分形维数计算方法研究进展_李

分形维数计算方法研究进展_李
分形维数计算方法研究进展_李

分形维数算法

分形维数算法. 分形维数算法 分形包括规则分形和无规则分形两种。规则分形是指可以由简单的迭代或者是按一定规律所生成的分形,如Cantor集,Koch曲线,Sierpinski海绵等。这些分形图形具有严格的自相似性。无规则分形是指不光滑的,随机生成的分形,

如蜿蜒曲折的海岸线,变换无穷的布朗运动轨迹等。这类曲线的自相似性是近 似的或统计意义上的,这种自相似性只存于标度不变区域。 对于规则分形,其自相似性、标度不变性理论上是无限的(观测尺度可以趋于无限小)。不管我们怎样缩小(或放大)尺度(标度)去观察图形,其组成部分和原来的图形没有区别,也就是说它具有无限的膨胀和收缩对称性。因些对于这类分形,其计算方法比较简单,可以用缩小测量尺度的或者不断放大图形而得到。分形维数 D=lnN(λ)/ln(1/λ) (2-20) 如Cantor集,分数维D=ln2/ln3=0.631;Koch曲线分数维 D=ln4/ln3=1.262; Sierpinski海绵分数维D=ln20/ln3=2.777。 对于不规则分形,它只具有统计意义下的自相似性。不规则分形种类繁多,它可以是离散的点集、粗糙曲线、多枝权的二维图形、粗糙曲面、以至三维的[26]。点 集和多枝权的三维图形,下面介绍一些常用的测定方法(1)尺码法 用某个选定尺码沿曲线以分规方式测量,保持尺码分规两端的落点始终在曲线上。不断改变尺码λ,得到一系列长度N(λ),λ越小、N越大。如果作lnN~lnλ图后得到斜率为负的直线,这表明存在如下的幂函数关系

-D(2-21) N~λ上式也就是Mandelbrot在《分形:形状、机遇与维数》专著中引用的Richardson公式。Richardson是根据挪威、澳大利亚、南非、德国、不列颠西部、葡萄牙的海岸线丈量结果得出此公式的,使用的测量长度单位一般在1公里到4公里之间。海岸线绝对长度L被表示为: 1-D(2-22)L=Nλ~λ 他得到挪威东南部海岸线的分维D≈1.52,而不列颠西部海岸线的分维D≈[27]。。这说明挪威的海岸线更曲折一些1.3. )小岛法(2面积如果粗糙曲线都是封闭的,例如海洋中的许多小岛,就可以利用周长-关系求分维,因此这个方法又被称为小岛法。则与λ的而面积A对于规则图形的周长与测量单位尺寸λ的一次方成正比, 二次方成正比。通常我们可以把它们写成一个简单的比例关系:1/2 (2-23) AP∝对于二维空间内的不规则分形的周长和面积的关系显然更复杂一些,提出,应该用分形周长曲线来代替原来的光滑周长,从而给出了下Mandelbrot 述关系式:21/??D??1/1/D2)(2-24)]?(?)]?[a?AP[(?)][??a(1?D)/DA(?00的P)式),使1(周长光滑时D=1,上式转化成为(2.23这里的分维D大于??的数1变化减缓,a是和岛的形状有关的常数,为小于是测量尺寸,一般取0/D)(1-D??减小而增大。作随测

计算方法的课后答案

《计算方法》习题答案 第一章 数值计算中的误差 1.什么是计算方法?(狭义解释) 答:计算方法就是将所求的的数学问题简化为一系列的算术运算和逻辑运算,以便在计算机上编程上机,求出问题的数值解,并对算法的收敛性、稳定性和误差进行分析、计算。 2.一个实际问题利用计算机解决所采取的五个步骤是什么? 答:一个实际问题当利用计算机来解决时,应采取以下五个步骤: 实际问题→建立数学模型→构造数值算法→编程上机→获得近似结果 4.利用秦九韶算法计算多项式4)(5 3 -+-=x x x x P 在3-=x 处的值,并编程获得解。 解:400)(2 3 4 5 -+?+-?+=x x x x x x P ,从而 所以,多项式4)(5 3 -+-=x x x x P 在3-=x 处的值223)3(-=-P 。 5.叙述误差的种类及来源。 答:误差的种类及来源有如下四个方面: (1)模型误差:数学模型是对实际问题进行抽象,忽略一些次要因素简化得到的,它是原始问题的近似,即使数学模型能求出准确解,也与实际问题的真解不同,我们把数学模型与实际问题之间存在的误差称为模型误差。 (2)观测误差:在建模和具体运算过程中所用的一些原始数据往往都是通过观测、实验得来的,由于仪器的精密性,实验手段的局限性,周围环境的变化以及人们的工作态度和能力等因素,而使数据必然带有误差,这种误差称为观测误差。 (3)截断误差:理论上的精确值往往要求用无限次的运算才能得到,而实际运算时只能用有限次运算的结果来近似,这样引起的误差称为截断误差(或方法误差)。 (4)舍入误差:在数值计算过程中还会用到一些无穷小数,而计算机受机器字长的限制,它所能表示的数据只能是一定的有限数位,需要把数据按四舍五入成一定位数的近似的有理数来代替。这样引起的误差称为舍入误差。 6.掌握绝对误差(限)和相对误差(限)的定义公式。 答:设* x 是某个量的精确值,x 是其近似值,则称差x x e -=* 为近似值x 的绝对误差(简称误差)。若存在一个正数ε使ε≤-=x x e * ,称这个数ε为近似值x 的绝对误差限(简称误差限或精度)。 把绝对误差e 与精确值* x 之比* **x x x x e e r -==称为近似值x 的相对误差,称

