统计学04第四章抽样与抽样分布

合集下载

统计学1-7章的填空、判断题 4

统计学1-7章的填空、判断题   4

第四章抽样与抽样分布一、单项选择题1.抽样调查的目的在于(a )。

A、了解总体的基本情况B、用样本指标推断总体指标C、对样本进行全面调查D、了解样本的基本情况2.假定10亿人口大国和100万人口小国的居民年龄变异程度相同,现在各自用重复抽.样方法抽取本国的1%人口计算平均年龄,则抽样误差(c)。

A、两者相等B、前者大于后者C、前者小于后者D、不能确定3、抽样调查,随着样本量的增加,调查的误差(a)A、减小B、不变C、扩大D、不确定4、对某单位职工的文化程度进行抽样调查,得知其中80%的人是高中毕业,抽样平均误差为2%,当概率为95.45%(Z=2)时,该单位职工中具有高中文化程度的比重是( c )A、等于78%B、大于84%C、在76%与84%之间D、小于76%5、某银行想知道平均每户活期存款余额和估计其总量,根据存折账号的顺序,每50本存折抽出一本登记其余额。

这样的抽样组织形式是( c )A、类型抽样B、整群抽样C、机械抽样D、纯随机抽样6、农户家计调查中,按地理区域划分所进行的区域抽样,其抽样组织方式属于(d)A、简单随机抽样B、类型抽样C、等距抽样D、整群抽样7、抽样平均误差是指样本平均数或样本成数的( c )A、平均数B、平均差C、标准差D、标准差系数8、在不重复抽样中,抽样单位数从5%增加到25%,抽样平均误差( c )。

A、增加39.7%B、增加约3/5C、减少约3/5D、没有什么变化9、(甲)某高校新生1000人,从理科中随机抽取60人,文科中随机抽取40人,进行英语水平测试;(乙)从麦地总垅长中每3000市尺测竿落点处前后5尺长垅的产量进行实割实测;(丙)为研究城市青年业余时间活动情况,某城市每第10个居委会被抽取,并询问住在那里所有从16岁到30岁的青年人。

上述哪项属于类型抽样?( a )A、甲B、乙C、乙、丙D、甲、乙、丙10、抽样调查所遵循的基本原则是( b )A、准确性原则B、随机性原则C、可靠性原则】D、灵活性原则11、在其它条件不变的情况下,如果允许误差范围缩小为原来的1/2,则样本容量(a )A、扩大为原来的4倍B、扩大为原来的2倍C、缩小为原来的1/2倍D、缩小为原来的1/4倍12、对一批产品按不重复抽样方法抽取200件进行调查,其中废品8件,已知样本容量是产品总量的1/20,当F(Z)=95.45%时,不合格率的抽样极限误差是( d )A、1.35%B、1.39%C、2.70%D、2.78%13、抽样平均误差,确切地说是所有样本指标(样本平均数和样本成数)的( b)。

