项均会增大,故而调和平均数就会越小,
也就说对于给定的几个正数,计算数平均数最大而调和平均数最小。
接下来,若所求分母和分子均为负,计算数平均数就为最小,而调和
平均数次之,而几何平均数最大。
由于调和平均数中分母项分子项均
会减小,故而调和平均数就会越大,而由于几何平均数对负数有消极
影响,而调和平均数对其有持平作用,因此几何平均数最大而调和平
均数最小,也就说对于给定的几个负数,计算数平均数最小而几何平
均数最大。
最后,若分母或分子含正负,正和负数的大小的关系受情从决定,若
正数与负数在数量上占比不同,则几何平均数受正负数数量影响较大,而计算数平均数和调和平均数有时则呈反比情况。
综上,三种平均数之间的关系,其实就是相互解释和佐证,有时则是反比例关系。
由此可以得出计算数平均数和几何平均数之间为最大和次大;调和平均数和几何平均数之间为最小和次小;计算数平均数和调和平均数之间为最大和最小的结论。
四个平均数之间的关系及证明方法

四个平均数之间的关系及证明方法
嘿,朋友们!今天咱来唠唠四个平均数之间的关系,这可有意思啦!就好比是在数学的大舞台上,四个平均数可是各有角色呢!
咱先说算术平均数,这就像是班级里的学霸,中规中矩,稳定发挥。
比如说咱一群人考试平均分是 80 分,这 80 分就是个算术平均数啦!
然后呢是几何平均数,它就像是个优雅的舞者,要几个数相乘再开方,特别有范儿!假设你每天以 2 倍、3 倍、4 倍的速度进步,那这几何平均数就能体现你整体的进步水平哟!
调和平均数呢,就像是个默默奉献的小天使。
比如你去不同路程以不同速度跑,那调和平均数就能衡量出你整体的效率呢!
加权平均数就更厉害啦,简直就是个能权衡利弊的大师!好比班委选举,不同职位权重不一样,算出来的结果可就不一样咯!
那怎么证明它们之间的关系呢?这可得好好琢磨琢磨!
我的观点就是:四个平均数都有各自独特的魅力和用处,就看我们怎么去发现和运用它们咯!它们就像是数学世界里的四颗明珠,等待我们去探索和珍视!。
初数数学中的平均数公式详解

初数数学中的平均数公式详解平均数是初等数学中一个基础的概念,用于描述一组数据的集中趋势。
在统计学和概率论等领域中,平均数常常作为数据分析的重要工具。
本文将详细介绍初数数学中常见的三种平均数公式:算术平均数、几何平均数和调和平均数,并探讨它们的性质和应用。
算术平均数算术平均数是最常见的平均数公式,一般用于描述一组数据的集中位置。
它的计算方法是将所有数据相加,然后除以数据的个数。
设有n 个数a1, a2, ..., an,则它们的算术平均数记作x,公式表示如下:x = (a1 + a2 + ... + an) / n算术平均数是一组数据的中心位置,它具有以下性质:1. 平均数在数据中具有唯一性,即只有一个数是平均数。
2. 当数据分布比较均匀时,平均数能够较好地代表整组数据。
3. 对于任意一个数据,若增加或减少一个相同的常数,平均数也会相应地增加或减少这个常数。
几何平均数几何平均数常用于计算一组数据的比例关系或增长率。
它的计算方法是将所有数据相乘,然后开n次方根,其中n为数据的个数。
设有n个正数a1, a2, ..., an,则它们的几何平均数记作g,公式表示如下:g = (a1 * a2 * ... * an)^(1/n)几何平均数具有以下性质:1. 几何平均数一般小于等于算术平均数,当且仅当数据全部相等时,二者相等。
2. 几何平均数可以用于计算复利的平均增长率,以及一组数据的百分比变化。
调和平均数调和平均数常用于计算一组数据的平均速度或平均耗时。
它的计算方法是将数据个数除以每个数据的倒数之和。