分形维数算法

分形维数算法

分形维数算法 分形包括规则分形和无规则分形两种。规则分形是指可以由简单的迭代或者是按一定规律所生成的分形,如Cantor集,Koch曲线,Sierpinski海绵等。这些分形图形具有严格的自相似性。无规则分形是指不光滑的,随机生成的分形,如蜿蜒曲折的海岸线,变换无穷的布朗运动轨迹等。这类曲线的自相似性是近似的或统计意义上的,这种自相似性只存于标度不变区域。 对于规则分形,其自相似性、标度不变性理论上是无限的(观测尺度可以趋于无限小)。不管我们怎样缩小(或放大)尺度(标度)去观察图形,其组成部分和原来的图形没有区别,也就是说它具有无限的膨胀和收缩对称性。因些对于这类分形,其计算方法比较简单,可以用缩小测量尺度的或者不断放大图形而得到。分形维数 D=lnN(λ)/ln(1/λ) (2-20) 如Cantor集,分数维D=ln2/ln3=0.631;Koch曲线分数维D=ln4/ln3=1.262; Sierpinski海绵分数维D=ln20/ln3=2.777。 对于不规则分形,它只具有统计意义下的自相似性。不规则分形种类繁多,它可以是离散的点集、粗糙曲线、多枝权的二维图形、粗糙曲面、以至三维的点集和多枝权的三维图形,下面介绍一些常用的测定方法[26]。 (1)尺码法 用某个选定尺码沿曲线以分规方式测量,保持尺码分规两端的落点始终在曲线上。不断改变尺码λ,得到一系列长度N(λ),λ越小、N越大。如果作lnN~lnλ图后得到斜率为负的直线,这表明存在如下的幂函数关系 N~λ-D(2-21) 上式也就是Mandelbrot在《分形:形状、机遇与维数》专著中引用的Richardson公式。Richardson是根据挪威、澳大利亚、南非、德国、不列颠西部、葡萄牙的海岸线丈量结果得出此公式的,使用的测量长度单位一般在1公里到4公里之间。海岸线绝对长度L被表示为: L=Nλ~λ1-D(2-22) 他得到挪威东南部海岸线的分维D≈1.52,而不列颠西部海岸线的分维D≈1.3。这说明挪威的海岸线更曲折一些[27]。

通过能力计算

计算题 1.已知某地铁线路车辆定员每节240人,列车为6节编组,高峰小时满载率为120%,且单向最大断面旅客数量为29376人,试求该小时内单向应开行的列车数。 2、已知某地铁线路采用三显示带防护区段的固定闭塞列车运行控制方式,假设各闭塞分区长度相等,均为1000米,已知列车长 度为420米,列车制动距离为100米,列车运行速度为70km/h,制动减速度为2米/秒2,列车启动加速度为1.8米/秒2,列车最大停站时间为40秒。试求该线路的通过能力是多少? 若该线路改成四显示自动闭塞,每个闭塞分区长度为600米,则此时线路的通过能力是多少? 3.已知某地铁线路采用移动闭塞列车运行控制方式,已知列车长度为420米,车站闭塞分区为750米,安全防护距离为 200米,列车进站规定速度为60km/h,制动空驶时间为1.6秒,制动减速度为2米/秒2,列车启动加速度为1.8米/秒2,列车最大停站时间为40秒。试求该线路的通过能力是多少? 4.已知某地铁线路为双线线路,列车采用非自动闭塞的连发方式运行,已知列车在各区间的运行时分和停站时分如下表,线路的连发间隔时间为12秒。试求该线路的通过能力是多少?

5.已知地铁列车在某车站采用站后折返,相关时间如下:前一列车离去时间1.5分钟,办理进路作业时间0.5分钟,确认信号时间0.5分钟,列车出折返线时间1.5分钟,停站时间1分钟。试计算该折返站通过能力。 6.已知某终点折返站采用站前交替折返,已知列车直到时间 为40秒,列车侧到时间为1分10秒,列车直发时间为40秒,列车侧发时间为1分20秒,列车反应时间为10秒, 办理接车进路的时间为15秒,办理发车进路的时间为15秒。试分别计算考虑发车时间均衡时和不考虑发车时间均衡时,该折返站的折返能力是多少? 7.已知线路上有大小交路两种列车,小交路列车在某中间折返 站采用站前折返(直到侧发),已知小交路列车侧发时间为1分20秒,办理接车进路的时间为15秒,办理发车进路的时间为15秒,列车反应时间为10秒,列车直到时间为25 秒,列车停站时间为40秒;长交路列车进站时间为25秒。试分别计算该中间折返站的最小折返能力和最大折返能力分别是多少? 8.已知线路上有大小交路两种列车,小交路列车在某中间折返站采用站后折返,已知小交路列车的相关时分为:列车驶出车站 闭塞分区时间为1分15秒,办理出折返线调车进路的时间 为20秒,列车从折返线至车站出发正线时间为40秒,列车反应时间为10秒,列车停站时间为40秒。