抽样与抽样分布

抽样与抽样分布

抽样与抽样分布在统计学中,抽样是一种常用的数据收集方法,通过从总体中选择一部分样本来进行研究和分析。

抽样的目的是通过样本来推断总体的特征和性质。

在进行抽样时,我们需要了解抽样的方法和抽样分布的概念。

一、抽样方法1. 无偏抽样无偏抽样是指所有样本有相同被选中的机会。

这样可以确保样本的代表性,从而减小样本估计值和总体真值之间的误差。

常见的无偏抽样方法包括简单随机抽样、系统抽样和分层抽样等。

2. 有偏抽样有偏抽样是指样本的选择并不具有相等的机会。

这样可能导致样本的代表性不足,从而产生较大的估计误差。

有时,有偏抽样也可以用于特定的研究目的,但需要明确地说明和分析偏差带来的影响。

二、抽样分布1. 抽样分布的概念抽样分布是指统计量在各个可能样本上的取值分布。

统计量可以是样本均值、样本方差等。

抽样分布的性质对于进行统计推断和假设检验非常重要。

2. 样本均值的抽样分布样本均值的抽样分布在中心极限定理的条件下近似服从正态分布。

中心极限定理指出,当样本容量足够大时,无论总体分布如何,样本均值的抽样分布都会接近正态分布。

3. 样本比例的抽样分布样本比例的抽样分布在满足一些条件的情况下也近似服从正态分布。

这些条件包括样本容量足够大、总体比例接近0.5以及样本与总体之间的独立性等。

4. 样本方差的抽样分布样本方差的抽样分布不服从正态分布。

通常情况下,样本方差的抽样分布呈右偏态,即偏度大于0。

为了得到样本方差的抽样分布,可以使用抽样分布的近似分布,如卡方分布。

三、应用案例抽样与抽样分布的方法和理论在实际统计学中有广泛的应用。

以下是一些常见的应用案例:1. 调查研究在进行调查研究时,我们经常需要从总体中选择一部分样本进行问卷调查或面访。

通过利用抽样与抽样分布的方法,我们可以将样本的调查结果推广到总体中,从而得到总体的特征和性质。

2. 假设检验假设检验是统计学中常用的推断方法之一。

通过比较样本统计量与假设的总体参数值,我们可以判断假设的合理性。

统计学之抽样与抽样分布

统计学之抽样与抽样分布

的抽样分布
统计推断的过程
• 总体均值
m=?
• 从总体中抽取 • 样本容量为 n 的样本
• 用 作为m 的点估计
• 计算样本平均值
的抽样分布
的抽样分布是指所有可能的样本平均值 的概率分 布
的期望值
E( ) = = 总体平均值
的抽样分布
的标准差

有限总体
无限总体
• 当 n/N < .05时,可以将一个有限总体看作是无限
统计学之抽样与抽样分 布
2020年4月29日星期三
Chapter 7
抽样和抽样分布
本章主要内容
简单随机抽样 点估计 抽样分布 样本平均值 的抽样分布 样本比例 的抽样分布 抽样方法
•n = 100
•n = 30
统计推断
统计推断的目的是利用样本的信息推断总体的信息 总体是指感兴趣的所有元素的集合 样本是总体的一个子集 通过样本统计量对总体参数进行估计 只要抽样方法恰当,通过样本统计量可以对总体参数 进行很好的估计
也就是说,样本平均值在总体平均值+/-10分范围内的 概率为0.5036
•面积 = 2(.2518) = .5036
• 的抽样分布
•980 •990•1000
的抽样分布
的抽样分布是指所有可能的样本比例 的概率分布 的期望值
p = 总体比例
的抽样分布
的标准差 有限总体
无限总体
• 也称为样本比例的标准误
总体

称为有限总体校正因子.
• 也称为样本均值的标准误
的抽样分布
中心极限定理:只要样本容量足够大 (n > 30),不管总 体服从什么分布,样本平均值 都可以认为近似服从 正态分布。

统计学中抽样和抽样分布基础知识

统计学中抽样和抽样分布基础知识
从无限总体的抽样 无限总体的随机样本 如果从一个无限总体中抽取一个容量为n的样本,使得以下条件被满足 抽取的每个个体来自于同一总体 每个个体的抽取是独立的
样本均值的抽样分布
定义:样本均值的所有可能值的概率分布 样本均值的数学期望:对于简单随机样本时,样本均值的数学期望与总体均值相等 样本均值样本中具有感兴趣特征的个体个数/样本容量 样本比率的抽样分布:是样本比率的所有可能值的概率分布
样本比率的数学期望:样本比率的数学期望与总体比率相等 样本比率的标准差
有限总体:有限总体修正系数*无限总体样本比率的标准差 无限总体:根号下p(1-p)/n 样本比率的抽样分布的形态 当样本容量足够大,同时np≥5和n(1-p)大于等于5时,样本比率的抽样分布可以 用正态分布近似
统计学中抽样和抽样分布基础知识
抽样基本属于
抽样总体:抽取样本的总体 抽样框:用于抽选样本的个体清单 参数:总体的数字特征
抽样
从有限总体的抽样 建议采用概率抽样 简单随机样本:从容量为N的有限总体中抽取一个容量为n的样本,如果容量为n 的每一个可能的样本都以相等的概率被抽出,则称该样本为简单随机样本 无放回抽样和有放回抽样 无放回抽样:被抽取对象已经选入样本,不希望该对象被多次选入 有放回抽样:对已经出现过的随机数仍选入样本
点估计
样本统计量:为了估计总体参数,计算样本的特征 抽样总体和目标总体
目标总体是我们想要推断的总体 抽样总体是指实际抽取样本的总体 点估计的性质 无偏性:样本统计量是相应总体参数的无偏估计量 有效性:采用标准误差较小的点估计量,给出的估计值与总体参数更接近 一致性:大样本容量给出的点估计与总体均值更接近
其他抽样方法
分层随机抽样:总体中的个体首先被分成层,总体中的每一个体属于且仅属于某一 层,从每一层抽一个简单随机样本 整群抽样:总体中的个体首先被分成单个组,总体中的每一个个体属于且仅属于某 一群,有群为单位抽取一个简单随机样本 系统抽样:对容量很大的总体,第一个个体为随机抽样,总体个体排列时个体的随 机顺序 方便抽样:非概率抽样 判断抽样:对总体非常了解主观确定总体中认为最具代表性的个体组成样本

