2011年安徽高考理科数学试题及答案
2011年安徽省高考数学试卷(理科)及解析

2011年安徽省高考数学试卷(理科)及解析.一、选择题(共10小题,每小题5分,满分50分) 1、(2011•安徽)设i 是虚数单位,复数12aii+﹣为纯虚数,则实数a 为( ) A 、2B 、﹣2C 、12﹣ D 、12考点:复数代数形式的混合运算。
专题:计算题。
分析:复数的分子、分母同乘分母的共轭复数,化简后它的实部为0,可求实数a 的值. 解答:解:复数12ai i +﹣=(1)(2)(2)(2)ai i i i +++﹣=225a ai i++﹣,它是纯虚数,所以a =2, 故选A点评:本题是基础题,考查复数的代数形式的混合运算,考查计算能力,常考题型. 2、(2011•安徽)双曲线2x 2﹣y 2=8的实轴长是( ) A 、2 B 、22C 、4D 、42考点:双曲线的标准方程。
专题:计算题。
分析:将双曲线方程化为标准方程,求出实轴长. 解答:解:2x 2﹣y 2=8即为 22148x y =﹣ ∴a 2=4 ∴a =2 故实轴长为4 故选C点评:本题考查双曲线的标准方程、由方程求参数值.3、(2011•安徽)设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x 2﹣x ,则f (1)=( )A 、﹣3B 、﹣1C 、1D 、3考点:函数奇偶性的性质。
专题:计算题。
分析:要计算f (1)的值,根据f (x )是定义在R 上的奇函娄和,我们可以先计算f (﹣1)的值,再利用奇函数的性质进行求解,当x ≤0时,f (x )=2x 2﹣x ,代入即可得到答案. 解答:解:∵当x ≤0时,f (x )=2x 2﹣x , ∴f (﹣1)=2(﹣1)2﹣(﹣1)=3, 又∵f (x )是定义在R 上的奇函数 ∴f (1)=﹣f (﹣1)=﹣3 故选A点评:本题考查的知识点是函数奇偶性的性质,熟练掌握函数的奇偶性的性质是解答本题的关键.4、(2011•安徽)设变量x ,y 满足|x |+|y |≤1,则x +2y 的最大值和最小值分别为( ) A 、1,﹣1 B 、2,﹣2C 、1,﹣2D 、2,﹣1考点:简单线性规划。
2011年安徽高考数学试卷(文、理及答案)

2011年普通高等学校招生全国统一考试(安徽卷)数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3页至第4页。
全卷满分150分,考试时间120分钟。
考生注意事项:1. 答题前,务必在试题卷、答题卡规定填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。
务必在答题卡背面规定的地方填写姓名和座位号后两位。
2. 答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
3. 答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上....书写,要求字体工整、笔迹清晰。
作图题可先用铅笔在答题卡...规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。
必须在题号所指示的答题区域作答,超出书写的答案无效.........,在试题卷....、草稿纸上答题无效........。
4. 考试结束后,务必将试题卷和答题卡一并上交。
参考公式:1、锥体体积公式:V=13Sh, 其中S 是锥体的底面积,h 是锥体的高。
2、若(x 1,y 1),(x 2,y 2)…,(x n ,y n )为样本点,ˆy bx a =+为回归直线,则,1122211()()()n niii ii i nniii i x x y y x y nxyb x x xnx ====---==--∑∑∑∑, a y bx =-, 1111, n ni i i i x x y y n n ====∑∑第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设i 是虚数单位,复数12aii+-为纯虚数,则实数a 为( ) (A ) 2 (B ) -2 (C ) -12 (D ) 12(2)集合{1,2,3,4,5,6},U ={1,4,5},S ={2,3,4},T =则()U S C T 等于( ) (A) {1,4,5,6} (B) {1,5} (C) {4} (D) {1,2,3,4,5} (3) 双曲线2228x y -=的实轴长是( )(A )2 (B)(4)若直线30x y a ++=过圆22240x y x y ++-=的圆心,则a 的值为( ) (A )-1 (B ) 1 (C )3 (D )-3(5)若点(),a b 在lg y x =图像上,1a ≠,则下列点也在此图像上的是( ) (A )1, b a ⎛⎫⎪⎝⎭ (B )()10, 1a b - (C )10, 1b a ⎛⎫+ ⎪⎝⎭(D )2(, 2)a b (6)设变量x ,y 满足110x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则2x y +的最大值和最小值分别为( )(A )1,-1 (B )2, -2 (C )1, -2 (D )2,-1(7)若数列{}n a 的通项公式是(1)(32)n n a n =--,则12a a ++…10a +=( ) (A )15 (B)12 (C )-12 (D) -15(8)一个空间几何体的三视图如图所示,则该几何体的表面积为( ) (A )48 (B )32+(C )48+(D )80(9)从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于( ) (A )110 (B )18 (C )16 (D )15(10)函数2()(1)n f x ax x =-在区间[]0,1上的图像如图所示,则n 可能是( )(A )1 (B )2 (C )3 (D )4第 Ⅱ卷 (非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置。
2011高考数学试卷安徽卷理科

数学(理科)参考公式:如果事件A 与B 互斥,那么 锥体积V=13Sh, 其中S 为锥体的底面面积, P(A+B)=P(A)+P(B) h 为锥体的高如果事件A 与B 相互独立,那么P(AB)=P(A)P(B)第Ⅰ卷(选择题 共50分)一、 选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设i 是虚数单位,复数2i ai i+-为纯虚数,则实数a 为 (A )2 (B )-2 (C )12- (D )12 (2)双曲线2228x y -=的实轴长是(A)2 (B) (C)4 (D)(3)设()f x 是定义在R上的奇函数,当0x ≤时,()22f x x x =-,则()1f =(A)-3 (B)-1 (C)1 (D)3(4)设变量,x y 满足1,x y +≤则2x y +的最大值和最小值分别为(A)1,-1 (B)2,-2 (C)1,-2 (D)2,-1 (5) 3π 到圆2cos ρθ= 的圆心的距离为(A )2 (B) ((6)一个空间几何体得三视图如图所示,则该几何体的表面积为(A )48(B )32+8,17(C )48+8,17(D )50 (7)命题“所有能被2整除的数都是偶数”的否定..是 (A )所有不能被2整除的数都是偶数(B )所有能被2整除的数都不是偶数(C )存在一个不能被2整除的数都是偶数(D )存在一个不能被2整除的数都不是偶数(8)设集合{}1,2,3,4,5,6,A ={}4,5,6,7,B =则满足S A ⊆且S B Z ≠ 的集合S 为(A )57 (B )56 (C )49 (D )8(9)已知函数()sin(2)f x x φ=+为实数,若()()6f x f π≤对x R ∈恒成立, 且()()2f f ππ>,则()f x 的单调递增区间是 (A ),()36k k k Z ππππ⎧⎫-+∈⎨⎬⎩⎭ (B ),()2k k k Z πππ⎧⎫+∈⎨⎬⎩⎭ (C )2,()63k k k Z ππππ⎧⎫++∈⎨⎬⎩⎭ (D ),()2k k k Z πππ⎧⎫-∈⎨⎬⎩⎭(10)函数()()1nm f x nx x =-在区间[]0,1上的图像如图所示,则,m n 得知可能是 (A )1,1m n == (B) 1,2m n ==(C) 2,1m n == (D) 3,1m n ==第Ⅱ卷 (非选择题 共100分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡....上作答,在试题卷上答题无效.........。