遥感图象分形维数的几种估计算法研究

遥感图象分形维数的几种估计算法研究1 张凯选1,郭嗣琮2 1辽宁工程技术大学测绘与地理科学学院,辽宁阜新(123000) 2辽宁工程技术大学理学院,辽宁阜新(123000) E-mail:zhangkaixuan@https://www.360docs.net/doc/414589952.html, 摘要:美籍法国数学家曼德布罗特(B.Mandelbrot)首次引入分形这个新术语,今天分形理论已经成为一门描述自然界中许多不规则事物规律性的科学,在遥感影象学中也有很大的用途。在研究遥感图像的分形维数时,通常把图像看作一个由许多像素点的灰度值构成的曲面来进行估算和分析,本文给出了遥感图象分形维数的几种估算方法,并作了相关实验。关键词:分形,分形维数,遥感图象 中图分类号:TP7 1.引言 分形理论始创立于20世纪70年代中期[1],创立伊始就引起人们极大的兴趣,与耗散结构、混沌并称为70年代科学史上的三大发现。作为一门独立的学科,该理论只有大约30多年的历史。 基于对复杂景物自相似性的描述,Mandelbrot创立了分形几何学理论,提出用分形维数( fractal dimension)D来度量自然现象的不规则程度。分形理论借助相似性原理洞察隐藏于混乱现象中的精细结构,为人们从局部认识整体、从有限认识无限提供新的方法论,为不同的学科发现的规律提供了崭新的语言和定量的描述,为现代科学技术提供了新的思想方法。近年来,分形理论在自然科学、社会科学以及遥感的许多领域中得到了广泛的应用,并逐步成为连结现代各学科的纬线。 2.分形与分形维数的定义 美籍法国数学家曼德布罗特(B.Mandelbrot) 于1967 年在《科学》杂志上发表了一篇题为“英国的海岸线有多长? 统计自相似性与分数维数” 的论文[2], 通常被认为是“分形”学科诞生的标志。自然界的许多物体在某一范围内都具有统计的自相似性,即每一部分都被认为是整体的一个缩小图像。曼德布罗特在随后两本著作《自然界的分形几何学》和《分形、形状、机遇与维数》中第一次提出了fractal这个英文词,其原意是“不规则的”、“分数的”、“支离破碎的”物体,并阐述分形理论的基本思想,即分形研究的对象是具有自相似性的无序系统,其维数的变化是连续的。 关于分形,目前还没有严格的数学定义,只能给出描述性的定义。粗略地说,分形是对没有特征长度但具有一定意义下的自相似性图形和结构的总称。它具有两个基本性质:自相似性和标度不变性。自相似性是指局部是整体成比例缩小的性质。形象地说,就是当用不同倍数的照相机拍摄研究对象时,无论放大倍数如何改变,看到的照片都是相似的(统计意义) ,而从相片上也无法断定所用的相机的倍数,即标度不变性或全息性。严格按一定的数学方法生成的许多经典的分形(如图1) 具有严格的自相似性,称之为有规分形。而一般情况下的分形都是无规分形,即自相似性并不是严格的,只是统计意义下的自相似性,其局部经放大或缩小操作可能得到与整体完全不同的表现形式,但表征自相似结构或系统的定量参数如分形维数,并 本课题得到辽宁工程技术大学青年基金(05-124),辽宁省教育厅基金项目(05L181),辽宁省高等学校重点实验室项目基金(20060370)的资助。

车站通过能力计算

车站通过能力 车站通过能力是在车站现有设备条件下,采用合理的技术作业过程,一昼夜能接发和方向的货物(旅客)列车数和运行图规定的旅客(货物)列车数。 车站通过能力包括咽喉通过能力和到发线通过能力。 咽喉通过能力是指车站某咽喉区各衔接方向接、发车进路咽喉道岔组通过能力之和,咽喉道岔通过能力是指在合理固定到发线使用方案及作业进路条件下,某衔接方向接、发车进路上最繁忙的道岔组一昼夜能够接、发该方向的货物(旅客)列车数和运行图规定的旅客(货物)列车数。 到发线通过能力是指到达场、出发场、通过场或到发场内办理列车到发作业的线路,采用合理的技术作业过程和线路固定使用方案,一昼夜能够接、发各衔接方向的货物(旅客)列车数和运行图规定的旅客(货物)列车数。 车站咽喉通过能力计算 咽喉占用时间标准 表咽喉道岔占用时间表 顺序作业名称时间标准 (min) 顺序作业名称 时间标准 (min) 1 货物列车接车占用6~8 4 旅客列车出发占用4~6 2 旅客列车接车占用5~7 5 单机占用2~4 3 货物列车出发占用5~7 6 调车作业占用4~6 道岔组占用时间计算 表到发线固定使用方案 线路编号固定用途 一昼夜 接发列车数 线路 编号 固定用途 一昼夜 接发列车数 1 接甲到乙、丙旅客列车8 7 接乙到甲直通、区段货物列车9 4 接乙到甲旅客列车 5 8 接甲、乙到丙直通、区段货物列车10 接丙到甲旅客列车 3 9 接丙到甲、乙直通、区段货物列车10 5 接甲到乙直通、区段货物列车11 10 接发甲、乙、丙摘挂货物列车10 表甲端咽喉区占用时间计算表 编号作业进路名称 占用 次数 每次 占用时间 总占用 时间 咽喉区道岔组占用时间 1 3 5 7 9 固定作业 1 1道接甲-乙,丙旅客列车8 7 56 56 2 4道发乙-甲旅客列车 5 6 30 30 30 3 4道发丙-甲旅客列车 3 6 18 30 30 5 往机务段送车 3 6 18 18 6 从机务段取车 2 6 12 12

