概率论和数理统计抽样分布

合集下载

概率论与数理统计 第六章 样本及抽样分布

概率论与数理统计 第六章 样本及抽样分布

x0 o.w.
n 1
n5
n 15
15
(2)t-分布(学生分布)
设 X ~ N ( 0 ,1), Y ~ 2 ( n ) 且X、Y为独立随 机变量,则称随机变量
t
X Y /n

X
1 n 2 ( X 12 ...... X n )
为自由度为n的t-分布。记为: t ~ t ( n ) 。
3
§1 随机样本
总体: 研究对象在某项数量指标的全体. 记为X。通常称总体X。 个体: 总体X中的每一个元素(实数)xi。 根据总体所含的个体数分为: 有限总体和无限总体。
4
总体与取样
X1
X
X2 X3 Xn
取样模型
X
X2 X1
X3
X4
X5
河流污染取样
5
总体、样本、统计量
总体 样本 统计量
X1 X2
2 ( n ) 分布:
具有可加性
2 X X 12 ...... X n , X i ~ N (0,1)
3. 4.
t ( n ) 分布:
X ~ N (0,1), Y ~ 2 ( n )
t(n) X Y /n
F ( n1 , n 2 ) 分布: U ~ 2 ( n1 ), V ~ 2 ( n 2 )



F (n1 , n2 )
19
分位点及性质:
定义: Pr[ X z ]

z
(1)标准正态分布分位点

(x)
( x)dx 1 ( x)dx


z
z1
( x)
Pr[ X z ]

概率论与数理统计(06)第6章 统计量及其抽样分布

概率论与数理统计(06)第6章  统计量及其抽样分布
一个任意分 布的总体
σx =
σ
n
当样本容量足够 大时( 大时(n ≥ 30) , 样本均值的抽样 分布逐渐趋于正 态分布
6 - 11
µx = µ
xቤተ መጻሕፍቲ ባይዱ
x 的分布趋 于正态分布 的过程
6 - 12
6.4 正态总体 6.3.1 χ2分布 6.3.2 t 分布 6.3.3 F 分布
6 - 13
χ2 分布
第六章 样本与统计量
6.1引言 6.1引言
数理统计学: 运用概率论的基础知识,对要研究的随机现象进行 多次观察或试验,研究如何合理地获得数据资料, 建立有效的数学方法,根据所获得的数据资料,对 所关心的问题作出估计与检验。
6-1
§6.2总体与样本 6.2总体与样本
对某一问题的研究对象全体称为总体。 组成总体的某个基本单元,称为个体。 总体可以是具体事物的集合,如一批产品。 也可以是关于事物的度量数据集合,如长度测量。 总体可以包含有限个个体,也可以包含无限个个体。 有限总体在个体相当多的情况下,可以作为无限 总体进行研究。 总体中的个体,应当有共同的可观察的特征。该 特征与研究目的有关。
6 - 16
χ2分布
(图示) 图示)
n=1 n=4 n=10
n=20
6 - 17 不同容量样本的抽样分布
χ2
t 分布
6 - 18
t 分布
1. 高 塞 特 (W.S.Gosset) 于 1908 年 在 一 篇 以 (W. “Student”(学生)为笔名的论文中首次提出 Student”(学生)
X ~ N(µ,σ ) ,则
2
χ2分布
2. 3.
z=
X −µ
Y=z

概率论与数理统计第六章统计量,样本及抽样分布

概率论与数理统计第六章统计量,样本及抽样分布

(2) X 1
~
2 (n1 ),
X2
~
2 (n2 ),
X1,
X

2



X 1 X 2 ~ 2 (n1 n2 ).
(3) X ~ 2 (n), E( X ) n, D( X ) 2n,
.
2021/3/11
20
(4). 2分布的分位点
对于给定的正数,0 1,
称满足条件
P
2 2 (n)
k 1
,
X
k 2
,,
X
k n
独立且与X
k同分布,
E
(
X
k i
)
k
k 1,2,,n 再由辛钦大数定律可得上述结论.
再由依概率收敛性质知,可将上述性质推广为
g( A1, A2 ,, Ak ) p g(1,2 ,,k ) 其中g为连续函数.
这就是矩估计法的理论根据.
2021/3/11
18
皮肌炎图片——皮肌炎的症状表现 数理统计
10
3. 总体、样本、样本值的关系
事实上我们抽样后得到的资料都是具体的、确 定的值. 如我们从某班大学生中抽取10人测量身高, 得到10个数,它们是样本取到的值而不是样本. 我 们只能观察到随机变量取的值而见不到随机变量.
2021/3/11
11
总体(理论分布) ?
样本
样本值
统计是从手中已有的资料--样本值,去推断总 体的情况---总体分布F(x)的性质.
2. t分布的密度函数关于t 0对称.当n充分大时, 其图形近似于标准正态分布概率密度的图形,
再由函数的性质有
lim h(t)
n
1 et2 2. 2