2011年安徽高考数学试卷(文、理及答案)

2011年普通高等学校招生全国统一考试(安徽卷)数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3页至第4页。
全卷满分150分,考试时间120分钟。
考生注意事项:1. 答题前,务必在试题卷、答题卡规定填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。
务必在答题卡背面规定的地方填写姓名和座位号后两位。
2. 答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
3. 答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上....书写,要求字体工整、笔迹清晰。
作图题可先用铅笔在答题卡...规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。
必须在题号所指示的答题区域作答,超出书写的答案无效.........,在试题卷....、草稿纸上答题无效........。
4. 考试结束后,务必将试题卷和答题卡一并上交。
参考公式:1、锥体体积公式:V=13Sh, 其中S 是锥体的底面积,h 是锥体的高。
2、若(x 1,y 1),(x 2,y 2)…,(x n ,y n )为样本点,ˆy bx a =+为回归直线,则,1122211()()()n niii ii i nniii i x x y y x y nxyb x x xnx ====---==--∑∑∑∑, a y bx =-, 1111, n ni i i i x x y y n n ====∑∑第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设i 是虚数单位,复数12aii+-为纯虚数,则实数a 为( ) (A ) 2 (B ) -2 (C ) -12 (D ) 12(2)集合{1,2,3,4,5,6},U ={1,4,5},S ={2,3,4},T =则()U SC T 等于( )(A) {1,4,5,6} (B) {1,5} (C) {4} (D) {1,2,3,4,5} (3) 双曲线2228x y -=的实轴长是( )(A )2 (B) 22 (C)4 (D) 42(4)若直线30x y a ++=过圆22240x y x y ++-=的圆心,则a 的值为( ) (A )-1 (B ) 1 (C )3 (D )-3(5)若点(),a b 在lg y x =图像上,1a ≠,则下列点也在此图像上的是( )(A )1, b a ⎛⎫⎪⎝⎭(B )()10, 1a b - (C )10, 1b a ⎛⎫+ ⎪⎝⎭ (D )2(, 2)a b(6)设变量x ,y 满足110x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则2x y +的最大值和最小值分别为( )(A )1,-1 (B )2, -2 (C )1, -2 (D )2,-1(7)若数列{}n a 的通项公式是(1)(32)nn a n =--,则12a a ++…10a +=( )(A )15 (B)12 (C )-12 (D) -15(8)一个空间几何体的三视图如图所示,则该几何体的表面积为( ) (A )48 (B )32+817 (C )48+817 (D )80(9)从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于( ) (A )110 (B )18 (C )16 (D )15(10)函数2()(1)nf x ax x =-在区间[]0,1上的图像如图所示,则n 可能是( )(A )1 (B )2 (C )3 (D )4第 Ⅱ卷 (非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置。
2011年全国高考数学试题(安徽卷。理科)

2011年普通高等学校招生全国统一考试(安徽卷)数学(理科)一、选择题(本大题共10小题,每小题5分,共50分)(1)设i 是虚数单位,复数2i aii+-为纯虚数,则实数a 为 (A )2 (B )-2 (C )12- (D )12(2)双曲线2228x y -=的实轴长是(A)2 (B) (C)4 (D)(3)设()f x 是定义在R上的奇函数,当0x ≤时,()22f x x x =-,则()1f = (A)-3 (B)-1 (C)1 (D)3 (4)设变量,x y 满足1x y +≤,则2x y +的最大值和最小值分别为(A)1,-1 (B)2,-2 (C)1,-2 (D)2,-1(5) 3π到圆2cos ρθ= 的圆心的距离为(A )2 (B C (D(6)一个空间几何体得三视图如图所示,则该几何体的表面积为 (A )48(B )32+(C )48+(D )50(7)命题“所有能被2整除的数都是偶数”的否定是 (A )所有不能被2整除的数都是偶数 (B )所有能被2整除的数都不是偶数 (C )存在一个不能被2整除的数都是偶数 (D )存在一个不能被2整除的数都不是偶数(8)设集合{1,2,3,4,5,6}A =,{4,5,6,7}B =,则满足S A ⊆,且S B Z ⋂≠的集合S 为 (A )57 (B )56 (C )49 (D )8(9)已知函数()sin(2)f x x ϕ=+为实数,若()6f x f π⎛⎫≤ ⎪⎝⎭对x R ∈恒成立,且()2f f ππ⎛⎫> ⎪⎝⎭,则()f x 的单调递增区间是(A ),()36k k k Z ππππ⎧⎫-+∈⎨⎬⎩⎭ (B ),()2k k k Z πππ⎧⎫+∈⎨⎬⎩⎭(C )2,()63k k k Z ππππ⎧⎫++∈⎨⎬⎩⎭ (D ),()2k k k Z πππ⎧⎫-∈⎨⎬⎩⎭(10)函数()()1nm f x nx x =-在区间[0,1]上的图像如图所示,则,m n 得知可能是(A )1,1m n == (B )1,2m n == (C )2,1m n == (D )3,1m n ==二、填空题:共5小题,每小题5分,共25分(11)如图所示,程序框图(算法流程图)的输出结果是 (12)设2122101221(1)x a a x a x a x -=++++ ,则1011a a += (13)已知向量a 、b 满足(2)()6a b a b +⋅-=-,且||1a =,||2b =,则a 与b 的夹角为(14)已知ABC ∆ 的一个内角为120,并且三边长构成公差为4的等差数列,则ABC ∆的面积为(15)在平面直角坐标系中,如果x 与y 就称点(,)x y 为整点,下列命题中正确的是 (写出所有正确命题的编号)。
2011年全国高考数学试题(安徽word版)