计算方法_李桂成_期末复习要点

数值分析复习要点 引论 1 数值计算研究的对象与特点 计算方法研究的对象是专门研究各种数学问题的计算机解法(数值解法),包括方法的构造和求解过程的理论分析及软件实现,包括方法的收敛性、稳定性以及误差分析等. 计算方法即具有纯数学的抽象性与严密性的特点,又具有应用的广泛性与实验的技术性特点. 2 误差的概念 2.1 误差的来源 模型误差:数学模型的解与实际问题的解之间出现的误差,称为模型误差. 测量误差:在测量具体数据时产生的误差称为测量误差. 截断误差:数学模型的准确解与数值方法的准确解之间的误差称为截断误差. 舍入误差:由于计算机字长的限制而产生的误差,称为舍入误差. 2.2误差的度量 (1).绝对误差与绝对误差限 (2).相对误差与相对误差限 (3). 有效数字 2.3 误差的传播 和、差的误差限 不超过各误差限的和. 积、商的相对误差限不超过各相对误差限的和. 3 数值计算的若干原则 避免两相近数相减和绝对值太小的除数、简化计算步骤、使用数值稳定的算法 方程求根 1 二分法 用二分法求方程0)(=x f 的实根*x 的近似值,其主要思想是:将含有根*x 的隔离区间二分,通过判断二分点与边界点函数值的符号,逐步对半缩小隔离区间,直到缩小到满足精度要求为止,然后取 最后二分区间的中点为根*x 的近似值. 2 迭代法 一般地,为了求一元非线性方程 0)(=x f 的根,可以先将其转换为如下的等价形式 ()x x ?=然后构造迭代公式.()k k x x ?=+1 2,1,0=k 3 收敛性和收敛速度 (收敛性基本定理)的条件和结论 收敛速度的快慢可用收敛阶来衡量.(收敛阶)设序列{}∞=0k k x 收敛到 *x ,并记误差

分形维数算法

分形维数算法 分形包括规则分形和无规则分形两种。规则分形是指可以由简单的迭代或者是按一定规律所生成的分形,如Cantor集,Koch曲线,Sierpinski海绵等。这些分形图形具有严格的自相似性。无规则分形是指不光滑的,随机生成的分形,如蜿蜒曲折的海岸线,变换无穷的布朗运动轨迹等。这类曲线的自相似性是近似的或统计意义上的,这种自相似性只存于标度不变区域。 对于规则分形,其自相似性、标度不变性理论上是无限的(观测尺度可以趋于无限小)。不管我们怎样缩小(或放大)尺度(标度)去观察图形,其组成部分和原来的图形没有区别,也就是说它具有无限的膨胀和收缩对称性。因些对于这类分形,其计算方法比较简单,可以用缩小测量尺度的或者不断放大图形而得到。分形维数 D=lnN(λ)/ln(1/λ) (2-20) 如Cantor集,分数维D=ln2/ln3=0.631;Koch曲线分数维D=ln4/ln3=1.262; Sierpinski海绵分数维D=ln20/ln3=2.777。 对于不规则分形,它只具有统计意义下的自相似性。不规则分形种类繁多,它可以是离散的点集、粗糙曲线、多枝权的二维图形、粗糙曲面、以至三维的点集和多枝权的三维图形,下面介绍一些常用的测定方法[26]。 (1)尺码法 用某个选定尺码沿曲线以分规方式测量,保持尺码分规两端的落点始终在曲线上。不断改变尺码λ,得到一系列长度N(λ),λ越小、N越大。如果作lnN~lnλ图后得到斜率为负的直线,这表明存在如下的幂函数关系 N~λ-D(2-21) 上式也就是Mandelbrot在《分形:形状、机遇与维数》专著中引用的Richardson公式。Richardson是根据挪威、澳大利亚、南非、德国、不列颠西部、葡萄牙的海岸线丈量结果得出此公式的,使用的测量长度单位一般在1公里到4公里之间。海岸线绝对长度L被表示为: L=Nλ~λ1-D(2-22) 他得到挪威东南部海岸线的分维D≈1.52,而不列颠西部海岸线的分维D≈1.3。这说明挪威的海岸线更曲折一些[27]。

路段通行能力计算方法

根据交叉口的现场交通调查数据,通过各流向流量的构成关系,可推得各路段流量,从而得到饱和度V/C 比。路段通行能力的确定采用建设部《城市道路设计规范》(CJJ 37-90)的方法,该方法的计算公式为:单条机动车道设计通行能力n C N N a ????=ηγ0,其中N a 为车道可能通行能力,该值由设计车速来确定,如表2.2所示。 表2.13 一条车道的理论通行能力 其中γ为自行车修正系数,有机非隔离时取1,无机非隔离时取0.8。η为车道宽度影响系数,C 为交叉口影响修正系数,取决于交叉口控制方式及交叉口间距。修正系数由下式计算: s 为交叉口间距(m),C 0为交叉口有效通行时间比。 车道修正系数采用表 2.3所示 表2.3 车道数修正系数采用值 路段服务水平评价标准采用美国《道路通行能力手册》,如表2.4所示 表2.4 路段服务水平评价标准

由路段流量的调查结果,并且根据交叉口的间距、路段等级、车道数等对路段的通行能力进行了修正。在此基础上对路段的交通负荷进行了分析。 路段机动车车道设计通行能力的计算如下: δ m c p m k a N N = (1) 式中: m N —— 路段机动车单向车道的设计通行能力(pcu/h ) p N —— 一条机动车车道的路段可能通行能力(pcu/h ) c a —— 机动车通行能力的分类系数,快速路分类系数为0.75;主干道分类 系数为0.80;次干路分类系数为0.85;支路分类系数为0.90。 m k —— 车道折减系数,第一条车道折减系数为 1.0;第二条车道折减系数 为0.85;第三条车道折减系数为0.75;第四条车道折减系数为0.65.经过累加,可取单向二车道 m k =1.85;单向三车道 m k =2.6;单向四车道 m k =3.25; δ—— 交叉口影响通行能力的折减系数,不受交叉口影响的道路(如高架 道路和地面快速路)δ=1;该系数与两交叉口之间的距离、行车速度、绿信比和车辆起动、制动时的平均加、减速度有关,其计算公式如下: ?+++= b v a v v l v l 2/2///δ (2) l —— 两交叉口之间的距离(m ); a —— 车辆起动时的平均加速度,此处取为小汽车0.82/s m ; b —— 车辆制动时的平均加速度,此处取为小汽车1.662/s m ; ?—— 车辆在交叉口处平均停车时间,取红灯时间的一半。 Np 为车道可能通行能力,其值由路段车速来确定: 表4.1 Np 的确定

