六年级数学下册抽屉原理

合集下载

抽屉原理PPT课件

抽屉原理PPT课件

至少放进2根
7只鸽子飞回5个鸽舍,至少有几只鸽子 飞回同一个鸽舍里,为什么? 一个鸽舍里飞进一只鸽子,5个鸽舍最多飞进5只 鸽子,还剩下2只鸽子。所以,无论怎么飞,至少 有2只鸽子要飞进同一个笼子里。
7÷5=1……2
看看有几种 放法?通过 观察,你发 现了什么?
不管怎么放, 总有一个抽屉 至少放进三本 书
如果一共有7本书会怎样呢? 如果一共有9本书会怎样呢?
把5本书进2个抽屉中,不管怎么放,总有一个抽屉 至少放进3本书。这是为什么?
我们先让每个抽屉里放2本书,最多放4本 书。剩下的1本书还要放进其中的一个抽屉里。 所以不管怎么放,总有一个抽屉里至少放进3 本书。
5÷2=2……1
建立模型:
小棒、鸽子、书……….物体
人教版新课标六年级数学下册
主讲:罗鹏
动手实验
1、把3根小棒放进2个杯子中,动手实验并记录 下来,看看大家都有哪些放法?(3个人为一小 组,2个人动手操作,1人记录)提示:可以每 个杯子都放,也可以有杯子空着。 3根小棒放进2个杯子中不管怎么放总有一个 杯子至少放进2根小棒
2、把4根小棒放进3个杯子中,又有哪些不同 的放法呢?动手实验并记录下来。(3个人为 一小组,2个人动手操作,1人记录) 4根小棒放进3个杯子中不管怎么放总有一个 杯子至少放进2根小棒
1年有365天 367个同学
365个 367个
课堂小结
这节课我们学习了抽屉原理,并且会应用这一 原理来解决实际问题,那么用抽屉原理来解决 问题的步骤是什么呢? 1、找出物体,找出抽屉 2、确定物体的数量和抽屉的数量 3、正确列出除法算式 4、至少数=“商+1”
一副扑克牌(除去大小王)52张中有四种花色, 从中随意抽5张牌,无论怎么抽,为什么总有两 张牌是同一花色的?

六下(人教)第五单元数学广角——鸽巢问题(抽屉原理)(附答案)

六下(人教)第五单元数学广角——鸽巢问题(抽屉原理)(附答案)

第五单元数学广角——鸽巢问题(抽屉原理)一、最不利原则:为了保证能完成一件事情,需要考虑在最倒霉(最不利)的情况下,如何能达到目标。

二、抽屉原理:形式1:把n+1个苹果放到n个抽屉中,一定有2个苹果放在一个抽屉里;形式2:把m×n+1个苹果放到n个抽屉中,一定有m+1个苹果放在一个抽屉里。

模块一抽屉原理【例题1】把3个苹果放到两个抽屉中,有()种放法。

【练习1】把4支铅笔放进3个笔筒中,有()种放法。

【例题2】把8个桃子放到7个果盘里,一定有一个果盘里至少放进了()桃子。

【练习2】把7本书放进6个抽屉,不管怎么放,总有一个抽屉里至少放进()本书。

【例题3】五年级一班有28个学生,保证至少有几个同学在同一个月出生?【练习3】在任意25个人中,至少有几个人的星座相同?【例题4】把25个玻璃球最多放进几个盒子里,才能保证至少有一个盒子里有5个玻璃球?【练习4】把17本书最多放到()个空书架上,才能保证至少有一个书架上有5本书。

【例题5】平安路小学组织862名同学去参观甲、乙、丙3处景点。

规定每名同学至少参观一处,最多可以参观两处,至少有多少名同学参观的景点相同?【练习5】中国奥运代表团的173名运动员到超市买饮料,已知超市有可乐、雪碧、芬达、橙汁、味全和矿泉水6种饮料,每人各买两种不同的饮料,那么至少多少人买的饮料完全相同?【例题6】国庆嘉年华共有5项游艺活动,每个学生至多参加2项,至少参加1项。

那么至少有多少个学生,才能保证至少有4个人参加的活动完成相同?【练习6】桂苑小学六年级每名学生都订阅了《数学小灵通》、《小学生作文》、《英语天地》、《科学画报》这4种报刊中的2种,他们当中至少有34名学生订阅的报刊种类相同。