第四章 (概率论基础与抽样分布)

第四章 (概率论基础与抽样分布)

4 - 25
第四章 概率论与抽样分布
第二节 概率分布
分布函数与密度函数的图示
1. 密度函数曲线下的面积等于1 2. 分布函数是曲线下小于 x0 的面积
f(x)
4 - 26
F ( x0 )
x0
x
第四章 概率论与抽样分布
第二节 概率分布
连续型随机变量的期望和方差
1. 连续型随机变量的数学期望为
E(X ) xf (x)dx
4 - 41
第四章 概率论与抽样分布
第二节 概率分布
4 - 42
第四章 概率论与抽样分布
第二节 概率分布
【例】已知x~N(12.86,1.332),若 P(x<l1)=0.03,P(x≥l2)=0.03,求l1,l2
概率的性质
1. 非负性 对任意事件A,有 0 P 1
2. 规范性 必然事件的概率为1;不可能事件的概率为0。即
P ( ) = 1; P ( ) = 0
3. 可加性 若A与B互斥,则P ( A∪B ) = P ( A ) + P ( B ) 推广到多个两两互斥事件A1,A2,…,An,有 P ( A1∪A2 ∪… ∪An) = P ( A1 ) + P (A2 ) + …+ P (An )
标准正态分布
=1
0.1664
2.9 5 7.1 X
.0832 .0832
-.21 0 .21 Z
4 - 37
第四章 概率论与抽样分布
第二节 概率分布
【例】已知x~N(30.26,5.12), 求P(|x-30.26|<5.1); P(20.06≤x<40.46)
P(| X 30.26 | 5.1) P 5.1 X 30.26 5.1

统计学抽样与抽样分布

统计学抽样与抽样分布

一、 几个概念
(二)样本总体与样本指标
样本指标(统计量)。在抽样估计中,用来反 映样本总体数量特征的指标称为样本指标,也 称为样本统计量或估计量,是根据样本资料计 算的、用以估计或推断相应总体指标的综合指 标。
5
样本和统计量
统计量(statistic)。在抽样估计中,用来反映样本 总体数量特征的指标称为样本指标,也称为样本统计 量或估计量,是根据样本资料计算的、用以估计或推 断相应总体指标的综合指标。
调查的实施 缺点是估计的精度较差
多阶段抽样
(multi-stage sampling)
1. 先抽取群,但并不是调查群内的所有单位,而是再
进行一步抽样,从选中的群中抽取出若干个单位进 行调查
群是初级抽样单位,第二阶段抽取的是最终抽样单位。 将该方法推广,使抽样的段数增多,就称为多阶段抽样
2. 具有整群抽样的优点,保证样本相对集中,节约调
4.1 抽样的基础知识
一、 几个概念 二、抽样误差 三、常用的抽样方法
1
一、几个概念
(一)全及总体与总体指标
全及总体。简称总体(Population),是指所要研究的 对象的全体,它是由所研究范围内具有某种共同性质 的全部单位所组成的集合体。总体单位总数用N表示。 (举例) 总体指标(参数)。在抽样估计中,用来反映总体数 量特征的指标称为总体指标,也叫总体参数。 研究目的一经确定,总体也唯一地确定了,所以总体 指标的数值是客观存在的、确定的,但又是未知的, 需要用样本资料去估计。
随机误差:又称偶然性误差,是指遵循随机原则 抽样,但由于样本各单位的结构不足以代表总体 各单位的结构而引起的样本估计量与总体参数之 间的误差。这就是抽样估计中所谓的抽样误差 。