2011年全国高考数学试题(安徽word 版)数学(理科)试题第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选题中,只有一项是符合题目要求的. (1)设i 是虚数单位,复数iai-+21为纯虚数,则实数a 为 (A)2(B) -2 (C) 21-(D)21 (2)双曲线8222=-y x 的实轴长是(A)2(B) 22(C) 4(D) 24(3)设)(x f 是定义在R 上的奇函数,当0≤x 时,x x x f -=22)(,则=)1(f (A)-3 (B)-1 (C) 1 (D)3 (4)设变量x,y 满足|x|+|y |≤1,则x+2y 的最大值和最小值分别为(A) 1,-1 (B) 2,-2 (C)1,-2 (D)2,-1 (5)在极坐标系中,点)3,2(π到圆θρcos 2=的圆心的距离为(A) 2 (B)942π+(C)912π+(D)3(6)一个空间几何体的三视图如图所示,则该几何体的表面积为(A)48(B) 17832+(C)17848+(D)80(7)命题“所有能被2整除的整数都是偶数”的否定..是 (A) 所有不能被2整除的整数都是偶数(B) 所有不能被2整除的整数都不是偶数 (C) 存在一个不能被2整除的整数是偶数(D) 存在一个能被2整除的整数不是偶数(8)设集合A={1,2,3,4,5,6},B={4,5,6,7,8},则满足A S ⊆且φ≠B S 的集合S 的个数是(A)57(B) 56(C) 49(D)8(9)已知函数)2sin()(ϕ+=x x f ,其中ϕ为实数,若|)6(|)(πf x f ≤对R x ∈恒成立,且)()2(ππf f >,则)(x f 的单调递增区间是 (A) )(6,3Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ(B) )(2,Z k k k ∈⎥⎦⎤⎢⎣⎡+πππ(C) )(32,6Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ(D) )(,2Z k k k ∈⎥⎦⎤⎢⎣⎡-πππ (10)函数n m x ax x f )1()(-=在区间[0,1]上的图像如图所示,则m,n 的值可能是(A) m=1,n=1 (B) m=1,n=2 (C) m=2,n=1 (D) m=3,n=1第Ⅱ卷(非选择题共100分)二、填空题:本大题共5小题,每小题5分,共25分。
2011年高考安徽省数学试卷-理科(含详细答案)

2011年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3页至第4页。
全卷满分150分,考试时间120分钟。
分钟。
考生注意事项:考生注意事项:1. 答题前,务必在试题卷、答题卡规定填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。
务必在答题卡背面规定的地方填写姓名和座位号后两位。
定的地方填写姓名和座位号后两位。
2. 答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
3. 答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上....书写,要求字体工整、笔迹清晰。
作图题可先用铅笔在答题卡...规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。
必须在题号所指示的答题区域作答,超出书写的答案无效.........,在试..题卷..、草稿纸上答题无效........。
4. 考试结束后,务必将试题卷和答题卡一并上交。
考试结束后,务必将试题卷和答题卡一并上交。
参考公式:参考公式:如果事件A 与B B 互斥,互斥,互斥, 椎体体积椎体体积13V Sh =,其中S 为椎体的底面积,为椎体的底面积, 那么()()()P A B P A P B +=+ h 为椎体的高为椎体的高. . 如果事件A 与B B 相互独立,那么相互独立,那么相互独立,那么()()()P AB P A P B =第Ⅰ卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) (1) 设设 i 是虚数单位,复数aii1+2-为纯虚数,则实数a a 为为 ((A )2 (B) -2 (C) 1-2 (D) 12(1)A 【命题意图】本题考查复数的基本运算,属简单题. 【解析】设()aibi b R i1+Î2-=,则1+(2)2ai bi i b bi =-=+,所以1,2b a ==.故选A. (2) 双曲线x y 222-=8的实轴长是的实轴长是(A )2 (B)22 (C) 4 (D) 42(2)C 【命题意图】本题考查双曲线的标准方程,考查双曲线的性质.属容易题. 【解析】x y 222-=8可变形为22148x y -=,则24a =,2a =,24a =.故选C. (3) 设()f x 是定义在R 上的奇函数,当x £0时,()f x x x 2=2-,则()f 1= (A )-3 (B) -1 (C)1(C)1(C)1 (D)3(D)3 (3)A 【命题意图】本题考查函数的奇偶性,考查函数值的求法属容易题. 【解析】2(1)(1)[2(1)(1)]3f f =--=----=-.故选A. (4)设变量,x y 满足1,x y +£则2x y +的最大值和最小值分别为的最大值和最小值分别为(A)1,-1(A)1,-1 (B)2,-2(B)2,-2 (C)1,-2(C)1,-2 (D)2,-1(D)2,-1(D)2,-1 (4)B 【命题意图】本题考查线性规划问题【命题意图】本题考查线性规划问题..属容易题属容易题. . 【解析】不等式1x y +£对应的区域如图所示,对应的区域如图所示,当目标函数过点(0,-1),(0,1)时,分别取最小或最大值,所以2x y +的最大值和最小值分别为2,-,-2.2.2.故选故选B.B. (5) (5) 在极坐标系中,点在极坐标系中,点在极坐标系中,点 (,)p23到圆2cos r q = 的圆心的距离为的圆心的距离为(A )2 (B) 249p +(C) 219p +((D) 3(5)D (5)D【命题意图】本题考查极坐标的知识及极坐标与直角坐标的相互转化,考查两点间距离【命题意图】本题考查极坐标的知识及极坐标与直角坐标的相互转化,考查两点间距离【命题意图】本题考查极坐标的知识及极坐标与直角坐标的相互转化,考查两点间距离. .【解析】极坐标(,)p 23化为直角坐标为(2cos ,2sin )33p p ,即(1,3).圆的极坐标方程2cos r q =可化为22cos r r q =,化为直角坐标方程为222x y x +=,即22(1)1x y -+=,所以圆心坐标为(所以圆心坐标为(1,01,01,0)),则由两点间距离公式22(11)(30)3d =-+-=.故选D. (6)一个空间几何体得三视图如图所示,则该几何体的表面积为一个空间几何体得三视图如图所示,则该几何体的表面积为第(8)题图)题图(A ) 48 (B)32+817 (C) 48+817 (D) 80 (6)C 【命题意图】本题考查三视图的识别以及空间多面体表面积的求法. 【解析】由三视图可知几何体是底面是等腰梯形的直棱柱.底面等腰梯形的上底为2,下底为4,高为4,两底面积和为()12244242´+´=,四个侧面的面积为()44221724817++=+,所以几何体的表面积为48817+.故选C.(7)(7)命题“所有能被命题“所有能被2整除的数都是偶数”的否定..是 (A )所有不能被2整除的数都是偶数整除的数都是偶数 (B )所有能被2整除的数都不是偶数整除的数都不是偶数 (C )存在一个不能被2整除的数是偶数整除的数是偶数(D )存在一个能被2整除的数不是偶数整除的数不是偶数(7)D 【命题意图】本题考查全称命题的否定【命题意图】本题考查全称命题的否定..属容易题属容易题. . 