你知道桂苑小学六年级至少有多少名学生吗?【例题7】从1,2,3,……,21这些自然数中,最多可以取出多少个数,使得其中每两个数的差都不等于4?【练习7】1至70这70个自然数中,最多可以取出多少个数,使得其中每两个数的差都不等于6?【例题8】从1,4,7,10,……37,40这14个自然数,至少任取多少个数才能保证其中至少有2个数的和是41?【练习8】从1到50这50个自然数中,至少选出多少个数,才能保证其中一定有两个数的和是50?【例题9】从1到100这100个自然数中,至少选出多少个数才能保证其中一定有两个数的和是7的倍数?如果要保证是6的倍数呢?【练习9】从1至99这99个自然数中任意取出一些数,要保证其中一定有两个数的和是5的倍数,至少要取多少个?【例题10】某省有4千万人口,每个人的头发根数不超过15万根,那么该省中至少有多少人的头发根数一样多?【练习10】49名同学共同参加体操表演,其中最小的8岁,最大的11岁。

抽屉原理课件文字版

抽屉原理课件文字版

抽屉原理课件文字版抽屉原理课件文字版抽屉原理课件文字版1教学内容:六年级数学下册70页、71页例1、例2.教学目标:1、理解“抽屉原理”的一般形式。

2、经历“抽屉原理”的探究过程,体会比较、推理的学习方法,会用“抽屉原理”解决简单的的实际问题。

4、感受数学的魅力,提高学习兴趣,培养学生的探究精神。

教学重点:经历“抽屉原理”探究过程,初步了解“抽屉原理”。

教学难点:理解“抽屉原理”的一般规律。

教学准备:相应数量的杯子、铅笔、课件。

教学过程:一、情景引入让五位学生同时坐在四把椅子上,引出结论:不管怎么坐,总有一把椅子上至少坐了两名学生。

师:同学们,你们想知道这是为什么吗?今天,我们一起研究一个新的有趣的数学问题。

二、探究新知1、探究3根铅笔放到2个杯子里的问题。

师:现在用3根铅笔放在2个杯子里,怎么放?有几种放法?大家摆摆看,有什么发现?摆完后学生汇报,教师作相应的板书(3,0)(2,1),引导学生观察理解说出:不管怎么放总有一个杯子至少有2根铅笔。

2、教学例1(1)师:依此推下去,把4根铅笔放在3个杯子又怎么放呢?会有这种结论吗?让学生动手操作,做好记录,认真观察,看看有什么发现?(2)、学生汇报放结果,结合学具操作解释。

教师作相应记录。

(4,0,0)(3,1,0)(2,2,0)(2,1,1)(学生通过操作观察、比较不难发现有与上个问题同样结论。

)(3)学生回答后让学生阅读例1中对话框:不管怎么放,总有一个杯子里至少放进2根铅笔。

师:“总有”是什么意思?“至少”呢?让学生理解它们的含义。

师:怎样放才能总有一个杯子里铅笔数最少?引导学生理解需要“平均放”。

教师出示课件演示让学生进一步理解“平均放”。

3、探究n+1根铅笔放进n个杯子问题师:那我们再往下想,6根铅笔放在5个杯子里,你感觉会有什么结论?让学生思考发现不管怎么放,总有一个杯子里至少有2根铅笔。

师:7根铅笔放进6个杯子,你们又有什么发现?……学生回答完之后,师提出:是不是只要铅笔数比杯子数多1,总有一个杯子里至少放进2根铅笔?让学生进行小组合作讨论汇报。

2024最新-抽屉原理教学设计8篇

2024最新-抽屉原理教学设计8篇

抽屉原理教学设计8篇作为一位杰出的老师,通常需要准备好一份教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。

那么应当如何写教学设计呢?如下是勤劳的编辑帮大家收集整理的抽屉原理教学设计8篇,仅供借鉴,希望可以帮助到有需要的朋友。

六年级数学《抽屉原理》公开课教学设计篇一教学目标:1.使学生能理解抽取问题中的一些基本原理,并能解决有关简单的问题。

2.体会数学与日常生活的联系,了解数学的价值,增强应用数学的意识。

教学重点:抽取问题。

教学难点:理解抽取问题的基本原理。

教学过程:一、创设情境,复习旧知1、出示复习题:师:老师这儿有一个问题,不知道哪位同学能帮助解答一下?2、课件出示:把3个苹果放进2个抽屉里,总有一个抽屉至少放2个苹果,为什么?3、学生自由回答。