方程求根

山西大学计算机与信息技术学院实验报告 姓名XXX 学号XXX 专业班级(2012)计算机科学与技术 课程名称计算方法实验日期10.28 成绩指导老师李桂成批改日期 实验名称实验一方程求根 一、实验目的 用各种方法求任意实函数方程f(x)=0在自变量区间[a,b]上,或某一点附近的实根。并比较方法的优劣。 二、实验方法 (1)二分法 对方程f(x)=0在[a,b]内求根,将所给区间二分,在分点x= 2a b 判断是否f(x)=0,若是,则有根x=(b+a)/2。否则,继续判断是否f(a)* f(x)<0,若是,则令b=x,否则令a=x、重复此过程直至求出方程f(x)=0在[a,b]中的近似根为止。 (2)迭代法 将方程f(x)=0等价变换为x=φ(x)形式,并建立相应的迭代公式x k+1=φ(x k)。 (3)牛顿法 若已知方程f(x)=0的一个近似根x0,是函数f(x)在点x0附近可用一阶泰勒多项式 p1(x)=f(x )+f`(x0)(x-x0)来近似,因此方程f(x)=0可近似表示为f(x0)+f`(x0)(x-x0)=0。设f`(x0)≠0,则x=x0-f(x0)/f`(x0)。则x作为原方程新的近似根x1,然后x1将作为x0带入上式。迭代公式为x k+1=x k -f(x k)/f`(x k)。 三、实验内容 (1)在区间[0,1]上用二分法求方程ex+10x-2=0的近似根,要求误差不超过0.5x10-3。 (2)取初值x0=0,用迭代公式,x k+1= 10 k x e- 2,(k=0,1,2···)求方程e x+10x-2=0的 近似根。要求误差不超过0.5x10-3。 (3)取初值x0=0,用牛顿迭代法求方程e x+10x-2=0(k=0,1,2···)的近似根。要求误差不超过0.5x10-3。

数值计算方法习题答案(第二版)(绪论)

数值计算方法习题答案(第二版)(绪论)

数值分析 (p11页) 4 试证:对任给初值x 0, (0) a a >的牛顿 迭代公式 112(),0,1 ,2,......k a k k x x x k +=+= 恒成立下列关系式: 21 12(1)(,0,1,2,.... (2),1,2,...... k k k x k x a x a k x a k +-= -=≥= 证明: (1) ( 2 2 112222k k k k k k k k x a a x ax a x a x a x x x +-??-+-=+-== ? ?? (2) 取初值0 >x ,显然有0 >k x ,对任意0≥k , a a x a x x a x x k k k k k ≥+??? ? ??-=???? ??+=+2 12121 6 证明: 若k x 有n 位有效数字,则n k x -?≤ -1102 1 8, 而 ( )k k k k k x x x x x 28882182 1-=-??? ? ??+=-+ n n k k x x 21221102 1 5.221041 85 .28--+?=??<-∴>≥ 1 k x +∴必有2n 位有效数字。

8 解: 此题的相对误差限通常有两种解法. ①根据本章中所给出的定理: (设x 的近似数* x 可表示为m n a a a x 10......021* ?±=,如果* x 具有l 位有效数字,则其相对误差限为 ()11 * *1021 --?≤ -l a x x x ,其中1 a 为* x 中第一个非零数) 则7 .21 =x ,有两位有效数字,相对误差限为 025.0102 21 111=??≤--x x e 71 .22=x ,有两位有效数字,相对误差限为 025.0102 21 122=??≤--x x e 3 2.718 x =,有两位有效数字,其相对误差限为: 00025.0102 21 333=??≤--x e x ②第二种方法直接根据相对误差限的定义式求解 对于7 .21 =x ,0183.01 <-e x ∴ 其相对误差限为00678.07 .20183.01 1≈<-x e x 同理对于71 .22 =x ,有 003063.071 .20083 .022≈<-x e x

简单分形维数的探究

简单分形及维数的研究 (河南大学,物理与电子学院,物理学,河南开封,475004)摘要:本文介绍了分形、维数的相关知识,并以简单分形做例子进行了演示,又求得了Sierpinski三角分形及埃侬映射的维数。 关键词:分形,维数,程序设计。 一、分形 分形(fractal)是指由各部分组成的形态,每个部分以某种方式与整体相似。对这一描述加以引伸,它可以包括以下含义: 分形可以是几何图形,也可以是由“功能”或“信息”架起的数理模型;分形可以同时具有形态、功能和信息三方面的自相似性,也可以只有其中某一方面的自相似性。 分形的创建历史: (1)曼德勃罗在美国《科学》杂志上发表论文《英国的海岸线有多长》震惊学术界(1967 年)。 (2)法兰西学院讲演报(1973年)。 (3)“病态”“数学怪物”命名——分形(Fractal)(1975年)。 (4)法文版《分形对象:形、机遇和维数》出版(1975年)。 (5)英文版《分形:形、机遇和维数》出版(1977年)。 (6)英文版《大自然的几何学》出版(1982年) 。 分形是由Mandelbrot在20世纪70年代为了表征复杂图形和复杂过程而引入自然领域的。原意是破碎的、不规则的物体。分形分为两类,规则分形,又称决定类的分形,它是按一定的规则构造出的具有严格自相思的分形;另一类是无规则的分形,它是在生长现象中和许多物理问题中产生的分形,其特点是不具备严格意义上的自相似,只是在统计意义上是自相似的。本文研究的是规则分形。 有以上可知,自相似性是分形最大的几何特征。下面我们就科赫曲线和Sierpinski对此进行讨论。 1、科赫曲线 科赫曲线的生成方法:把一条曲线三等分,中间的一段用夹角为60的折线替代,得到第一个生成元;把第一个生成元中的每一条直线都用生成元迭代,得到第二个生成元;经过无数次迭代,即可得到科赫曲线。 实现程序如下: s=[0,1];t=[0,0];n=8; for j=1:n