【解析】把全称量词改为存在量词,并把结果否定【解析】把全称量词改为存在量词,并把结果否定. .(8)设集合{}1,2,3,4,5,6,A ={}4,5,6,7,B =则满足S A Í且SB f ¹的集合S 的个数为(A )57 57 ((B )56 56 ((C )49 49 ((D )8(8)B 【命题意图】本题考查集合间的基本关系,考查集合的基本运算,考查子集问题,考查组合知识查组合知识..属中等难度题属中等难度题. .【解析】集合A 的所有子集共有6264=个,其中不含4,5,6,7的子集有328=个,所以集合S 共有56个.故选B.(9)已知函数()sin(2)f x x j =+,其中j 为实数,若()()6f x f p£对x R Î恒成立,且()()2f f p p >,则()f x 的单调递增区间是的单调递增区间是(A ),()36k k k Z p p p péù-+Îêúëû ((B ),()2k k k Z p p p éù+Îêúëû (C )2,()63k k k Z p p p p éù++Îêúëû ((D ),()2k k k Z p p p éù-Îêúëû (9)C 【命题意图】本题考查正弦函数的有界性,考查正弦函数的单调性【命题意图】本题考查正弦函数的有界性,考查正弦函数的单调性..属中等偏难题属中等偏难题. . 【解析】若()()6f x f p £对x R Î恒成立,则()sin()163f p pj =+=,所以,32k k Z ppj p +=+Î,,6k k Z pj p =+Î.由()()2f f pp >,(k Z Î),可知sin()sin(2)p j p j +>+,即s i n 0j<,所以(21),6k k Z p j p =++Î,代入()sin(2)f x x j =+,得()s i n (2)6f x x p =-+,由3222262k x k p ppp p +++剟,得263k x k p pp p ++剟,故选C.(10) 函数()()m n f x ax x =1-g 在区间〔0,1〕上的图像如图所示,则m ,n 的值可能是 (A )1,1m n == (B) 1,2m n == (C) 2,1m n == (D) 3,1m n ==(10)B 【命题意图】本题考查导数在研究函数单调性中的应用,考查函数图像,考查思维的综合能力.难度大. 【解析】代入验证,当1,2m n ==,()()()f x ax x n x x x 232=1-=-2+g ,则()()f x a x x 2¢=3-4+1,由()()f x a x x 2¢=3-4+1=0可知,121,13x x ==,结合图像可知函数应在10,3æöç÷èø递增,在1,13æöç÷èø递减,即在13x =取得最大值,由()()f a 21111=´1-=3332g ,知a 存在.故选B. 第II 卷(非选择题卷(非选择题 共100分)分)考生注意事项:考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上作答,在试题卷上答题无效.................. 二.填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置把答案填在答题卡的相应位置..(1111))(1111)如图所示,程序框图(算法流程图)的输出结果是)如图所示,程序框图(算法流程图)的输出结果是)如图所示,程序框图(算法流程图)的输出结果是 . .(11)15【命题意图】本题考查算法框图的识别,考查等差数列前n 项和. 【解析】由算法框图可知(1)1232k k T k +=++++=,若T =105,则K =14,继续执行循环体,这时k =15,T >105,所以输出的k 值为15. (1212)设)设()xa a x a x a x 2122101221-1=+++L ,则,则 .. (12)012)0【命题意图】本题考查二项展开式【命题意图】本题考查二项展开式【命题意图】本题考查二项展开式..难度中等难度中等. . 【解析】101110102121(1)a C C =-=-,111011112121(1)a C C =-=,所以a a C C 111010112121+=-=0.(13)已知向量a ,b 满足(a +2b )·(a -b )=-6,且a =,2b =,则a 与b 的夹角为的夹角为 . (13)60°【命题意图】本题考查向量的数量积,考查向量夹角的求法属中等难度的题. 【解析】()()26a b a b +×-=-,则2226a a b b +×-=-,即221226a b +×-´=-,1a b ×=,所以1cos ,2a b a b a b×áñ==×,所以,60a b áñ=. (14)已知ABC D 的一个内角为120o,并且三边长构成公差为4的等差数列,则ABC D 的面积为积为_______________ _______________(14)153【命题意图】本题考查等差数列的概念,考查余弦定理的应用,考查利用公式求三角形面积三角形面积. .【解析】设三角形的三边长分别为4,,4a a a -+,最大角为q ,由余弦定理得222(4)(4)2(4)cos120a a a a a +=+---,则10a =,所以三边长为6,10,14.6,10,14.△△ABC 的面积为1610sin1201532S =´´´=.(15)在平面直角坐标系中,如果x 与y 都是整数,就称点(,)x y 为整点,下列命题中正确的是__________________________(写出所有正确命题的编号)(写出所有正确命题的编号)(写出所有正确命题的编号). . ①存在这样的直线,既不与坐标轴平行又不经过任何整点①存在这样的直线,既不与坐标轴平行又不经过任何整点 ②如果k 与b 都是无理数,则直线y kx b =+不经过任何整点不经过任何整点 ③直线l 经过无穷多个整点,当且仅当l 经过两个不同的整点经过两个不同的整点④直线y kx b =+经过无穷多个整点的充分必要条件是:k 与b 都是有理数都是有理数 ⑤存在恰经过一个整点的直线⑤存在恰经过一个整点的直线(15)15)①③⑤【命题意图】本题考查直线方程,考查逻辑推理能力①③⑤【命题意图】本题考查直线方程,考查逻辑推理能力难度较大难度较大. .【解析】令12y x =+满足①,故①正确;若2,2k b ==,22y x =+过整点(-(-1,01,01,0)),所以②错误;设y kx =是过原点的直线,若此直线过两个整点1122(,),(,)x y x y ,则有11y kx =,22y kx =,两式相减得1212()y y k x x -=-,则点1212(,)x x y y --也在直线y kx =上,通过这种方法可以得到直线l 经过无穷多个整点,通过上下平移y kx =得对于y kx b =+也成立,所以③正确;k 与b 都是有理数都是有理数,,直线y kx b =+不一定经过整点,④错误;直线2y x =恰过一个整点,⑤正确过一个整点,⑤正确. .三.解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤分,解答应写出文字说明、证明过程或演算步骤..解答写在答题卡的制定区域内解答写在答题卡的制定区域内. . (1616))(本小题满分12分)设()1xe f x ax =+*,其中a 为正实数为正实数(Ⅰ)当a 43=时,求()f x 的极值点;的极值点; (Ⅱ)若()f x 为R 上的单调函数,求a 的取值范围。
2011年安徽高考数学理科试卷(带详解)