二、教学例21、出示:盒子里有同样大小的红球和蓝球各4个。

要想摸出的球一定有2个同色的,最少要摸出几个球?(1)组织学生读题,理解题意。

教师:你们能猜出结果吗?组织学生猜一猜,并相互交流。

指名学生汇报。

学生汇报时可能会答出:只摸4个球就可以了,至少要摸出5个球……教师:能验证吗?教师拿出准备好的红球及蓝球,组织学生到讲台前来动手摸一摸,验证汇报结果的正确性。

(2)教师:刚才我们通过验证的方法得出了结论,联系前面所学的知识,这是一个什么问题?2、组织学生议一议,并相互交流。

再指名学生汇报。

教师:上面的问题是一个抽屉问题,请同学们找一找:“抽屉”是什么?“抽屉”有几个?组织学生议一议,并相互交流。

指名学生汇报,使学生明确:抽屉就是颜色数。

(板书)教师:能用例1的知识来解答吗?组织学生议一议,并相互交流。

指名学生汇报。

使学生明确:只要分的物体比抽屉多,就能保证总有一个抽屉至少放荡2个球,因此要保证摸出两个同色的球,摸出球的数量至少要比颜色的种数多一。

(3)组织学生对例题的解答过程议一议,相互交流,理解解决问题的方法。

学生不难发现:只要摸出的球比它们的颜色种数多1,就能保证有两个球同色。

六年级数学下册第五单元数学广角抽屉原理

六年级数学下册第五单元数学广角抽屉原理

(2-1)×6+1=7(只)
盒子里有红袜子和黑袜子各6只。要 想摸出的袜子一定能配成颜色相同 的两双,最少要摸出几只? 颜色相同:四只必须都是一个颜色。
盒子里有红袜子和黑袜子各6只。要 想摸出的袜子一定能配成同色的两 双,最少要摸出几只? 同色:每双是同一个颜色。
一个布袋中装有大小相同但颜色不同 的手套若干只。已知手套的颜色有黑、 白、灰三种。问最少要取出多少只手 套才能保证有2副手套是同色的? 3副同色呢? 4副同色呢?你能找到什么规律吗?
综合应用: 1、34个小朋友要进4间屋子,至少有( 9 )个小朋 友要进同一间屋子。 2、13个同学坐5张椅子,至少有(3 )个同学坐在 同一张椅子上。 3、新兵训练,战士小王6枪命中了43环,战士小王 总有一枪至少打中( )环。 4、咱们班上有58个同学,至少有( )人在同一个 8 月出生。 5 5、从街上人群中任意找来20个人,可以确定,至少 有( )个人属相相同。
7×(2-1)+1=8(只)
每个笼子平均 分后的数量 再加上余数的 1个
1、把一些铅笔放进3个文具盒中,保证 其中一个文具盒至少有4枝铅笔,原来至 少有多少枝铅笔?
2、把我们班至少有10人在同一个月里生 日,请问我们班至少有多少人?
1、某班有37名小学生,他们都订阅了《小朋友》、 《儿童时代》、《少年报》中的一种或几种,那么其中 至少有名学生订的报刊种类完全相同.
3 3 3 +1 3×(4-1)+1=10(枝) 求总数=抽屉×(至少-1)+1 其中一个多1 要分的份数
3
• 把5个苹果放进2个抽屉 里,不管怎么放,总有 一个抽屉里至少有几个 苹果?
猜一猜: 1、一次摸出2个球,有几种情况? 观察出现的情况,结果是( 可能 ) 摸出2个同色的球。(选择“可能” 或“一定”填空)

抽屉原理教学设计(优秀4篇)

抽屉原理教学设计(优秀4篇)