计算方法引论课后答案

第一章 误差 1. 试举例,说明什么是模型误差,什么是方法误差. 解: 例如,把地球近似看为一个标准球体,利用公式2 4A r π=计算其表面积,这个近似看为球体的过程产 生的误差即为模型误差. 在计算过程中,要用到π,我们利用无穷乘积公式计算π的值: 12 222...q q π=? ?? 其中 11 2,3,... n q q n +?=?? ==?? 我们取前9项的乘积作为π的近似值,得 3.141587725...π≈ 这个去掉π的无穷乘积公式中第9项后的部分产生的误差就是方法误差,也成为截断误差. 2. 按照四舍五入的原则,将下列各数舍成五位有效数字: 7 015 50 651 13 236 23 解: 0 7 236 3. 下列各数是按照四舍五入原则得到的近似数,它们各有几位有效数字 13 05 0 解: 五位 三位 六位 四位 4. 若1/4用表示,问有多少位有效数字 解: 两位 5. 若 1.1062,0.947a b ==,是经过舍入后得到的近似值,问:,a b a b +?各有几位有效数字 解: 已知4311 d 10,d 1022 a b --

[电子教案]计算方法 (24)

6.4 埃尔米特(Hermite)插值 ?6.4.1两点三次埃尔米特插值 ?6.4.2低阶含导数项的插值

6.4.1 两点三次埃尔米特插值 许多实际问题不仅要求插值函数在节点上与原来的函数相等(满足插值条件),而且还要求在节点 上的各阶导数值也相等。满足这些条件的插值,称为埃尔米特(Hermite)插值。本节讨论已知两个节 点的函数值和一阶导数 的情形。 10x ,x ()()1100y x f ,y x f ==()()11' 00' m x f ,m x f ==

()()()()0100' ' 110011,,,,(): x x f x y f x y f x m f x m H x ====已知函数在两个互异节点上的函数值和一阶导数值求一个三次 插值多项式,使其满足???====1 1' 00'1100m )x (H ,m )x (H y )x (H ,y )x (H () 1.4.6插值多项式。 称为三次这样的Herm ite )x (H 方法,可设: 采用构造插值基函数的1 1001100m )x (H m )x (H y )x (h y )x (h )x (H +++=() 2.4.6

1 .4.6)x (H ),x (H ),x (h ),x (h 1010的取值如表都为插值基函数,它们其中1 .4.6表基函数 函数值 一阶导数 1 010000100 1 x 0 x 1 x 1 x 0() h x 1() h x 0() H x 1() H x

多项式,因此可设: (x)最多是一个三次,另外,h )x (x (x)中必有因子0所以h )(x h )(x (x),由于h 先求h 02 101' 100-==2 10 100x x x x ))x x (b a ()x (h ???? ??---+=得: 利用求导数,再 ,对,为确定得利用0)x (h )x (h b 1a 1)x (h 0' 000===1 0x x 2 b --= 于是得: 2 1 010100) x x x x )(x x x x 21()x (h ----+=() 3.4.6

路区间通过能力计算办法

路区间通过能力计算办法 1984年10月1日,铁道部 第一章总则 第1条为了保证铁路完成和超额完成不断增长的运输任务,以适应国民经济发展和国防建设对铁路运输的需要,铁路必须大力加强运输组织工作,采取有效措施,积极提高铁路线路通过能力。 铁路线路通过能力,是根据现有技术设备、行车组织方法及规定的技术作业过程确定的在一昼夜内所能通过的最大列车对数或列数。 铁路线路通过能力,系按区间、车站、机务段设备和整备设备、车站给水设备、电气化铁路的供电设备分别确定,以其中最小的通过能力,作为该区段的限制通过能力。 为了计算铁路区间通过能力,本办法规定了铁路区间通过能力的计算办法。 第2条铁路区间通过能力,是指每一区间在一昼夜内所能通过的列车数量(列数或对数)。 区间通过能力的大小,在一定的行车组织条件下,主要取决于正线数目、区间长度、线路纵断面、信联闭设备、牵引机车类型和列车运行速度等因素。 第3条计算区间通过能力时,应先计算平行运行图通过能力,再计算非平行运行图通过能力。 平行运行图通过能力,一般应按货物列车对数或列数计算;非平行运行

图通过能力,系在规定旅客列车数量的基础上,以扣除系数的方法计算出旅客列车和货物列车的对数或列数。 第4条铁路区间通过能力,由各铁路局或分局负责计算,并填制区间通过能力计算表及区间通过能力汇总表,经铁路局审核后报铁道部运输局。 第5条本办法系根据我国铁路现有技术设备条件及多年来编制和执行列车运行图的经验,规定了铁路区间通过能力的一般计算方法。个别特殊情况,由铁路局根据具体情况和特点,进行图解和计算。 第二章平行运行图区间通过能力 第6条平行运行图区间通过能力,应分别对区段内每一区间计算。运行图周期最大的区间通过能力,即为该区段的限制区间通过能力。 运行图周期,是指一定类型运行图的一组列车占用区间的总时间。其组成因素,在非自动闭塞区段包括:列车区间运行时分,起停车附加时分及列车在车站的间隔时间。在自动闭塞区段为追踪列车间隔时间。 平行运行图区间通过能力的基本关系式如下: 1440 N=―――― (1) T周 式中:N――平行运行图通过能力(对数或列数); 1440――一昼夜时分; T周――运行图周期。 电力牵引区段,由于每日须进行接触网检修,因此,其计算公式为:

