求矩阵的秩有下列基本方法

合集下载

矩阵的秩及其求法-求秩的技巧

矩阵的秩及其求法-求秩的技巧

第五节:矩阵的秩及其求法之五兆芳芳创作一、矩阵秩的概念 1. k 阶子式 定义1 设 在A 中任取k 行k 列穿插处元素按原相对位置组成的阶行列式,称为A 的一个k 阶子式.例如共有个二阶子式,有 个三阶子式矩阵 A 的第一、三行,第二、四列相交处的元素所组成的二阶子式为 而为 A 的一个三阶子式.显然, 矩阵 A 共有 个k 阶子式.2. 矩阵的秩 定义2 设 有r 阶子式不为0,任何r +1阶子式(如果存在的话)全为0 ,称r 为矩阵A 的秩,记作R (A )或秩(A ).规则: 零矩阵的秩为 0 .注意:(1) 如 R ( A ) = r ,则 A 中至少有一个 r 阶子式所有 r + 1 阶子式为 0,且更高阶子式均为 0,r 是 A 中不为零的子式的最高阶数,是唯一的 .(2) 有行列式的性质,(3) R(A ) ≤m , R (A ) ≤n , 0 ≤R (A ) ≤min { m , n } .(4) 如果An ×n , 且 则 R ( A ) = n .反之,如 R()nm ij a A ⨯={}),min 1(n m k k ≤≤43334=C C 1015643213-=D nm ⨯()nm ij a A ⨯=0,r D ≠()().T R A R A =0,A ≠0.A ≠( A ) = n ,则因此,方阵 A 可逆的充分需要条件是 R ( A ) = n . 二、矩阵秩的求法 1、子式判别法(定义).例1 设 为阶梯形矩阵,求R (B ). 解 由于 存在一个二阶子式不为0,而任何三阶子式全为0,则R (B ) = 2.结论:阶梯形矩阵的秩=台阶数.例如 一般地,行阶梯形矩阵的秩等于其“台阶数”——非零行的行数. 例2 设 如果 求a .解 或例3则 2、用初等变换法求矩阵的秩定理2矩阵初等变换不改动矩阵的秩. 即则注: 只改动子行列式的符号. 是 A 中对应子式的k 倍.2021≠⎪⎪⎪⎭⎫ ⎝⎛=010*********A ⎪⎪⎪⎭⎫ ⎝⎛=001021B ⎪⎪⎪⎭⎫ ⎝⎛=100010011C 125034000D ⎛⎫ ⎪= ⎪ ⎪⎝⎭21235081530007200000E ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭⎪⎪⎪⎭⎫ ⎝⎛=a a a A 111111(),3<A R ()3<A R 1=∴a 2-=a ()3=A R =K 3-BA →)()(B R A R =ji r r ↔.1irk .2是行列式运算的性质.求矩阵A 的秩办法:1)利用初等行变换化矩阵A 为阶梯形矩阵B 2)数阶梯形矩阵B 非零行的行数即为矩阵A 的秩. 例4求 解R(A ) = 2例5三、满秩矩阵定义3A 为n 阶方阵时,称 A 是满秩阵,(非奇异矩阵) 称 A 是降秩阵,(奇异矩阵) 可见:对于满秩方阵A 施行初等行变换可以化为单位阵E ,又按照初等阵的作用:每对A 施行一次初等行变换,相当于用一个对应的初等阵左乘A,由此得到下面的定理. 定理3设A 是满秩方阵,则存在初等方阵 使得对于满秩矩阵A ,它的行最简形是n 阶单位阵 E . 例如A 为满秩方阵.关于矩阵的秩的一些重要结论:ji krr +.3().A R μλμλ,2,6352132111,求)(且设=⎪⎪⎪⎭⎫⎝⎛--=A R A (),n A R =(),n A R <()0≠⇔=A nA R EA P P P P s s =-121,定理5R (AB )R (A ),R (AB )R (B ),即R (AB )min{R (A ),R (B )}设A 是 矩阵,B 是 矩阵, 性质1性质2 如果 A B = 0 则性质3 如果 R (A )= n, 如果A B = 0 则 B = 0. 性质4 设A,B 均为矩阵,则例8 设A 为n 阶矩阵,证明R (A+E )+R (A-E )≥n 证: ∵ (A+E )+(E-A )=2E∴R (A+E )+ R ( E-A )≥ R (2E )=n而 R ( E-A )=R ( A-E ) ∴ R (A+E )+R (A-E )≥n≤nm ⨯tn ⨯).()()(AB R n B R A R ≤-+.)()(n B R A R ≤+nm ⨯).()()(B R A R B A R +≤±。