抽屉原理教学设计(优秀4篇)《抽屉原理》教学设计篇一【教学内容】《义务教育课程标准实验教科书·数学》六年级下册第68页。

【教学目标】1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

2.通过操作发展学生的类推能力,形成比较抽象的数学思维。

3.通过“抽屉原理”的灵活应用感受数学的魅力。

【教学重点】经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

【教学难点】理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

【教具、学具准备】每组都有相应数量的盒子、铅笔、书。

【教学过程】一、课前游戏引入。

师:同学们在我们上课之前,先做个小游戏:老师这里准备了4把椅子,请5个同学上来,谁愿来?(学生上来后)师:听清要求,老师说开始以后,请你们5个都坐在椅子上,每个人必须都坐下,好吗?(好)。

这时教师面向全体,背对那5个人。

师:开始。

师:都坐下了吗?生:坐下了。

师:我没有看到他们坐的情况,但是我敢肯定地说:“不管怎么坐,总有一把椅子上至少坐两个同学”我说得对吗?生:对!师:老师为什么能做出准确的判断呢?道理是什么?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。

下面我们开始上课,可以吗?【点评】教师从学生熟悉的“抢椅子”游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象,激发了学生的学习兴趣,为后面开展教与学的活动做了铺垫。

二、通过操作,探究新知(一)教学例11.出示题目:有3枝铅笔,2个盒子,把3枝铅笔放进2个盒子里,怎么放?有几种不同的放法?师:请同学们实际放放看,谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况(3,0) (2,1)【点评】此处设计教师注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有的学生积极参与进来。

师:5个人坐在4把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学。

人教版六年级下册课件 5数学广角-抽屉原理(鸽巢原理)

人教版六年级下册课件 5数学广角-抽屉原理(鸽巢原理)
解析:数学小组共有20名同学,因此每个同学最多有19个朋友;又由于他们都有朋友 ,所以每个同学至少有1个朋友.因此,这20名同学中,每个同学的朋友数只有19种可 能:1,2,3,……,19.把这20名同学看作20个“苹果”,又把同学的朋友数目看作 19个“抽屉”,根据抽屉原理,至少有2名同学,他们的朋友人数一样多
3.明小学有367名年出生的学生,请问是否有生日相同的学生?
【解析】1年最多有366天,把366天看作366个“抽屉”,将367名学生看作个“苹果”.这样,把 367个苹果放 进366个抽屉里,至少有一个抽屉里不止放一个苹果.这就说明,至少有名同学的生日相同.
答案
探索新知
例2:如果把5个苹果放在2个抽屉里面,不管怎么放,总有一个抽 屉里至少放3个苹果,为什么?如果一共有7个苹果呢?9个呢?
做一做:42个苹果放在5个抽屉里,至少有多少个苹果放在一个抽 屉里?
42÷5 = 8(个) ...... 2(个) 8+1=9(个)
答:至少有9个苹果放在一个抽屉里
答案
知识总结
抽屉原理
将n件物品放入m个抽屉中,如果n÷m=a,那么一
定有一个抽屉里至少抽有屉a件原物理品。
将n件物品放入m个抽屉中,如果n÷m=a...b,那么 一定有一个抽屉里至少有a+1件物品。
答案
例题解析
例6:17名同学参加一次考试,考试题是3道判断题(答案只有对错之分 ),每名同学都在答题纸上依次写上了3道题目的答案。试说明至少有3 名同学的答案是一样的。
解析:3道题所有可能出现的答案有8种,8种答案可以看作8个抽屉,一共有17名同 学,看作17个苹果
17÷8= 2 ...... 1 2+1=3
答:至少有3名同学的答案是一样的。