概率论与数理统计-ch6-样本与抽样分布

概率论与数理统计-ch6-样本与抽样分布

概率论与数理统计-ch6-样本与抽样分布概率论中,所研究的随机变量是假定其分布是已知的,在此前提下研究它的性质、数字特征等。

在数理统计中,所研究的随机变量的分布是未知或不完全知道的,通过重复独⽴的试验得到许多观察值去推断随机变量的种种可能分布。

1、随机样本总体:试验的全部可能的观察值。

=样本空间个体:每⼀个可能观察值。

=样本点容量:总体中所包含的个体的个数。

有限总体⽆限总体⼀个总体对应⼀个随机变量X,对总体的研究就是对随机变量X的研究。

所以将不区分总体与相应的随机变量,统称为总体X。

样本:在数理统计中,⼈们都是通过从总体中抽取⼀部分个体,根据获得的数据来对总体分布得出推断的,被抽出的部分个体叫做总体的⼀个样本。

对总体进⾏⼀次观察,就会得到⼀个随机变量X1,对总体进⾏n次重复的、独⽴的观察,就会得到n个随机变量X1,X2,...,Xn,这n个随机变量X1,X2,...,Xn是对总体随机变量X观察的结果。

则X1,X2,...,Xn是相关独⽴且与X具有相同分布,称为来⾃总体X的⼀个简单随机样本。

n称为样本的容量。

进⾏n次观察得到的⼀组实数x1,x2,...,xn是随机变量X1,X2,...,Xn的观察值,称为样本值,也称为X的n个独⽴的观测值。

2、抽样分布样本是统计推断的依据,但往往不直接使⽤样本本⾝,⽽是由样本构造的函数。

统计量:设X1,X2,...,Xn是来⾃总体X的⼀个样本,g(X1,X2,...,Xn)是其函数,且g中不含任何未知参数,则称g(X1,X2,...,Xn)是⼀统计量。

统计量也是⼀个随机变量。

g(x1,x2,...,xn)是统计量的观测值。

常⽤的统计量:经验分布函数:经验分布函数(empirical distribution function)是根据样本得到的分布函数.如设,是总体的样本值,将它们按⼤⼩顺序排列为,则称分布函数为经验分布函数是与总体分布函数相对应的统计量。

总体的分布函数是F(x),统计量的经验分布函数是F n(x),⽤F n(x)去推断F(x),当n⾜够⼤时,F n(x)以概率1收敛于F(x)。

概率论与数理统计6.5正态总体下的抽样分布

概率论与数理统计6.5正态总体下的抽样分布

已知 未知
已知,用S
未知,用S
*
N分布(定理6.5)
t(n-1)分布(定理6.6)
F (n1, n2 )分布(定理6.7) F (n1 1, n2 1)分布(定理6.8)
§6.5正态总体下的抽样分布
定理 6.5.1 设 X1, X 2 , , X n 为来自正态总体
N(, 2 ) 的简单随机样本, X 是样本均值,
Xi
2
35.2
P
20 i 1
Xi
2
7.4
0.975 0.005 0.97
17
例5:设某厂的灯泡使用寿命X ~ (1000, 2),单位小时
现抽样9个样本,样本方差为1002小时2。求P X 1062
解:T
X S*
~
t(n 1)
n
P
X
1062
P
X 1000 100 3
1)
n
2
E(S 2 )
2
1 n
n i1
E( Xi
)( X
) (n 1) 2
n
2 E[
1 n
n i1
(
Xi
)(
X
)]
(n
1)
n
2
2E[( X )2 ] (n 1) 2
n
2D X (n 1) 2
n
2 2 (n 1) 2 (n 1) 2
n
n
n
E(S *2 ) E( n S 2 ) n E(S 2 ) 2
P
1
2
20 i1
Xi X
2
35.2
P
1
2
20 i1
Xi X