第四章 抽样和抽样分布

第四章 抽样和抽样分布
E p P P1 P N n n N 1 P1 P n 1 n N
p
例子:
例:要估计某地区10000名适龄儿童的入学 率,用不重置抽样方法从这个地区抽取400 名儿童,检查有320名儿童入学,求样本入 学率的平均误差。 已知条件:
样本日工资平均数
单位:元
样本变量 34 34
38 42 46 50
38 36
38 40 42 44
42 38
40 42 44 46
46 40
42 44 46 48
50 42
44 46 48 50
34
36 38 40 42
抽样分布为:
Ex

x f
i 1 9
9
i i
样本日平均工资分布
样本日平均工资
三、抽样分布定理
样本平均数的抽样分布定理
(1)正态分布再生定理
X ~ N ( X , 2 ) ,则从这个总体中抽取样本容 总体变量
量为n的样本平均数 x 也服从正态分布,其平均数E ( x ) 仍为 X ,其标准差 ( x ) 。即样本平均数 x 服从正态分布 x ~ N ( X , 2 ) 。
不论总体是何种分布,只要样本的单位数量增 多,则样本平均数就趋于正态分布。
一般认为样本单位数不少于30的是大样本,样 本平均数的抽样分布就接近于正态分布。
总体未 知参数
1. 是一种理论概率分布
2. 样本统计量是随机变量
– 样本均值, 样本比例,样本方差等
3. 结果来自容量相同的所有可能样本
4. 提供了样本统计量长远我们稳定的信息, 是进行推断的理论基础,也是抽样推断科 学性的重要依据

(04)第4章+抽样与抽样分布

(04)第4章+抽样与抽样分布

4-6
统计学
STATISTICS
例题分析
♦ 假定我们刚刚已取了飞机制造所用的铆钉的25个 假定我们刚刚已取了飞机制造所用的铆钉的25个
一组的样本。检测铆钉的抗剪强度,破坏每个铆 钉所需的力是响应变量。对这组样本,可以求得 各种描述性的测量(均值、方差等)。 ♦ 然而,我们的感兴趣的是总体,并不是样本自身。 被测试的铆钉在测试时已被破坏,不能再用在飞 机的制造上,所以我们肯定不能测试所有的铆钉。 我们必须从这组样本或几组这样的样本来决定总 体的某些特性。 ♦ 因此,我们必须设法推断信息,也即基于样本的 观测结果作出总体的推断
(例题分析) 例题分析)
计算出各样本的均值,如下表。 计算出各样本的均值,如下表。并给出样本均 值的抽样分布
4 - 32
样本均值的抽样分布
统计学
STATISTICS
(例题分析) 例题分析)
【例】设一个总体,含有4个元素(个体) ,即总体单位 设一个总体,含有4个元素(个体) 数N=4。4 个个体分别为x1=1,x2=2,x3=3,x4=4 。总 个个体分别为x 体的均值、 体的均值、方差及分布如下 总体分布
4 - 17
统计学
STATISTICS
分层抽样
分层抽样
统计学
STATISTICS
(stratified sampling) sampling)
♦ 分层抽样:在抽样之前先将总体的单位按 分层抽样:
某种特征或某种规则划分为若干层(类), 然后从不同的层中独立、随机地抽取一定 数量的单位组成一个样本,也称分类抽样 数量的单位组成一个样本,也称分类抽样 sampling) (stratified sampling) ♦ 在分层或分类时,应使层内各单位的差异 尽可能小,而使层与层之间的差异尽可能 大
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