2011年普通高等学校招生全国统一考试(安徽卷)数学(理科)第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i 是虚数单位,复数a 1+2-ii为纯虚数,则实数a 为 ( )A.2B.-2C.1-2D.12【测量目标】复数的基本概念及代数形式的四则运算.【考查方式】给出一个含未知数的复数,令其为纯虚数,运用公式求解. 【难易程度】容易 【参考答案】A 【试题解析】 法一:()()()()()a a a a 1+2+1+2-+2+1==2-2-2+5i i i ii i i 为纯虚数,所以,a a 2-=0=2; 法二:设a b 1+=2-ii i得a b b 1+=+2i i ,所以,b a =1=2; 法三:()a a -1+=2-2-i i i i i为纯虚数,所以a =2; 2.双曲线x y 222-=8的实轴长是( )A.2B.C. 4 【测量目标】双曲线的标准方程.【考查方式】给出一个双曲线方程,求出实轴长. 【难易程度】容易 【参考答案】C【试题解析】双曲线方程可变为x y 22-=148,所以,a a 2=4=2,实轴长a 2=4. 3.设()f x 是定义在R 上的奇函数,当x 0…时,()f x x x 2=2-,则()f 1=( )A.-3B.-1C.1D.3 【测量目标】函数的奇偶性的综合运用.【考查方式】给出在某一区间上一个函数方程,已知函数是奇函数,求解函数值. 【难易程度】容易 【参考答案】A【试题解析】法一:()f x 是定义在R 上的奇函数,且x 0…时, ()f x x x 2=2-()()()()2112113f f ∴=--=--+-=-,故选A.法二:设0x >,则0x -<,()f x 是定义在R 上的奇函数,且x 0…时,()f x x x 2=2-,()()()2222f x x x x x ∴-=---=+,(步骤1)又()()f x f x -=-,()22f x x x ∴=--,()212113f ∴=-⨯-=-,故选A. (步骤2) 4.设变量,x y 满足1,x y +…则2x y +的最大值和最小值分别为( )A.1,-1 B.2,-2 C.1,-2 D.2,-1 【测量目标】二元线性规划求目标函数的最值.【考查方式】给出一个二元不等式,求目标函数的最值. 【难易程度】中等 【参考答案】B【试题解析】 法一:特值验证:当0,1x y ==时,22x y +=,故排除A ,C ;当0,1x y ==-时,22x y +=-,故排除D ,答案为B.法二:画出不等式1,x y +…表示的平面区域,平移目标函数线,易知当直线2x y u +=经过点B ,D 时分别对应u 的最大值和最小值,所以max min 2,2u u ==-.第4题图法三:已知条件是含绝对值的不等式,所以目标函数的最大值和最小值一定互为相反数,易知0,1x y ==时,22x y +=,故选B法四:绝对值不等式表示的区域是以(0,1),(1,0),(0,1),(1,0)--为顶点的正方形,线性规划一定在顶点处取得最优解,带入目标函数计算可得最大值、最小值分别为2,2-. 5.在极坐标系中,点(,)π23到圆2cos ρθ=的圆心的距离为( )A.2 【测量目标】极坐标与参数方程及点到圆心的距离.【考查方式】给出一个点坐标和参数方程,求出点到圆心之间的距离. 【难易程度】容易 【参考答案】D【试题解析】 极坐标(,)π23化为直角坐标:cos cos sin sin x y ρθρθπ⎧==2=1⎪⎪3⎨π⎪==2=⎪3⎩,即圆2cos ρθ=的方程为222x y x +=即22(1)0x y -+=,圆心到点(1故选D. 6.一个空间几何体的三视图如图所示,则该几何体的表面积( )第6题图A.48B.32+C.48+D.80 【测量目标】由三视图求几何体的表面积.【考查方式】给出三视图及其各边边长,求出其表面积. 【难易程度】中等 【参考答案】C【试题解析】几何体是以侧视图等腰梯形为底面的直四棱柱,所以该几何体的表面积为12(24)44421642S =⨯⨯+⨯+⨯+⨯+⨯487=+故选C. 7命题“所有能被2整除的数都是偶数”的否定..是 ( )A.所有不能被2整除的数都是偶数B.所有能被2整除的数都不是偶数C.存在一个不能被2整除的数都是偶数D.存在一个能被2整除的数不是偶数 【测量目标】含有一个量词的命题的否定.【考查方式】给出含有一个量词的命题,求出其特称命题. 【难易程度】容易 【参考答案】D【试题解析】全称命题的否定是特称命题,“所有”对于“存在一个”,同时否定结论,答案为D. 8.设集合{}1,2,3,4,5,6,A ={}4,5,6,7,8,B =则满足S A ⊆且S B ≠∅ 的集合S 的个数为( ) A.57 B.56 C.49 D.8 【测量目标】集合间的关系及基本运算.【考查方式】给出两个集合与他们之间的集合关系,求出其中一个集合的个数. 【难易程度】容易 【参考答案】B【试题解析】 法一:集合A 的子集有6264=个,满足S B =∅ 的子集就是集合{1,2,3}的所有子集,一共有328=个,所以集合S 的个数为632264856-=-=.法二:集合S 是集合A 的子集且至少含有集合{4,5,6}的一个元素,所以将S 看作集合{4,5,6}的非空子集与集合{1,2,3}的子集的并集,因此一共有33(21)256-⨯=个.9.已知函数()sin(2)f x x ϕ=+,其中ϕ为实数,若π()()6f x f …对x ∈R 恒成立,且π()(π)2f f >,则()f x 的单调递增区间是( )A.ππ[π,π]()36k k k -+∈Z B.π[π,π]()2k k k +∈Z C.π2π[π,π]()63k k k ++∈Z D.π[π,π]()2k k k -∈Z 【测量目标】三角函数的单调性、最值.【考查方式】给出一个三角函数及其最值,求出其单调递增区间. 【难易程度】较难 【参考答案】C【试题解析】对x ∈R 时,π()()6f x f …恒成立,所以ππ()sin()163f ϕ=+=±, 可得π5π2π2π66k k ϕϕ=+=-或,(步骤1) 因为π()sin(π)sin (π)sin(2π)sin 2f f ϕϕϕϕ=+=->=+=,故sin 0ϕ<, 所以5π2π6k ϕ=-,所以5π()sin 26f x x ⎛⎫=- ⎪⎝⎭,(步骤2) 函数单调递增区间为π5ππ2π22π262k x k -+-+剟, 所以π2π[π,π]()63x k k k ∈++∈Z ,答案为C. (步骤3) 10.函数()(1)mnf x ax x =-在区间[0,1]上的图象如图所示,则,m n 的值可能是 ( ) A.1,1m n == B.1,2m n == C.2,1m n == D.3,1m n ==第10题图【测量目标】函数图象的应用.【考查方式】给出一个含未知量的复合函数在某一区间的图象,求出未知量. 【难易程度】较难【参考答案】B【试题解析】由图得,原函数的极大值点小于0.5, 当1,1m n ==时,()21(1)(),24a f x ax x a x =-=--+在12x =处有最值,所以A 不可能;(步骤1) 当1,2m n ==时,232()(1)(2),f x ax x a x x x =-=-+()(31)(1)f x a x x '∴=--, 令()100,,3f x x x '=⇒==即函数在13x =处有最值所以B 可能;(步骤2) 当2,1m n ==时,223()(1)(),f x ax x a x x =-=-有2()(32)(23),f x a x x ax x '=-+=- 令()200,,3f x x x '=⇒==即函数在23x =处有最值,所以C 不可能;(步骤3) 当3,1m n ==时,343()(1)()f x ax x a x x =-=-+,有2()(43)f x ax x '=-+, 令()300,,4f x x x '=⇒==即函数在34x =处有最值,所以D 不可能. (步骤4) 第II 卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置. 11.