六年级数学下册抽屉原理

六年级数学下册抽屉原理

总结和思考
抽屉原理是数学中一项重要的基本原理,能够帮助我们解决现实生活中的各 种问题。通过理解和应用抽屉原理,我们可以更好地思考和解决问题。
密码破解
抽屉原理可以帮助我们理解 密码破解的原理。当密码的 可能性大于容器数量时,就 有可能找到正确的密码。
生日相同
抽屉原理可以解释为什么在 一个较小的群体中,出现两 个人生日相同的概率比我们 通常预期的要高。
手机存储
抽屉原理可用于解释手机存 储问题。当手机内存小于应 用程序数量时,必然有一些 应用程序无法安装。
什么是鸽笼原理
鸽笼原理是抽屉原理的另一种称呼。它用来描述鸽子进入鸽笼的情况,表明至少有一只鸽子会进入一个已经有 鸽子的鸽笼。
抽屉原理的证明方法
1
数学归纳法
2
另一种证明抽屉原理的方法是使用数学归
纳法。我们先证明抽屉原理在n=1时成立,
然后假设n=k时成立,再证明n=k+1时成立。
3
反证法
我们可以运用反证法证明抽屉原理。假设 所有容器中物品数量都不超过一个,然后 通过逻辑推理,推导出矛盾。
鸽笼原理证明
抽屉原理可以通过鸽笼原理进行证明。我 们可以将容器与物品类比为鸽笼与鸽子, 从而得出结论。
一些实际问题的抽屉原理应用
• 购物网站的推荐系统 • 选课时的时间冲突 • 检测作弊 • 寻找重复的元素
抽屉原理和逻辑思维的关系Байду номын сангаас
抽屉原理是逻辑思维的重要基础,帮助我们理解如何运用逻辑推理和归纳法解决实际问题。它培养了我们的思 维能力和逻辑思考能力。
六年级数学下册抽屉原理
欢迎大家来到我们今天的讲座!今天我们将介绍六年级数学下册的一个重要 概念——抽屉原理。让我们开始探索抽屉原理的奥秘吧!
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“抽屉原理”教学设计
十里坪镇梁家坟小学谭家军
教学内容:六年级数学下册数学广角(例、1,例、2)
教学目标:
知识与技能:
1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

2、引导学生采用操作的方法进行枚举及假设探究“抽屉原理”
3、通过操作发展的类推能力,形成抽象的数学思维。

过程与方法:
1、教师引导,自己动手操作,感受和领悟抽屉原理的精髓,发现和总结规律。

也可以小组合作探究其规律,归纳总结规律。

情感态度与价值观:
1、通过“抽屉原理”的灵活应用,感受数学的魅力。

2、体会数学与生活的联系,领悟数学源于生活,高于生活。

教学重难点:
重点:理解最简单的“抽屉原理”及“抽屉原理”的一般形式。

难点:理解“抽屉问题”的“一般化模型”。

突破方法:引导学生对教材上提供的两种方法进行比较,使学生逐步学会应用一般性的数学方法来思考问题。

教学方法:以尝试教学法和启发式教学为主,多法并用。

学具准备:每人4个一次性纸杯子和15根小棒
教学过程:
一、创设情境,导入新知
老师组织学生做“抢凳子的游戏”
请5位同学上来,摆开4条凳子。

老师宣布游戏规则:5位同学围着凳子转圈,老师喊“停”的时候,五个人每个人都必须坐在凳子上。

老师背对着学生游戏的学生,宣布游戏开始,然后叫“停”。

师:都坐下了吗?老师不用看,也知道肯定有一张凳子上至少有2位学生,老师说得对吗?
师:老师为什么说得这么肯定呢?
(可能说:因为只有4个凳子,却有5个人,肯定有1个人没凳子坐,只好和另一个人挤在一起;也可能说,有几个同学会在慌忙中挤在一条凳子上,有1个或2个凳子没人坐。


师:像这样的现象中隐藏着什么数学奥秘呢?这节课我们就一起来研究这个原理。

板书:抽屉原理
二、自主操作,探究新知。

例1、同学们、请你们拿出4根小棒,放进3个杯子。

不管怎么放,总有一个杯子至少放进2根小棒。

真的是这样吗?为什么?(赶快动手操作,体验一下,是不是
这样)
板书:小棒根数(M ) 杯子个数(N) 总有一个杯子至少放进的根数: 4 3 2
同桌合作,拿自己带的杯子和小棒实际摆摆看,放一放,看一共有几种情况?
教师巡视,参与学生的操作和讨论,找出有代表性的几种“证明”方法。

学生汇报是用什么方法来验证的。

第一种:用实物摆一摆、放一放,看一共有几种情况?
汇报:指名学生到前面亲自摆一摆,并叙述摆的过程,教师有序板书:
(4,0,0);(3,1,0);(2,2,0);(2,1,1)观察:(1)同学不论哪种摆法,观察三只杯子里的物品,有什么特点?
结论:总是有一只杯子里面至少有两根小棒。