X 的概率密度函数
x2
3. Pf xx1 — XX 的x密2 度 函 数f xdx
x1
2020/11/30
第四章 抽样和抽样分布
9
2.2 连续型随机变量概率分布
f(x)
0
2020/11/30
S
x1
x2
第四章 抽样和抽样分布
x
10
2.3 随机变量的数字特征 离散型随机变量的数值特征:
N
期望: E X X 1 P1 X 2 P2 X n Pn X i Pi i 1 N
1 2
2 4
PX 2 1 1 1
22 4
2020/11/30
第四章 抽样和抽样分布
6
2.1 离散型随机变量概率分布
P
X 概率分布图
2/4
1/4
X 的概率分布图:
0
1
2
X
2020/11/30
第四章 抽样和抽样分布
7
2.1 离散型随机变量概率分布
X 的概率分布X函的数分:布函数
F(X) 0 当 x 0
1.离散型随机变量的概率分布: X 的概率分布表
X
X1 X2 X N
P
P1
P2 PN
2020/11/30
第四章 抽样和抽样分布
3
2.2 离散型随机变量概率分布
2.概率分布函数:
F x P X x P X Xi Pi
Xi x
Xi x
概率分布函数的性质:
P x1 X x2 P X x2 P X x1
3.1 抽样及抽样分布的含义 3.2 重置抽样下的抽样分布 3.3 不重置抽样下的抽样分布
基本问题
❖ 抽样 ❖ 样本(样本点) ❖ 样本空间 ❖ 随机原则 ❖ 随机抽样 ❖ 重置抽样 ❖ 不重置抽样
2020/11/30
第四章 抽样和抽样分布
15
基本问题
样本点个数
设:总体单位数 N ,样本容量 n : 样本空间的样本点数为:
2. 计算每个样本的样本统计量的取值; 3. 根据样本统计量的所有取值计算相应
的概率; 4. 样本统计量的概率分布 — 抽样分布。
2020/11/30
第四章 抽样和抽样分布
18
3.2 重置抽样下的抽样分布
总体样变本量平的均分数布的:抽样分X 布 100元 2 200 某施工小组X5个员工的 1日0 2工元 资为80、X1 9X02 、X3 1X040、X5 110、120
x1=100 x2=95
X 100 元
X
10 2元
80
90 100
110
120
(100,80)
( 120,90) ( 80 ,80)
…… ……
x3=100
x24=1
E x X 100 ; x X 10 2 10
n
2
2020/11/30
第四章 抽样和抽样分布
20
3.2 重置抽样下的抽样分布
总体变量分布表
2020/11/30
总体变量 频 数
X
N
80
1
90
1
100
1
110
1
120
1
合计
5
第四章 抽样和抽样分布
频率 N/ΣN 1/5 1/5 1/5 1/5 1/5 1.00
21
3.2 重置抽样下的抽样分布
样本平均日工资计算表
变量/元 80
第四章
概率基础与抽样分布
第一节 随机事件及其概率(略) 第二节 随机变量的概率分布 第三节 抽 样 分 布 第四节 正 态 分 布 § 思考与练习
第四章 概率基础与抽样分布
第二节
随机变量的概率分布
2.1 离散型随机变量概率分布 2.2 连续型随机变量概率分布 2.3 随机变量的数字特征
2.1 离散型随机变量概率分布
1
F x P3X/4 x
1
4

2/4
3 4 当
1/4
4 4 当
0 x1 1 x2 2 x
2020/11/30
1
2
X
第四章 抽样和抽样分布
8
2.2 连续型随机变量概率分布
连续X❖型的密 随概率机度分变函布量数函的数的概性 率分质布:
1.
f
F
xx
0;x
f x dx
2. f x dx 1 ;
方差:σ 2 X X i E X 2 Pi i 1
N
标准差: σ X X i E X 2 Pi i 1
2020/11/30
第四章 抽样和抽样分布
11
2.3 随机变量的数字特征
概 数学期望 率 论
方差
平均 数 统


方差
2020/11/30
第四章 抽样和抽样分布
12
90 100 110
80
80
85
90
95
90
85
90
95 100
100 90
F x2 F x1
X
F x1 XXP X x1 FPx 2x1PXX x 2x2
x1
x2
2020/11/30
第四章 抽样和抽样分布
4
2.1 离散型随机变量概率分布
在统计中,通常要求 X 落入[ x1 , x2 )的概率。 对于离散型随机变量:
Px1 X x2 F x2 F x1 F X x1 F X x2
由于连续型随机变量在某点处的概率等于零。 对于连续性随机变量:
P x1 X x2 F x2 F x1
2020/11/30
第四章 抽样和抽样分布
5
2.2 离散型随机变量概率分布
设:正面向上的次数为 X,
则 X = 0、1、2
P X 0 1 1 1
22 4
PX
1
1 2
1 2
1 2
P ( X元) 。现用 80 重 90 置 100 抽110样12方 0 法从5人
中随机抽取2人构成样本,求
1/5
样本平均数抽样分布。X 80 90 100 110 120
X
2020/11/30
第四章 抽样和抽样分布
19
3.2 重置抽样下的抽52 =样25分布
x
n = 2 (80,120)
x
(90,100)
2.3 随机变量的数字特征
连续型随机变量的数值特征:
期望 —
E X x f x dx
方差 — σ 2 X x E X 2 f x dx
标准差 — σX x E X 2 f x dx
2020/11/30
第四章 抽样和抽样分布
13
第四章 抽样与抽样分布
第三节 抽样分布
重置
讲 顺序
不讲 顺序
不重置
2020/11/30
第四章 概率基础和抽样分布
16
3.1 抽样及抽样分布的含义
抽样分布
— 样本统计量的概率分布。
样本统计量
— 指样本指标,是样本空间的样 本随机变量的函数。
2020/11/30
第四章 抽样和抽样分布
17
3.1 抽样及抽样分布的含义
抽样分布的计算:
1. 从总体中抽取样本容量相同的所有样 本 — 样本空间;
相关文档
最新文档