设有n个正数a1, a2, ..., an,则它们的调和平均数记作h,公式表示如下:h = n / (1/a1 + 1/a2 + ... + 1/an)调和平均数具有以下性质:1. 调和平均数一般小于等于几何平均数,当且仅当数据全部相等时,二者相等。
2. 调和平均数能够有效地表示一组速度或耗时的整体平均水平,它对个别较小数值的数据较为敏感。
简述算术平均数、几何平均数、调和平均数的适用范围

简述算术平均数、几何平均数、调和平均数的适用范围在数学中,平均数是一组数据的代表值,常用来描述数据的集中趋势。
而在平均数中,算术平均数、几何平均数和调和平均数是最常见的三种平均数。
它们分别适用于不同的情况和数据类型,下面我们将对这三种平均数的适用范围进行简要介绍。
1. 算术平均数算术平均数是最为常见的平均数,它可以简单地通过将一组数据相加,然后除以数据的个数来计算得到。
算术平均数适用于对数据的集中趋势进行描述,特别是对数值型数据。
当我们需要了解一组数据的平均水平时,通常会使用算术平均数。
我们可以通过计算学生的平均成绩来了解班级的学习情况,或者通过计算某个地区的平均温度来了解该地区的气候情况。
2. 几何平均数几何平均数是一组数据的乘积的n次根,其中n为数据的个数。
几何平均数适用于描述数据的增长率、比率或倍数关系,特别是对正数的乘积进行平衡处理。
当我们需要计算连续几年的增长率时,就可以使用几何平均数。
另外,几何平均数还常用于计算财务投资的平均收益率,以平衡不同年份的收益率水平。
3. 调和平均数调和平均数是一组数据的倒数的算术平均值的倒数,它适用于描述速度、工作量和时间等方面的平均值。
在实际应用中,调和平均数常用于计算多个数据量的平均值,且数据不受限制,这时调和平均数能够有效地平衡数据的差异性。
在物流行业中,我们通常会使用调和平均数来计算车辆的平均行驶速度,或者计算工人完成某项工作的平均时间。
算术平均数适用于描述数据的集中趋势,几何平均数适用于描述数据的增长率与比率,而调和平均数则适用于平衡数据的差异性。
在实际应用中,我们需要根据不同的情况和数据类型,选择适合的平均数进行分析和描述,以确保得到准确和合理的结论。
个人观点:平均数在日常生活和各行各业中都扮演着重要的角色,它能够帮助人们更好地理解和分析数据,从而做出科学的决策。
懂得不同类型平均数的适用范围,能够更好地应用数学知识于实际工作和生活中。
对平均数的理解和运用至关重要。
平均数的概念

平均数的概念平均数在数学中是一个重要的概念,用于描述一组数据的集中趋势。
平均数常被用于衡量数据的中心位置,是统计学中常见的方法之一。
本文将介绍平均数的概念与计算方法,并讨论其在实际应用中的意义。
一、平均数的定义与形式平均数是一组数据的总和除以数据的个数得到的结果。
在统计学中,常见的平均数有算术平均数、加权平均数和几何平均数等。
1.1 算术平均数算术平均数,也叫简称平均数,是最常见的一种平均数形式。
计算算术平均数的方法是将一组数据的总和除以数据的个数。
例如,给定一组数据:2, 4, 6, 8, 10,计算它们的算术平均数:(2 + 4 + 6 + 8 + 10) / 5 = 30 / 5 = 6因此,该组数据的算术平均数为6。
1.2 加权平均数加权平均数是根据数据的重要程度不同,给予不同的权重进行计算的平均数形式。
在计算加权平均数时,需要将每个数据乘以相应的权重,然后将加权后的数据总和除以权重的总和。
例如,考虑一个班级的成绩情况,数学占比为40%,英语占比为30%,语文占比为30%。
学生A的数学成绩为90分,英语成绩为80分,语文成绩为70分。