如图所示,程序框图(算法流程图)的输出结果是 .第11题图【测量目标】循环结构的程序框图.【考查方式】给出程序框图,阅读并运行程序,得出结果. 【难易程度】中等 【参考答案】15【试题解析】 第1次进入循环体有:00T =+, 第2次有:01T =+,第3次有:012T =++,……第n 次有:012(1)T n =++++- ,(步骤1) 令(1)1052n n T -=>,解得15n >(负值舍去),(步骤2) 故16,n =此时输出15k =.(步骤3) 12.设()x a a x a x a x 2122101221-1=+++L ,则a a 1011+= .【测量目标】二项式定理.【考查方式】给出一个二项式,通过公式展开二项式,求出其中两项系数的和. 【难易程度】容易 【参考答案】0【试题解析】,a a 1011分别是含x 10和x 11项的系数,所以C ,a 111021=-C a 101121=,所以a a 1011+=C C 10112121-=0.13.已知向量,a b 满足()()+2-=-6g a b a b ,且1=a ,2=b ,则a 与b 的夹角为 . 【测量目标】平面向量的夹角问题.【考查方式】给出两个向量之间的关系等式及各自的模长,求出它们之间的夹角. 【难易程度】中等 【参考答案】π3【试题解析】设a 与b 的夹角为θ,依题意有:22(2)()272cos 6θ+-=+-=-+=- a b a b a a b b ,(步骤1) 所以1cos =2θ,(步骤2)因为0πθ剟,故π=3θ.(步骤3) 14.已知ABC △的一个内角为120,并且三边长构成公差为4的等差数列,则ABC △的面积为 .【测量目标】余弦定理及三角形面积.【考查方式】给出一个三角形的内角度数及三边关系,求出三角形的面积. 【难易程度】中等【参考答案】【试题解析】不妨设角120,A c b =<,则4,4a b c b =+=-,于是222(4)(4)1cos1202(4)2b b b b b +--+==--,解得=10b ,所以1=sin1202S bc = .15.在平面直角坐标系中,如果x 与y 都是整数,就称点(,)x y 为整点,下列命题中正确的是 .(写出所有正确命题的编号).①存在这样的直线,既不与坐标轴平行又不经过任何整点②如果k 与b 都是无理数,则直线y kx b =+不经过任何整点 ③直线l 经过无穷多个整点,当且仅当l 经过两个不同的整点④直线y kx b =+经过无穷多个整点的充分必要条件是:k 与b 都是有理数 ⑤存在恰经过一个整点的直线【测量目标】新定义,直线的性质,命题的判定.【考查方式】给出一个新定义,根据新定义判断给出五个命题的正确性. 【难易程度】较难 【参考答案】①③⑤【试题解析】①正确,如直线12y =+,不经过任何整点(10,2x y ==;0x ≠,y 是无理数)(步骤1)②错误,直线y =k 与b 都是无理数,但直线经过整点(1,0);(步骤2) ③正确,当直线经过两个整点时,它经过无数多个整点;(步骤3) ④错误,当10,2k b ==时,直线12y =不通过任何整点;(步骤4)⑤正确,比如直线y =只经过一个整点(0,0).(步骤5)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡的指定区域内.16.(本小题满分12分)设2e ()1xf x ax =+,其中a 为正实数.(Ⅰ)当34=a 时,求)(x f 的极值点; (Ⅱ)若)(x f 为R 上的单调函数,求a 的取值范围【测量目标】导数的运算,利用导数求函数的极值,利用函数的单调性求参数范围. 【考查方式】给出一个含参数函数,(Ⅰ)给出参数的值求极值点,(Ⅱ)给出其单调性,求参数的取值范围.【难易程度】中等【试题解析】对)(x f 求导得22212()e (1)xax axf x ax +-'=+①(步骤1)(Ⅰ)当34=a 时,若0)(='x f ,则03842=+-x x ,解得21,2321==x x (步骤2) 结合①,可知所以,21=x 是极小值点,22=x 是极大值点. (步骤3) (Ⅱ)若)(x f 为R 上的单调函数,则)(x f '在R 上不变号,结合①与条件0a >,知2210ax ax -+…(步骤4)在R 上恒成立,因此2444(1)0a a a a ∆=-=-…,由此并结合0a >,知01a <….(步骤5) 17.(本小题满分12分)如图,ABEDFC 为多面体,平面ABED 与平面ACFD 垂直,点O 在线段AD 上,1,2OA OD ==,,,,OAB OAC ODE ODF △△△△都是正三角形.(Ⅰ)证明直线BC EF ; (Ⅱ)求棱锥F OBED -的体积.第17题图【测量目标】线线平行的判定,棱锥的体积,空间向量及其运算.【考查方式】给出一个多面体,其中两个面互相垂直,有4个正三角形,证明两条直线平行和求解棱锥的体积.【难易程度】较难 【试题解析】(Ⅰ)(综合法)证明:设G 是线段DA 与线段EB 延长线的交点,由于OAB △与ODE△都是正三角形,所以1,2OB DE=2OG OD =,(步骤1) 同理,设G '是线段DA 与线段FC 延长线的交点,有2OG OD '==,又由于G 和G '都在线段DA 的延长线上,所以G 与G '重合. (步骤2)在GED △和GFD △中,由12OB DE 和12OC DF , 12OC DF =,12OB DE =可知,B C 分别是GE 和GF 的中点,所以BC 是GEF △的中位线,故BC EF .(步骤3)(向量法)过点F 作FQ AD ⊥,交AD 于点Q ,连QE ,由平面ABED ⊥平面ADFC ,知FQ ⊥平面ABED ,以Q 为坐标原点,QE 为x 轴正向,QD 为y 轴正向,QF 为z 轴正向,建立如图所示空间直角坐标系.由条件知E ),F (,B (3,022-),C (30,,22-). (步骤1) 则有)23,0,23(-=,)3,0,3(-=EF .(步骤2) 所以2=,即得BC EF .(步骤3)第17题(Ⅰ)图(Ⅱ)由1,2,60OB OE EOB ==∠= ,知EOB S =(步骤4)而ODE △是边长为2的正三角形,故OED S =所以OBED EOB ODE S S S =+=233.(步骤5) 过点F 作FQ AD ⊥,交AD 于点Q ,由平面ABED ⊥平面ACFD 知,FQ 就是四棱锥F OBED -的高,且FQ =,所以13.32F OBED OBED V FQ S -== (步骤6) 18.(本小题满分13分)在数1和100之间插入n 个实数,使得这2n +个数构成递增的等比数列,将这2n +个数的乘积记作n T ,再令n n T a lg =,1n …. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设1tan tan n n n b a a += ,求数列{}n b 的前n 项和n S .【测量目标】对数和指数的运算,两角差的正切公式,等比和等差数列及其前n 项和. 【考查方式】考查灵活运用基本知识解决问题的能力,创新思维能力和运算求解能力. 【难易程度】较难【试题解析】(Ⅰ)设221,,,+n t t t 构成等比数列,其中100,121==+n t t ,则1212n n n T t t t t ++=①(步骤1)2121n n n T t t t t +⋅+= ②(步骤2)①×②并利用231210,(12)i n i n t t t t in +-+==+ 剟,得)2(2210+=n n T ,lg 2, 1.n n a T n n ∴==+…(步骤3) (Ⅱ)由题意和(Ⅰ)中计算结果,知tan(2)tan(3),1n b n n n =++ …(步骤4) 另一方面,利用tan(1)tan tan1tan((1))1tan(1)tan k kk k k k+-=+-=-+得tan(1)tan tan(1)tan 1tan1k kk k +-+=- (步骤5)所以22133tan(1)tan tan(3)tan 3tan(1)tan (1)tan1tan1nn n n i i i i k k n S b k k n ++===+-+-==+=-=-∑∑∑ (步骤6)19.