计算方法习题答案

计算方法第3版习题答案 习题1解答 1.1 解:直接根据定义得 *411()102x δ-≤?*411()102r x δ-≤?*3*12211 ()10,()1026 r x x δδ--≤?≤?*2*5331()10,()102r x x δδ--≤?≤ 1.2 解:取4位有效数字 1.3解:433 5124124124 ()()() 101010() 1.810257.563 r a a a a a a a a a δδδδ----++++++≤≤=?++? 123()r a a a δ≤ 123132231123 ()()() a a a a a a a a a a a a δδδ++0.016= 1.4 解:由于'1(),()n n f x x f x nx -==,故***1*(())()()()n n n f x x x n x x x δ-=-≈- 故** * ***(()) (())()0.02()r r n f x x x f x n n x n x x δδδ-= ≈== 1.5 解: 设长、宽和高分别为 ***50,20,10l l h h εεωωεεεε=±=±=±=±=±=± 2()l lh h ωωA =++,*************()2[()()()()()()]l l l h h l h h εδωωδδδωδδωA =+++++ ***4[]320l h εωε=++= 令3201ε<,解得0.0031ε≤, 1.6 解:设边长为x 时,其面积为S ,则有2()S f x x ==,故 '()()()2()S f x x x x δδδ≈= 现100,()1x S δ=≤,从而得() 1 ()0.00522100 S x x δδ≈ ≤ =? 1.7 解:因S ld =,故 S d l ?=?,S l d ?=?,*****()()()()()S S S l d l d δδδ??≈+?? * 2 ()(3.12 4.32)0.010.0744S m δ=+?=, *** ** * () () 0.0744 ()0.55%13.4784 r S S S l d S δδδ= = = ≈ 1.8 解:(1)4.472 (2)4.47 1.9 解:(1) (B )避免相近数相减 (2)(C )避免小除数和相近数相减 (3)(A )避免相近数相减 (3)(C )避免小除数和相近数相减,且节省对数运算 1.10 解 (1)357sin ...3!5!7!x x x x x =-+-+ 故有357 sin ..3!5!7! x x x x x -=-+-, (2) 1 (1)(1)1lnxdx ln ln ln N+N =N N +-N N +N +-? 1 (1)1ln ln N +=N +N +-N 1.11 解:0.00548。 1.12解:21 16 27 3102 ()()() -? 1.13解:0.000021

水利计算公式.doc

1.河床稳定计算及河相分析 1.1.河床稳定计算 河床稳定指标可采用横向稳定指标、纵向稳定指标及综合稳定指标 3 种形式分析,以确定河道特性。 1.1.1.河道横向稳定分析 河道横向稳定系数按下式计算: 式中: 横向稳定系数; Q造床流量, m3/s ; J河床比降; B 相当于造床流量的平摊河宽,m。 1.1. 2.河道纵向稳定分析 水流对河床泥沙的拖曳力与床面泥沙抵抗运动的摩阻力之间的相互作用,决定河床的纵向稳定性。根据黄河水利出版社出版《治河及泥沙工程》中河道纵向稳定系数采用爱因斯坦水流强度函数按下式计算: 式中: 纵向稳定系数; D床沙平均粒径,mm; J河床纵比降; H河流平摊水深,m。

1.1.3.综合稳定指标 综合稳定指标是综合考虑河床的纵、横向稳定性。建议采用的公式为 2 (b)*h 1.2.河床演变分析与河相关系 调查工程区河道历史主流及河道变迁,分析工程区河道形态。共分为蜿蜒型河道、游荡型河道两种形式。 蜿蜒型河段一般凹岸崩退,凸岸淤长,凹岸深槽和过渡段浅滩在年内发生互相交替的冲淤变化。 游荡型河道的河岸及河床抗冲性较差,从长距离来看河道往往呈藕节状,其中窄段水流 归顺,有控制河势的作用,宽段则河床宽浅,洲滩密布,汊道交织,水流散乱,主流迁徙不 定。河道的平面状态可用“宽、浅、散、乱”四个字概括。 在水流长期作用下形成的河床,其形态有一定的规律,大量资料表明,表征河床形态的 水深、河宽、比降等,与来水来沙条件及河床地质条件之间,有一定函数关系,这种关系便 称为河相关系。 根据俄罗斯国立水文所提出公式,河道横断面河相关系公式为: B H 式中 : ξ 河相相关系数; B 造床流量下的水面宽(m); H造床流量下的平均水深(m); (蜿蜒型河道ζ 约为2~4,较为顺直的过渡性河段约为8~12,游荡型河道ζ 约为20~30)2.护岸结构设计 2.1.护岸顶高程确定 根据《堤防工程设计规范》(GB50286-2013)(以下简称《堤防规范》)要求,堤顶高程为设计洪水位加超高值确定。堤顶超高按下式计算:

计算方法练习题与答案

练习题与答案 练习题一 练习题二 练习题三 练习题四 练习题五 练习题六 练习题七 练习题八 练习题答案 练习题一 一、是非题 1.*x=–1 2.0326作为x的近似值一定具有6位有效数字,且其误差限 ≤ 4 10 2 1 - ? 。() 2.对两个不同数的近似数,误差越小,有效数位越多。( ) 3.一个近似数的有效数位愈多,其相对误差限愈小。( ) 4.用 2 1 2 x - 近似表示cos x产生舍入误差。( )