三大抽样分布(1)概率论与数理统计习题 概率论与数理统计)

三大抽样分布(1)概率论与数理统计习题 概率论与数理统计)


x2 x2

~ F (1,1)
4. 正态总体的样本均值与样本方差的分布
正态总体 N ( , 2 ) 的样本均值和样本方差
有以下两个重要定理.
定理一
设 X1, X 2, , X n 是来自正态总体N (, 2 )
的样本, X 是样本均值, 则有
(1) X ~ N (, 2 / n).即 X ~ N (0,1)
样本, X , S 2 分别是样本均值和样本方差, 则有
X ~ t(n 1).
S/ n
证明
因为 X ~ N (0,1), / n
(n 1)S 2
2
~ 2(n 1),
且两者独立, 由 t 分布的定义知
X (n 1)S 2 ~ t(n 1). / n 2(n 1)
n
2
πn

1
n 2


1

t2 n


n1 2


,
t
t 分布的概率密度曲线如图
显然图形是关于
t 0对称的.
当 n 充分大时, 其
图形类似于标准正
态变量概率密度的
图形. 因为lim h(t)
1
t2
e 2,
n

所以当 n 足够大时 t 分布近似于 N (0,1) 分布,
1,
因为 1 F
~ F (n2 , n1 ),
所以
P
1 F

F1
(n2
,
n1
)

1


,
比较后得
F1
(n2 ,

概率论与数理统计教案统计量和抽样分布

概率论与数理统计教案统计量和抽样分布

概率论与数理统计教案-统计量和抽样分布一、教学目标1. 理解统计量的概念,掌握常见统计量的计算方法。

2. 了解抽样分布的定义,掌握正态分布、t分布、卡方分布等常见抽样分布的特点及应用。

3. 学会使用抽样分布进行假设检验和置信区间的估计。

二、教学内容1. 统计量的概念及计算方法统计量的定义样本均值、样本方差、样本标准差等常见统计量2. 抽样分布的定义及特点抽样分布的定义正态分布、t分布、卡方分布等常见抽样分布的特点3. 抽样分布的应用假设检验置信区间的估计三、教学方法1. 讲授法:讲解统计量的概念、计算方法,抽样分布的定义及特点。