(本小题满分12分) (Ⅰ)设1,1,x y厖证明111x y xy xy x y++++…; (Ⅱ)设1,a bc <剟证明log log log log log log a b c b c a b c a a b c ++++….【测量目标】基本不等式证明不等式.【考查方式】考查对数函数的性质和对数换底公式, 不等式的性质等基本知识,考查代数式的恒等变形和推理论证能力. 【难易程度】中等【试题解析】证明:(Ⅰ)由于1,1,x y 厖所以111x y xy xy x y++++…(步骤1) 2()1()xy x y y x xy ⇔++++…(步骤2)将上式中的右式减左式,得22(())(()1)(()1)(()())y x xy xy x y xy xy x y x y ++-++=--+-+(1)(1)()(1)(1)(1)(1)(1)(1)xy xy x y xy xy xy x y xy x y =+--+-=---+=--- 既然1,1,x y 厖所以(1)(1)(1)0xy x y ---…,从而所要证明的不等式成立. (步骤3)(Ⅱ)设y c x b b a ==log ,log ,由对数的换底公式得xy c yb x a xy a ac b c ====log ,1log ,1log ,1log (步骤4) 于是,所要证明的不等式即为111x y xy xy x y++++…(步骤5) 其中log 1,log 1a b x b y c==厖,故由(Ⅰ)立知所要证明的不等式成立. (步骤6)20.(本小题满分13分)工作人员需进入核电站完成某项具有高辐射危险的任务,每次只派一个人进去,且每个人只派一次,工作时间不超过10分钟.如果前一个人10分钟内不能完成任务则撤出,再派下一个人,现在一共只有甲、乙、丙三个人可派,他们各自能完成任务的概率分别为123,,P P P ,假设123,,P P P 互不相等,且假定各人能否完成任务的事件相互独立.(Ⅰ)如果按甲最先、乙次之、丙最后的顺序派人,求任务能被完成的概率.若改变三个人被派出的先后顺序,任务能被完成的概率是否发生变化?(Ⅱ)若按某指定顺序派人,这三个人各自能完成任务的概率依次为321,,q q q ,其中321,,q q q 是123,,P P P 的一个排列,求所需派出人员数目X 的分布列和均值(数学期望)EX ;(Ⅲ)假定1231P P P >>>,试分析以怎样的先后顺序派出人员,可使所需派出的人员数目的均值(数学期望)达到最小.【测量目标】随机事件与概率,离散型随机变量的期望.【考查方式】考查相互独立事件的概率计算,考查离散型随机变量及其分布列、均值等基本知识,考查在复杂情境下处理问题的能力以及抽象概括能力、合情推理与演绎推理,分类讨论思想,应用意识与创新意识.【难易程度】较难【试题解析】(Ⅰ)无论以怎样的顺序派出人员,任务不能被完成的概率都是123(1)(1)(1)P P P ---,(步骤1)所以任务能被完成的概率与三个人被派出的先后顺序无关,并等于1231231213231231(1)(1)(1)P P P P P P PP PP P P PP P ----=++---+(步骤2)(Ⅱ)当依次派出的三个人各自完成任务的概率分别为321,,q q q 时,随机变量X 的分布列为所需派出的人员数目的均值(数学期望)EX 是EX =1q +21)1(q q -+)1)(1(21q q --=212123q q q q +--(步骤3)(Ⅲ)(方法一)由(Ⅱ)的结论知,当甲最先、乙次之、丙最后的顺序派人时,EX =212123q q q q +--根据常理,优先派出完成任务概率大的人,可减少所需派出的人员数目的均值.下面证明:对于123,,P P P 的任意排列321,,q q q ,都有121212123232q q q q P P PP --+--+…(*)(步骤4)事实上, 12121212(32)(32)q q q q P P PP ∆=--+---+(步骤5)112212122()()P q P q PP q q =-+--+1122112122211122112122()()()()(2)()(1)()(1)[()()]0P q P q P q P q P q P P q q P q q P P q q =-+-----=--+---+-+……即(*)成立. (步骤6)(方法二)(ⅰ)可将(Ⅱ)中所求的EX 改写为12121)(3q q q q q -++-,若交换前两人的派出顺序,则变为22121)(3q q q q q -++-.由此可见,当12q q >时,交换前两人的派出顺序可减少均值. (步骤4)(ⅱ)也可将(Ⅱ)中所求的EX 改写为211)1(23q q q ---,若交换后两人的派出顺序,则变为111)1(23q q q ---.由此可见,若保持第一个派出的人选不变,当12q q <时,交换后两人的派出顺序也可减少均值. (步骤5)综合(ⅰ)(ⅱ)可知,当123(,,)P P P =),,(321q q q 时,EX 达到最小.即完成任务概率大的人优先派出,可减少所需派出人员数目的均值,这一结论是合乎常理的. (步骤6)21.(本小题满分13分)设0>λ,点A 的坐标为(1,1),点B 在抛物线2x y =上运动,点Q 满足λ=,经过点Q 与x 轴垂直的直线交抛物线于点M ,点P 满足λ=,求点P 的轨迹方程.第21题图【测量目标】直线与抛物线的位置关系,圆锥曲线中的轨迹问题.【考查方式】考查直线和抛物线的方程,平面向量的概念,性质与运算,动点的轨迹方程等基本知识,考查灵活运用知识探究问题和解决问题的能力.【难易程度】较难【试题解析】由λ=知,,Q M P 三点在同一条垂直于x 轴的直线上,故可设(),,P x y ()0,,Q x y (步骤1)()2,,M x x 则)(202x y y x -=-λ,即y x y λλ-+=20)1( ①(步骤2)再设),(11y x B ,由QA BQ λ=,即)1,1(),(0101y x y y x x --=--λ,解得110(1),(1)x x y y λλλλ=+-⎧⎨=+-⎩ ②(步骤3)将①式代入②式,消去0y ,得1221(1),(1)(1)x x y x y λλλλλλ=+-⎧⎨=+-+-⎩ ③(步骤4) 又点B 在抛物线2x y =上,所以211x y =,再将③式代入211x y =,得,))1(()1()1(222λλλλλλ-+=-+-+x y x (步骤5) 整理得0)1()1()1(2=+-+-+λλλλλλy x 因0>λ,两边同除以)1(λλ+,得 012=--y x故所求点P 的轨迹方程为12-=x y .(步骤6)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年普通高等学校招生全国统一考试(安徽卷)
数学(理科)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3页至第4页。
全卷满分150分,考试时间120分钟。
考生注意事项:
1. 答题前,务必在试题卷、答题卡规定填写自己的姓名、座位号,并认真核对答题卡上所粘
贴的条形码中姓名、座位号与本人姓名、座位号是否一致。
务必在答题卡背面规定的地方填写姓名和座位号后两位。
2. 答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改
动,用橡皮擦干净后,再选涂其他答案标号。
3. 答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上....