5. 3.14和 3.142作为π的近似值有效数字位数相同。 ( ) 二、填空题 1. 为了使计算 ()()2334912111y x x x =+ -+ ---的乘除法次数尽量少,应将该 表达式改写为 ; 2. * x =–0.003457是x 舍入得到的近似值,它有 位有效数字,误差限 为 ,相对误差限为 ; 3. 误差的来源是 ; 4. 截断误差为 ; 5. 设计算法应遵循的原则是 。 三、选择题 1.* x =–0.026900作为x 的近似值,它的有效数字位数为( ) 。 (A) 7; (B) 3; (C) 不能确定 (D) 5. 2.舍入误差是( )产生的误差。 (A) 只取有限位数 (B) 模型准确值与用数值方法求得的准确值 (C) 观察与测量 (D) 数学模型准确值与实际值 3.用 1+x 近似表示e x 所产生的误差是( )误差。 (A). 模型 (B). 观测 (C). 截断 (D). 舍入 4.用s *=21 g t 2表示自由落体运动距离与时间的关系式 (g 为重力加速度),s t 是在 时间t 内的实际距离,则s t - s *是( )误差。 (A). 舍入 (B). 观测 (C). 模型 (D). 截断 5.1.41300作为2的近似值,有( )位有效数字。 (A) 3; (B) 4; (C) 5; (D) 6。 四、计算题

计算方法及答案

《计算方法》练习题一 一、填空题 1. 14159.3=π的近似值3.1428,准确数位是( )。 2.满足d b f c a f ==)(,)(的插值余项=)(x R ( )。 3.设)}({x P k 为勒让德多项式,则=))(),((22x P x P ( )。 4.乘幂法是求实方阵( )特征值与特征向量的迭代法。 5.欧拉法的绝对稳定实区间是( )。 6. 71828.2=e 具有3位有效数字的近似值是( )。 7.用辛卜生公式计算积分 ?≈+1 01x dx ( ) 。 8.设)()1()1(--=k ij k a A 第k 列主元为) 1(-k pk a ,则=-)1(k pk a ( )。 9.已知?? ? ? ??=2415A ,则=1A ( )。 10.已知迭代法:),1,0(),(1 ==+n x x n n ? 收敛,则)(x ?'满足条件( )。 二、单选题 1.已知近似数,,b a 的误差限)(),(b a εε,则=)(ab ε( )。 A .)()(b a εε B.)()(b a εε+ C.)()(b b a a εε+ D.)()(a b b a εε+ 2.设x x x f +=2 )(,则=]3,2,1[f ( )。 A.1 B.2 C.3 D.4 3.设A=?? ? ? ??3113,则化A为对角阵的平面旋转=θ( ). A. 2π B.3π C.4π D.6 π 4.若双点弦法收敛,则双点弦法具有( )敛速. A.线性 B.超线性 C.平方 D.三次 5.改进欧拉法的局部截断误差阶是( ). A .)(h o B.)(2h o C.)(3h o D.)(4 h o 6.近似数2 1047820.0?=a 的误差限是( )。 A. 51021-? B.41021-? C.31021-? D.2102 1 -? 7.矩阵A满足( ),则存在三角分解A=LR 。 A .0det ≠A B. )1(0det n k A k <≤≠ C.0det >A D.0det

铁路区间通过能力计算办法

铁路区间通过能力计算办法 铁道部 铁路区间通过能力计算办法 1984年10月1日,铁道部 第一章总则 第1条为了保证铁路完成和超额完成不断增长的运输任务,以适应国民经济发展和国防建设对铁路运输的需要,铁路必须大力加强运输组织工作,采取有效措施,积极提高铁路线路通过能力。 铁路线路通过能力,是根据现有技术设备、行车组织方法及规定的技术作业过程确定的在一昼夜内所能通过的最大列车对数或列数。 铁路线路通过能力,系按区间、车站、机务段设备和整备设备、车站给水设备、电气化铁路的供电设备分别确定,以其中最小的通过能力,作为该区段的限制通过能力。 为了计算铁路区间通过能力,本办法规定了铁路区间通过能力的计算办法。 第2条铁路区间通过能力,是指每一区间在一昼夜内所能通过的列车数量(列数或对数)。 区间通过能力的大小,在一定的行车组织条件下,主要取决于正线数目、区间长度、线路纵断面、信联闭设备、牵引机车类型和列车运行速度等因素。 第3条计算区间通过能力时,应先计算平行运行图通过能力,再计算非平行运行图通过能力。 平行运行图通过能力,一般应按货物列车对数或列数计算;非平行运行图通过能力,系在规定旅客列车数量的基础上,以扣除系数的方法计算出旅客列车和货物列车的对数或列数。 第4条铁路区间通过能力,由各铁路局或分局负责计算,并填制区间通过能力计算表及区间通过能力汇总表,经铁路局审核后报铁道部运输局。 第5条本办法系根据我国铁路现有技术设备条件及多年来编制和执行列车运行图的经验,规定了铁路区间通过能力的一般计算方法。个别特殊情况,由铁路局根据具体情况和特点,进行图解和计算。 第二章平行运行图区间通过能力 第6条平行运行图区间通过能力,应分别对区段内每一区间计算。运行图周期最大的区间通过能力,即为该区段的限制区间通过能力。 运行图周期,是指一定类型运行图的一组列车占用区间的总时间。其组成因素,在非自动闭塞区段包括:列车区间运行时分,起停车附加时分及列车在车站的间隔时间。在自动闭塞区段为追踪列车间隔时间。 平行运行图区间通过能力的基本关系式如下: 1440 N=———— (1) T周 式中:N——平行运行图通过能力(对数或列数); 1440——一昼夜时分; T周——运行图周期。 电力牵引区段,由于每日须进行接触网检修,因此,其计算公式为: 1440—t网 N=---------------- (2)

相关文档
最新文档