计算学生A的加权平均分:(90 × 0.4 + 80 × 0.3 + 70 × 0.3) / (0.4 + 0.3 + 0.3) = 84因此,学生A的加权平均分为84分。
1.3 几何平均数几何平均数是一组数据乘积的n次方根,其中n为数据的个数。
几何平均数常用于描述多个数据的综合指标。
例如,考虑一组数据:2, 4, 8。
计算它们的几何平均数:(2 × 4 × 8)^(1/3) = 4因此,该组数据的几何平均数为4。
二、平均数的应用意义平均数在实际应用中具有广泛的意义,下面将介绍几个常见的应用场景。
2.1 统计数据的中心趋势平均数是衡量一组数据的中心趋势的重要指标之一,可以用来描述数据的集中程度。
在描述一组数据时,通过计算平均数可以得到一个总体的概貌。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学中的几大平均数算术平均数算术平均数是指在一组数据中所有数据之和再除以数据的个数。
它是反映数据集中趋势的一项指标。
把n个数的总和除以n,所得的商叫做这n个数的平均数几何平均数几何意义我们知道算术平均数,(a+b)/2,体现纯粹数字上的关系,而根号ab,称为几何平均数,这个体现了一个几何关系,即过一个圆的直径上任意一点做垂线,直径被分开的两部分为a,b, 那么那个垂线在圆内的一半长度就是根号ab,并且(a+b)/2≥√(ab) !这就是它的几何意思,也是称之为几何平均数的原因。
定义和公式几何平均数(geometric mean)是指n个观察值连乘积的n次方根。
根据资料的条件不同,几何平均数有加权和不加权之分。
设一组数据为X1,X2,…,Xn,且均大于0,则几何平均数Xg为:主要用途计算几何平均数要求各观察值之间存在连乘积关系,它的主要用途是:1、对比率、指数等进行平均;2、计算平均发展速度;其中:样本数据非负,主要用于对数正态分布。
调和平均数解释定义:调和平均数是总体各单位标志值倒数的算术平均数的倒数,也称倒数平均数。
是平均数的一种。
但统计调和平均数,与数学调和平均数不同。
在数学中调和平均数与算术平均数都是独立的自成体系的。
计算结果前者恒小于等于后者。
因而数学调和平均数定义为:数值倒数的平均数的倒数。
但统计加权调和平均数则与之不同,它是加权算术平均数的变形,附属于算术平均数,不能单独成立体系。
且计算结果与加权算术平均数完全相等。
主要是用来解决在无法掌握总体单位数(频数)的情况下,只有每组的变量值和相应的标志总量,而需要求得平均数的情况下使用的一种数据方法。
计算公式缺点根据定义可知待求平均值各数之倒数和=0或待求平均值各数有0时调和平均数求不出来;n个正数里只要有一个小于1且极接近0的,不论其余n-1个数有多大,此n数调和平均数极接近0。
加权平均数概况:加权平均数是不同比重数据的平均数,加权平均数就是把原始数据按照合理的比例来计算,若在一组数中,X1出现F1次,X2出现F2次,…,Xk出现Fk次,那么(X1F1 + X2F2+ ... XkFk)÷ (F1 + F2 + ... + Fk)叫做X1﹑X2…Xk 的加权平均数。
F1﹑F2…Fk是X1﹑X2…Xk的权。
其中,算术平均数是加权平均数的一种特殊形式(它特殊在各项的权相等),当实际问题中,当各项权不相等时,计算平均数时就要采用加权平均数,当各项权相等时,计算平均数就要采用算数平均数。
两者不可混淆。
公式:加权平均数概况:加权平均数是不同比重数据的平均数,加权平均数就是把原始数据按照合理的比例来计算,若在一组数中,X1出现F1次,X2出现F2次,…,Xk出现Fk次,那么(X1F1 + X2F2+ ... XkFk)÷ (F1 + F2 + ... + Fk)叫做X1﹑X2…Xk的加权平均数。