书写,要求字体工整、笔迹清晰。
作图题可先用铅笔在答题卡...
规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。
必须在题号所指示的答题区域作答,超出书写的答案无效.........,在试题卷....、草稿纸...上答题无效.....。
4. 考试结束后,务必将试题卷和答题卡一并上交。
参考公式:
如果事件A 与B 互斥, 椎体体积1
3
V Sh =
,其中S 为椎体的底面积, 那么()()()P A B P A P B +=+ h 为椎体的高. 如果事件A 与B 相互独立,那么
()()()P AB P A P B =
第Ⅰ卷(选择题 共50分)
一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 设i 是虚数单位,复数
12ai
i
+-为纯虚数,则实数a 为 (A ) 2 (B ) -2 (C ) -12 (D ) 12
(2) 双曲线2
2
28x y -=的实轴长是
(A )2 (B) (3)设()f x 是定义在R 上的奇函数,当0x ≤时,2
()2f x x x =-, (1)f =
(A )-3 (B) -1 (C)1 (D)3
(4)设变量x ,y 满足||||1x y +≤,则2x y +的最大值和最小值分别为 (A)1,-1 (B)2,-2 (C)1,-2 (D)2,-1 (5) 在极坐标系中,点 (2,
)3π
到圆2cos ρθ= 的圆心的距离为
(A )(
(6)一个空间几何体得三视图如图所示,则该几何体的表面积为
(A ) 48 (B)32+48+(7)命题“所有能被2整除的数都是偶数”的否定..是 (A )所有不能被2整除的数都是偶数 (B )所有能被2整除的数都不是偶数 (C )存在一个不能被2整除的数都是偶数 (D )存在一个不能被2整除的数都不是偶数
(8)设集合{1,2,3,4,5,6},{4,5,6,7}A B ==,则满足S A ⊆且S B ≠∅的集合S 为
(A )57 (B )56 (C )49 (D )8
(9)已知函数()sin(2
)f x x ϕ=+,其中ϕ为实数,若()()6
f x f π
≤对x R ∈恒成立,且
()()2
f f π
π>,则()f x 的单调递增区间是
(A ), ()3
6k k k z π
πππ⎧⎫
-
+
∈⎨⎬⎩
⎭ (B ), ()2k k k z πππ⎧
⎫+∈⎨⎬⎩
⎭ (C )2, ()6
3k k k z π
πππ⎧
⎫+
+
∈⎨⎬
⎩
⎭ (D ), ()2k k k z πππ⎧⎫
-∈⎨⎬⎩⎭
(10)函数()(1)m n f x nx x =- 在区间上的图像如图所示,则m,n 的值可能是
(A )m=1, n=1 (B )m=1, n=2 (C )m=2, n=1 (D )m=3, n=1
第II 卷(非选择题 共100分)
考生注意事项:
请用0.5毫米黑色墨水签字笔在答题卡上作答,在试题卷上答题无效.................
.
二.填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置. (11)如图所示,程序框图(算法流程图)的输出结果是 .
(12)设2122101221(1)x a a x a x a x -=++++,则1011a a +=_________ .
(13)已知向量a ,b 满足(2)()6+-=-a b a b ,1|a |=,2|b |=,则a 与b 的夹角
为________.
(14)已知ABC ∆ 的一个内角为120o
,并且三边长构成公差为4的等差数列,则ABC ∆的面积为_______________
(15)在平面直角坐标系中,如果x 与y 都是整数,就称点(,)x y 为整点,下
列命题中正确的是_____________(写出所有正确命题的编号). ①存在这样的直线,既不与坐标轴平行又不经过任何整点 ②如果k 与b 都是无理数,则直线y kx b =+不经过任何整点 ③直线l 经过无穷多个整点,当且仅当l 经过两个不同的整点
④直线y kx b =+经过无穷多个整点的充分必要条件是:k 与b 都是有理数 ⑤存在恰经过一个整点的直线
三.解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.解答写在答题卡的制定区域内. (16)(本小题满分12分)
设
2
()1x
e f x ax
=+,其中a 为正实数 (Ⅰ)当43a =
a 4
3
=时,求()f x 的极值点; (Ⅱ)若()f x 为R 上的单调函数,求a 的取值范围。
(17)(本小题满分12分)
如图,ABEDFC 为多面体,平面ABED 与平面ACFD 垂直,点O 在线段AD 上,1OA =,2OD =,OAB ∆、OAC ∆、ODE ∆、ODF ∆都是正三角形.
(Ⅰ)证明直线//BC EF ; (Ⅱ)求棱锥F OBED -的体积.
(18)(本小题满分13分)
在数1和100之间插入n 个实数,使得这2n +个实数构成递增的等比数列,将这2n +个数
的乘积记作n T ,再令lg (1)n n a T n =≥ (Ⅰ)求数列{}n a 的通项公式;
(Ⅱ)设1tan tan n n n b a a +=,求数列{}n b 的前n 项和n S . (19)(本小题满分12分) (Ⅰ)设1,1x y ≥≥,证明
111
x y xy xy x y
++
≤++ (Ⅱ)1a b c ≤≤≤,证明
log log log log log log a b c b c a b c a a b c ++≤++.
(20)(本小题满分13分)
工作人员需进入核电站完成某项具有高辐射危险的任务,每次只派一个人进去,且每个人只派一次,工作时间不超过10分钟,如果有一个人10分钟内不能完成任务则撤出,再派下一个人。
现在一共只有甲、乙、丙三个人可派,他们各自能完成任务的概率分别123,,p p p ,假设123,,p p p 互不相等,且假定各人能否完成任务的事件相互独立.
(Ⅰ)如果按甲在先,乙次之,丙最后的顺序派人,求任务能被完成的概率。
若改变三个人被派出的先后顺序,任务能被完成的概率是否发生变化?
(Ⅱ)若按某指定顺序派人,这三个人各自能完成任务的概率依次为123,,q q q ,其中123,,q q q 是
123,,p p p 的一个排列,求所需派出人员数目X 的分布列和均值(数字期望)EX ;
(Ⅲ)假定1231p p p >>>,试分析以怎样的先后顺序派出人员,可使所需派出的人员数目的均值(数字期望)达到最小。
(21)(本小题满分13分)
设0λ>,点A 的坐标为(1,1),点B 在抛物线2
y x =上运动,点Q 满足BQ QA λ=,经过Q 点
与x 轴垂直的直线交抛物线于点M ,点P 满足QM MP λ=, 求点P 的轨迹方程。