(2)最后一种的摆法有什么特点呢?
结论:没有空杯子,并且放的最多的那个杯子,没有其他摆法,最多的多。

那怎样摆放最快呢?引导学生说出如果每个杯子里放一根小棒,最多放3根,剩下的一根还要放进其中的一个杯子。

所以至少有2根小棒放进同一个杯子。

师:你说得很好,我们把你这种方法叫做假设法。

摆的方法叫做枚举法。

比较两种方法,明确假设法更具一般性。

用你喜欢的方法,照上面的说法,把5根小棒,放进4个杯子应该会出现什么样的结果?
小组先交流,再汇报。

板书: 5 4 2.
那6根小棒,5个杯子呢? 10根小棒,9个杯子呢? 100根小棒,99个杯子呢?
随学生的回答板书。

观察板书,你发现了什么规律?
先独立思考,再同桌交流。

汇报:只要小棒的数量比杯子多1,无论怎么放,总有一个杯子里至少放2根小棒。

(再指名叙述)
师:这就是我们这节课要研究的“抽屉原理”,板书课题。

师:抽屉原理最先是由19世纪的德国数学家“狄里克雷”运用解决数学实际问题,所以又称“狄里克雷原理”,也称“鸽巢原理”我们把杯子当作抽屉,小棒当作要分的物体,应用这个规律解决问题时,关键是要找准谁是抽屉,谁是要分的物体。

课堂反馈<一>:
练习1、7只鸽子飞回5个鸽舍,至少有2只鸽子要飞进同一个鸽舍里。

为什么?
学生回答:因为一只进一个鸽舍,则还剩下两只鸽子,这两只飞回任意一个或两个鸽舍,所以至少有2只鸽子要飞进同一个鸽舍里。

练习2、请同学们拿出你们准备的4个杯子和6根小棒,把6根小棒全部放进杯子里,至少有几根小棒放进同一个杯子?(同学们,赶紧动手操作,看看结果怎样)
例2、把5本书放进2个抽屉中,会有怎样的情况?
师:如果五本书就是5根小棒,2个抽屉相当2个杯子。

请同学们动手操作一下,看看结果如何?
生:摆的结果:(5,0)(4,1)(3,2)(2,3)(1,4)(0,5)总有一只杯子里的小棒数大于等于3根。

师:同学们,3这个数怎么来的?能用式子表示么?
5÷2=2……1 2+1=3
师:同学们,你是这样想的么?如果一共7本书会怎样呢?9本呢?
生: 7÷2=3……1 3+1=4
9÷2=4……1 4+1=5
总有一个抽屉至少放进3本;4本;5本。

师:同学们通过实际操作和计算,你有什么发现?
总结:1、若物品数除以抽屉数余数为0,则总有一个抽屉里至少有商数本书。

2、若物品数除以抽屉数余数不为0,则总有一个抽屉里至少有商数加一本书。

课堂反馈<二>:
1、13名同学,至少有几名同学在同一个月出生。

说明理由。

想:把什么当作抽屉,什么是要分的物体?
2、一副扑克牌,除去大小王,还有52张,任意抽出5张,至少有几张是同花色的?说明理由。

想:把什么是抽屉,什么是要分的物体。

3、我校有367名学生,至少有几名同学在同一天过生日?
四、完成P71“做一做”
观察这道题和例题中的题,有什么不同?
鸽子数比鸽舍多5?想想会有什么样的结果。

为什么?
(学生利用例题中的方法迁移类推,加以解释。


师:只要要分的物体比抽屉多,就有同样的结果。

五、小结
总结:今天我们研究的是最简单的抽屉原理,只要把m个物体任意放进n个空抽屉里,(m大于n,n是非0的自然数。

)那么一定有一个抽屉中放进了至少2个物体。

同学们想一想像这样的问题还有哪些?两人一组编一道关于抽屉原理的题,并解决。

说明理由为什么会有这样的结果。

把今天学到的有趣的抽屉原理讲给家长听,吃水果时,你去分一分,看家人是否满意?
教学反思:本节课的讲授始终以学生为中心,学生是主体。

自始至终都是学生在动手,去尝试,去完成小棒的分发,顺其意,随心所欲的摆放。

此时老师观察,若有那种情况有遗漏,老师及时提醒。


师就是一个辅导者,充分体现学生的主动性,让学生去发现结论,领悟知识精髓。

在必要时刻对学生的结论,给予肯定和指正。

相关文档
最新文档