2. 案例分析法:通过具体案例,让学生学会使用抽样分布进行假设检验和置信区间的估计。

3. 互动教学法:引导学生参与课堂讨论,提问、解答问题,提高学生的积极性和主动性。

四、教学步骤1. 引入统计量的概念,讲解样本均值、样本方差、样本标准差等常见统计量的计算方法。

2. 讲解抽样分布的定义,介绍正态分布、t分布、卡方分布等常见抽样分布的特点及应用。

3. 通过具体案例,让学生学会使用抽样分布进行假设检验和置信区间的估计。

五、课后作业1. 复习本节课的内容,整理笔记。

2. 完成课后习题,加深对统计量和抽样分布的理解。

3. 选择一个感兴趣的话题,运用抽样分布进行实际问题的分析。

六、教学评估1. 课堂提问:通过提问了解学生对统计量和抽样分布的理解程度。

2. 课后习题:检查学生对课堂内容的掌握情况。

3. 实际案例分析:评估学生运用抽样分布解决实际问题的能力。

七、拓展与延伸1. 引导学生探讨抽样分布在其他领域的应用,如经济学、生物学等。

2. 介绍与抽样分布相关的高级主题,如非参数统计、贝叶斯统计等。

3. 鼓励学生参加相关竞赛、研究项目,提高实践能力。

八、教学资源1. 教材:概率论与数理统计相关教材。

2. 课件:PPT课件,辅助学生理解统计量和抽样分布的概念及应用。

3. 案例资料:提供具体案例,方便学生学会使用抽样分布进行假设检验和置信区间的估计。

数理统计中的随机抽样和抽样分布——概率论知识要点

数理统计中的随机抽样和抽样分布——概率论知识要点

数理统计中的随机抽样和抽样分布——概率论知识要点概率论作为数理统计的基础,是研究随机现象及其规律的数学分支。

在数理统计中,随机抽样和抽样分布是非常重要的概念,本文将对这两个概念进行详细介绍和解释。

一、随机抽样随机抽样是指从总体中以随机的方式选择样本的过程。

在进行随机抽样时,每个个体被选中的概率应该是相等的,这样才能保证样本的代表性和可靠性。

随机抽样的方法有很多种,常用的包括简单随机抽样、分层抽样和系统抽样等。

1. 简单随机抽样简单随机抽样是最基本的抽样方法,它的特点是每个个体被选中的概率相等且相互独立。

简单随机抽样可以通过随机数表、随机数发生器等工具来实现。

在实际应用中,简单随机抽样常用于总体规模较小的情况。

2. 分层抽样分层抽样是将总体划分为若干个层次,然后从每个层次中随机选择样本。

这种抽样方法可以保证不同层次的个体在样本中的比例与总体中的比例相同,从而提高样本的代表性。

3. 系统抽样系统抽样是按照一定的规则从总体中选取样本的方法。

例如,可以按照一定的间隔从总体中选择样本,这个间隔称为抽样间隔。

系统抽样的优点是操作简便,但也存在可能引入系统误差的风险。

二、抽样分布抽样分布是指在随机抽样的基础上,通过大量重复抽样得到的统计量的分布情况。

在数理统计中,常用的抽样分布包括正态分布、t分布和F分布等。

1. 正态分布正态分布是一种重要的抽样分布,它具有对称、单峰和钟形曲线的特点。

在大样本情况下,根据中心极限定理,样本均值的分布接近于正态分布。

正态分布在数理统计中的应用非常广泛,例如用于估计总体均值和总体方差等。

2. t分布t分布是用于小样本情况下的抽样分布。

它相比于正态分布来说,具有更宽的尾部和更矮的峰值。

t分布的形状取决于自由度,自由度越大,t分布越接近于正态分布。

t分布在小样本情况下的参数估计和假设检验中经常被使用。

3. F分布F分布是用于比较两个样本方差是否显著不同的抽样分布。

F分布的形状取决于两个样本的自由度,它具有右偏和非对称的特点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

样本k阶原点矩
Ak
1 n
n i1
Xik
样本k阶中心矩 Mk n1in1(Xi X)k
k=1,2,…
例1:设E(X)=μ,D(X)=σ2,再记 证明下面结果:
(1)这实际上是求n个随机变量的平均值的数学期望与方差;
(2)这实际上是求n个随机变量的样本方差的表达式。
(3)这实际上是求n个随机变量的样本方差的表达式。
第六章第三节 几个常用的分布
抽样分布
统计量既然是依赖于样本的,而 后者又是随机变量,故统计量也是随 机变量,因而就有一定的分布,这个 分布叫做统计量的“抽样分布” .
统计三大分布
一、 2 分布
2 分布是由正态分布派生出来的一种分布.
定义: 设 X1,X2,,Xn相互独立, 都服从正态 分布N(0,1), 则称随机变量:
统计量
一、 统计量
由样本值去推断总体情况,需要对样本 值进行“加工”,这就要构造一些样本的函数 ,它把样本中所含的(某一方面)的信息 集中起来.
这种不含任何未知参数的样本的函数 称为统计量. 它是完全由样本决定的量.
二、几个常见统计量
样本均值
1 n
X n i1 Xi
样本方差 S2n11in1(Xi X)2
随机样本 X a (X 1 2 X 2 )2 b (3 X 3 4 X 4 )2
当a=
, b=
时, X ~ 2(2).
解 由题意得
a(X12X2)~N(0,1)
b(3X34X4)~N(0,1)
D[ a(X1 2X2)]1 D[ b(3X3 4X4)]1
a =1/20 b=1/100
2—分布的密度函数曲线
2X 12X 22 X n2
所服从的分布为自由度为 n 的 2 分布.
记为 2 ~2(n)
2 分布的密度函数为
f(x;n)2n21(n2)xn 21e2x
0
x0 x0
其中伽玛函数 (x)通过积分
(x)ettx1d,t x0 0
来定义.
由 2 分布的定义,不难得到:
(1) 设 X1,X2,,Xn相互独立, 都服从正态分布
N(,2), 则
21
2
n
(Xi )2~2(n)
i1
(2) 设 X 1~2(n 1)X ,2~2(n 2),且X1,X2相互
独立,则 X 1X 2~2(n 1n 2)
这个性质叫 2分布的可加性.
(3)若X~2(n),
则可以求得, E(X)=n, D(X)=2n
例1
设 X1 , X2 , X3 , X4 是取自总体N(0,4)的简单
布 N(0,9),而 X1,, X9 和 Y1,,Y9
分别是来自总体 X 和 Y 的,则统计量
U