F1﹑F2…Fk是X1﹑X2…Xk的权。
其中,算术平均数是加权平均数的一种特殊形式(它特殊在各项的权相等),当实际问题中,当各项权不相等时,计算平均数时就要采用加权平均数,当各项权相等时,计算平均数就要采用算数平均数。
两者不可混淆。
公式:x拔=(x1f1 + x2f2+ ... xkfk)/n,其中f1 + f2 + ... + fk=n,f1,f2,…,fk叫做权。
通过数和权的乘积来计算要点明晰1.在日常生活中,我们常用平均数表示一组数据的‘平均水平’。
2.在一组数据里,一个数据出现的次数称为权。
平方平均数平方平均数 (quadratic mean)Qn=√ [(a1^2+a2^2+...+an^2)/n]或称均方根,是2次方的广义平均数的表达式,也可称为2次幂平均数。
英文缩写为RMS(Root Mean Square)。
指数平均数(EXPMA)指标概述EXPMA指标简称EMA,中文名字:指数平均数指标或指数平滑移动平均线,一种趋向类指标,从统计学的观点来看,只有把移动平均线(MA)绘制在价格时间跨度的中点,才能够正确地反映价格的运动趋势,但这会使信号在时间上滞后,而EXPMA指标是对移动平均线的弥补,EXPMA指标由于其计算公式中着重考虑了价格当天(当期)行情的权重,因此在使用中可克服MACD其他指标信号对于价格走势的滞后性。
同时也在一定程度中消除了DMA指标在某些时候对于价格走势所产生的信号提前性,是一个非常有效的分析指标。
EXPMA的基础算法若求X的N日指数平滑移动平均,则表达式为:EMA(X,N)算法是:若Y=EMA(X,N),则Y=[2*X+(N-1)*Y’]/(N+1),其中Y’表示上一周期的Y值。
不举例的话,比较难理解,举例说明一下:X是变量,每天的X值都不同,从远到近地标记,它们分别记为X1,X2,X3, (X)如果N=1,则EMA(X,1)=[2*X1+(1-1)*Y’]/(1+1)=X1如果N=2,则EMA(X,2)=[2*X2+(2-1)*Y’]/(2+1)=(2/3)*X2+(1/3)X1如果N=3,则EMA(X,3)=[2*X3+(3-1)*Y’]/(3+1)=[2*X3+2*((2/3)*X2+(1/3)*X1)]/4=(1/2 )*X3+(1/3)*X2+(1/6)*X1如果N=4,则EMA(X,4)=[2*X4+(4-1)*Y’]/(4+1)=2/5*X4+3/5*((1/2)*X3+(1/3)*X2+(1/6) *X1)=2/5*X4+3/10*X3+1/5*X2+1/10*X1.....X1(2/3)*X2+(1/3)X1(3/6)*X3+(2/6)*X2+(1/6)*X1(4/10)*X4+(3/10)*X3+(2/10)*X2+(1/10)*X1...这里可以看出系数值和恒为1我们可以看到时间周期越近的X值它的权重越大,说明EMA函数对近期的X值加强了权重比,更能及时反映近期X值的波动情况。
计算公式1.EXPMA=[当日或当期收盘价*2 + 上日或上期EXPMA*(N-1)] / (N+1)2.首次计算,上期EXPMA值为昨天的EXPMA值,N为天数。
3.可设置多条指标线,参数为12,50(12日,50日)。