2.5 矩阵的秩及其求法

2.5 矩阵的秩及其求法

求 R( A).
1 0 2 −4 1 0 2 −4 −4 → 0 1 −1 2 r 2r , 解 A 2 − 0 1 −1 2 r1 → r3 + 1 0 −1 1 − 2 0 0 0 0
R(A) = 2
13
1 −1 1 2 例5 设A = 3 λ −1 2, 且R(A) 2 = ,求λ, µ 5 3 µ 6
∴ R( A) = 3
A为满秩方阵。
19
若求A 若求 的标准型矩阵
1 − 2 1 − 4 0 −1 −1 3 → 0 0 1 9 0 0 0 0
2 1 1 0 →0 2 0 0
0 −1 2 1 0 0
4 0 12 3 1 9 2 0 0 0
矩阵A 的第一、三行,第二、四列相交处的元素 所构成的二阶子式为
2 −1 D2 = 0 −1
3 5 为 A 的一个三阶子式。

1 2 D3 = 4 6
1 0 −1
k k m× n 矩阵 A 共有 cmcn 个 k 阶子式。 显然,
4

A = (aij )m×n 当 A=0 时,它的任何子式都为零。
⑤ R(AB)≤ min{R(A),R(B)} ⑥ 若 Am×nBn×s=0,则 R(A)+R(B)≤n
24
例8
设A为n阶矩阵,证明R(A+E)+R(A-E)≥n 证: ∴ 而 ∴ ∵ (A+E)+(E-A)=2E r(A+E)+ r( E-A )≥ r(2E)=n r( E-A )= r( A-E ) r(A+E)+r(A-E)≥n
7
矩阵秩的求法 二、矩阵秩的求法 1、子式判别法 定义 。 、子式判别法(定义 定义)。

第四节 矩 阵 的 秩

第四节 矩 阵 的 秩
一个 k 级子式.
例如,在矩阵
1 1 3 1
A


0 0
2 0
1 0
4

5

0
0
0
0

中,选第 1, 3 行和第 3, 4 列,它们交点上的元素
所成的 2就是一个 2 级子式. 又如选第 1, 2, 3 行和第1, 2, 4
列,相应的 3 级子式就是
求向量组的极大线性无关组的方法是:把向量 组中的每一个向量作为矩 阵的一列构成一个矩阵, 然后用矩阵的初等行变换把矩阵化成阶梯形矩阵, 在阶梯形矩阵中,每个阶梯中的第一个非零元所在 的列所对应的向量即为极大线性无关组中的向量.
若要用极大线性无关组来表示其余向量,则需进一 步把阶梯形矩阵化成行最简形,这时,不在极大线 性无关组中的列中的元素即为用极大线性无关组表 示该列所对应的向量的表示系数.


2 3

,
3


3 5

,

4


7
;
1

1


1


4


1

本若请本若请本若请本若请本本若若请请本若节想请单节想本单若节想请单节想本单若节节想想请单单节想内结本单若击内请结节击想内结本单若击内请结节击想内 内结 结本单若击击内请结容束节击想返本容单若束内请返结容束节击想返本容单若束内请返结容 容束 束节击想返返本容单若束已本内请返结回节已击想本本容单若回束已本内请返结回节已击想本本容单若回束已 已本 本内请返结回回节已击想本结本堂容单若回束按内结请返结本堂若节已击想按本结请本 本堂容单若 若回束按内结请 请返结本堂若节已击想按本结 结请本堂 堂容单若回束按按内结请返结堂束节课已击想按本钮容束单回束节课想内结返结钮堂束单节 节课已击想 想按本钮容束单单回束节课想内结返结钮堂束 束单节课 课已击想按本钮钮容束单回束课内,结返结钮堂.已击按本内,!结容束回束课.击内 内,结!返结 结钮堂.已击击按本内,!结容束回束课.击内,,结!返结钮堂..已击按本,!!容束回束课.结!返钮堂容束已按本,返容 容束回束 束课.结!返返钮堂容束已按本,返容束回束课.结!返钮堂已按本,束回课.已本结!钮堂回已 已按本 本,束回回课.已本结!钮堂回已按本,束回课.结!钮堂按,结堂束课.按结 结!钮堂堂按按,结堂束课.按结!钮堂按,束课.!钮束课,钮束束课课.!钮钮束课,钮束课.!钮,.,!.,,!..,!!.,!.!