X1 X9 Y12 Y92
服从(
t
X1 9 9i1
Xi
~N(0,1),
)分布,参数为( 9 ).
Yi ~ N(0,1) 3

Y ~i 91(Y 3i)21 9i 91Yi2~ 2(9)
X 与Y~独立,
f(x;n)2n21(n2)xn 21e2x
0
x0 x0
(4) 2 分布的分位点
对于给定的正数 ,01称满足条件
P2 2 (n ) 2(n )f(y )d y
的点
2
(
n)

2 (n)
分布的上
分位点.
2
(n
)
例2 设X~ 2(10),P(X>λ1)=0.025, P(X<λ2)=0.05,求λ1,λ2.
F 分布的性质 1
F1(n1,n2)F(n2,n1)
例1 求 F 0 .0 ( 1 5 ,1 0 )F 6 , 0 .9 ( 1 9 ,3 2 ) .0
解 由 0 . 0 ,n 5 1 1 ,n 2 0 16
查得 F 0 . 0 ( 1 5 ,1 0 ) 2 6 . 49
由 0 .9 ,得 9 1 0 .0 ,n 1 1 1,2 n 2 3.0
Y n2
服从自由度为
n1及 n2 的F分布,n1称为第一自由度,n2称为 第二自由度,记作F~F(n1,n2).
若X~F(n1,n2), X的概率密度为
f(x ;n 1,n 2) 0 (n 2 (1)n 1 2n (2)n 2 2)(n n 1 2)n n (1 2x)n 2 1 11n n 1 2xn 1 x 2n 2 0x0
2.性质 由定义可见,
1 Y n2 F X n1
~F(n2,n1)
F 分布的分位点
对于给定的正数 ,01称满足条件 ∫ P F F ( n 1 , n 2 ) ∞ F ( n 1 , n 2 )f ( y ) d a y
的点 F(n1,n2) 为 F(n1,n2) 分布的上
分位点 F(n1,n2)
解 102.02(510) 2 02.95(10)
(二)t 分布 1.定义: 设X~N(0,1) , Y~ 2 (n) , 且X与Y 相互独立, 则称变量 T X
Yn 所服从的分布为自由度为 n的 t 分布. 记为T~t(n). T的密度函数为:
f(x;n)[n (1)2](1x2)n2 1
(n2) n n
查得 F 0 . 0 ( 3 1 ,1 0 ) 3 2 . 70
于F 0 是 . 9 ( 1 9 , 3 ) 2 1 / 0 得 3 . 7 0 . 2 07
t (n)
例 2 已知随 T~t(1机 ),0求 变 当 0 .量 05
时 t0 .0(5 1)0 t,0 .02 (15)0

t0.05(1)01.81.2
t0.02(1 5 )02.228
(三)F分布
1.定义: 设X~2(n 1)Y ,~2(n 2),X与Y相互
独立,则称统计量 F X n1
(二)t 分布
1.定义: 设X~N(0,1) , Y~ 2(n) , 且X与Y
相互独立, 则称变量 T X Yn
所服从的分布为自由度为 n的 t 分布. 记为T~t(n). T的密度函数为:
f(x;n)[n (1)2](1x2)n2 1 (n2) n n
例1 设随机变量X 和Y 相互独立且都服正态分
所以
U
X Y~/ 9 ~ t(9)
2.性质 t分布的密度函数关于x=0对称,且
当n充分大时,其图形类似于标准正态分 布密度函数的图形.
t 分布的分位点
对于给定的正数 ,01称满足条件 ∫ P t t( n ) ∞ t(n )h ( t) a
的点 t (n) 为 t (n ) 分布的上
分ቤተ መጻሕፍቲ ባይዱ点
相关文档
最新文档