4. 函数:MA1:EMA(CLOSE,P1);MA2:EMA(CLOSE,P2);MA3:EMA(CLOSE,P3);MA4:EMA (CLOSE,P4)EMA和EXPMA计算原理是一样的更细的解释:当天EMA=昨天的EMA+加权因子*(当天的收盘价-昨天的EMA)= 加权因子*当天的收盘价+(1-加权因子)*昨天的EMA加权因子=2/(N+1);N就是上面所说的周期,比如周期12 则加权的因子就是 2/13; 当天EMA=2/13*当天的收盘价+11/13*昨天的EMA计算过程:(每日你看到的EMA计算结果是从上市第一天就开始累积了)股票上市第一天:当天EMA1 = 当天收盘价第二天:EMA2 = 2/13 * 当天收盘价 +11/13 * EMA1第三天:EMA3 = 2/13 * 当天收盘价 + 11/13* EMA2.................注意要点1.关于EXPMA指标的其他使用原则,可根据不同基期的指数参数设置来进一步总结。
在目前众多的技术分析软件中,EXPMA指标参数默认为(12,50),客观讲有较高的使用价值。
而经过技术分析人士的研究,发现(6,35)与(10,60)有更好的实战效果。
2.EXPMA指标比较适合与SAR指标配合使用。
EXPMA指标的应用原则:1、在多头趋势中,价格K线、短天期天数线(例如(12,50)中的12日线)、长天期天数线(50日线)按以上顺序从高到低排列,视为多头特征;在空头趋势中,长天期天数线、短天期天数线、价格K线按以上顺序从高到低排列,视为空头特征。
2、当短天期天数线从下而上穿越长天期天数线时,是一个值得注意的买入信号;此时短天期天数线对价格走势将起到助涨的作用,当短天期天数线从上而下穿越长天期天数线时,是一个值得注意的卖出信号,此时长天期天数对价格走势将起到助跌的作用。
3、一般来说,价格在多头市场中将处于短天期天数线和长天期天数线上方运行,此时这两条线将对价格走势形成支撑。
在一个明显的多头趋势中,价格将沿短天期天数线移动,价格反复的最低点将位于长天期天数线附近;相反地,价格在空头市场中将处于短天期天数线和长天期天数线下方运行,此时这两条线将对价格走势形成压力。
在一个明显的空头趋势中,价格也将沿短天期天数线移动,价格反复的最高点将位于长天期天数线附近。
4、一般地,当价格K线在一个多头趋势中跌破短天期天数线,必将向长天期天数线靠拢,而长天期天数线将对价格走势起到较强的支撑作用,当价格跌破长天期天数线时,往往是绝好的买入时机;相反地,当价格K线在一个空头趋势中突破短天期天数线后,将有进一步向长天期天数线冲刺的希望,而长天期天数线将对价格走势起到明显的阻力作用,当价格突破长天期天数线后,往往会形成一次回抽确认,而且第一次突破失败的机率较大,因此应视为一次绝好的卖出时机。
5、第三条的特例是:当价格K线在一个多头趋势中跌破短天期天数线,并继而跌破长天期天数线,而且使得短天期天数开始转头向下运行,甚至跌破长天期天数线,此时意味着多头趋势发生变化,应作止蚀处理;相反地,当价格K线在一个空头趋势中突破短天期天数线,并继而突破长天期天数线,而且使得短天期天数开始转头向上运行,甚至突破长天期天数线,此时意味着空头趋势已经改变成多头趋势,应作补仓处理。
6、价格对于长天期天数线的突破次数越多越表明突破有效,第一次突破一般会以失败而告终;价格对于长天期天数线的突破时间越长越表明突破有效。
一般来说,在价格日K线技术指标体系中的EXPMA指标长天期天数线被价格突破之后,需要两到三个交易日的时间来确认突破的有效性。
7、当短期天数线向上交叉长期天数线时,股价会先形成一个短暂的高点,然后微幅回档至长期天数线附近,此时为最佳买入点;当短期天数线向下交叉长期天数线时,股价会先形成一个短暂的低点,然后微幅反弹至长期天数线附近,此时为最佳卖出点。
关于EXPMA指标的其他使用原则,可根据不同基期的指数参数设置来进一步总结。
指数平均数指标是笔者最为喜欢的分析指标之一,这的确是一个分析价格的好工具。