矩阵的秩

矩阵的秩

第七讲 矩阵的秩一、考试内容与考试要求考试内容矩阵秩的概念及性质. 考试要求(1)理解矩阵秩的概念; (2)了解矩阵秩的性质;(3)掌握用初等变换求矩阵的秩.一、知识要点引入 学习秩的概念,是为找出线性方程组中有效方程的个数.或者说学习矩阵秩的目的是为判断矩阵对应的线性方程组中有效方程的个数.1.定义矩阵A 中不等于零的子式的最高阶数r ,叫做矩阵的秩,记为()R A r =.2.矩阵秩的求法(1)定义法找出矩阵A 中不为零的最高子式,算出它的阶数. (2)初等变换法用初等变换(行、列均可)将矩阵A 化为标准形r E O O O ⎛⎫⎪⎝⎭,即可得出()R A r =;或化成阶梯形矩阵,其非零行的个数即为秩.3.注意(1)若矩阵A O =,则()0R A =;若A O ≠,则()1R A ≥;(2)若()R A r =,则A 中存在r 阶子式不为零,而任何1r +阶子式(若存在)全为零; 很明显,若A 中有一个1r +阶子式不为零,它的秩为1r +. (3)若()R A r =,则A 中1r -阶子式不全为零;当()R A r =时,A 中至少有一个r 阶子式不为零,这个r 阶子式可展开成r 个1r -阶子式,若所有1r -阶子式全为零,则这个r 阶子式为零,产生矛盾.(4){}0()min ,m n R A m n ⨯≤≤; (5)若()R A r =,则 Ar cr E O O O ⎛⎫ ⎪⎝⎭或A 含有r 个非零行(或列)的阶梯形式矩阵.即一般情况下,只有初等行、列变换合用才可将A 化成标准形;但将A 化为含有r 个非零行(或列)的阶梯形矩阵只用初等行(或列)变换即可.单纯求矩阵的秩只须将A 化成阶梯形.(6)对于n 阶方阵A ,有0(),0(),A R A n A A R A n A ⎧≠⇔=⎪⎨=⇔<⎪⎩满秩,A 可逆,A 非奇异降秩,A 不可逆,A 奇异若()R A =矩阵A 的行(列)数,称A 为行(列)满秩矩阵.(7)学习矩阵秩的实质是为判断矩阵对应的线性方程组中有效方程的个数.4.性质以下性质先用简单的例题予与说明,然后对难以直观理解的一些性质进行证明. (1)()()TR A R A = (2)0()()R kA R A ⎧=⎨⎩ 00k k =≠很明显,当0k ≠时,A 中不等于零的最高子式在kA 中有对应的不等于零的子式. (3)A O R O B ⎛⎫⎪⎝⎭=()()R A R B + (4){}max (),()(,)()()R A R B R A B R A R B ≤≤+ 例:1000A ⎛⎫=⎪⎝⎭,0001B ⎛⎫= ⎪⎝⎭,{}max (),()1R A R B =,(,)2()()R A B R A R B ==+ (5)()()()R A B R A R B +≤+例:取1001A ⎛⎫= ⎪⎝⎭,1001B -⎛⎫= ⎪-⎝⎭,A B O +=,()0()()4R A B R A R B +=<+=(6)若AB ,则()()R A R B =即初等变换不改变矩阵的秩,证明见课本. (7)若P 、Q 可逆,则()()R PAQ R A =即左乘及右乘可逆矩阵不改变原矩阵的秩,这也是初等变换不改变矩阵的秩这句话用数学符号来描述.可简单证明:P 、Q 可逆,则P 、Q 可以表示成有限个初等矩阵的乘积,即对A 实施初等变换得PAQ ,再由性质(6)得证.(8)()R AB ≤{}min (),()R A R B 例:1000A ⎛⎫=⎪⎝⎭,0001B ⎛⎫= ⎪⎝⎭,AB O =,()0R AB =<{}min (),()R A R B {}min 1,11==(9)若m n n l A B O ⨯⨯=,则()()R A R B n +≤ 例:1000A ⎛⎫=⎪⎝⎭,0001B ⎛⎫= ⎪⎝⎭,AB O =,()()2R A R B +=. (10)A 为任意矩阵,则()()TR A A R A =(11)设A 为n 阶方阵,*()10n R A ⎧⎪=⎨⎪≤⎩,当R(A)=n,当R(A)=n-1,当R(A)n-25.性质证明这里只证明部分不易理解的性质.为记忆方便,将性质(3)放在前面,但性质(3)的证明用到性质(7),故学习时应 先证明性质(7).证明(3)设()R A s =,()R B t =,则存在可逆矩阵11,P Q 及22,PQ 使得 11sE O P AQ OO ⎛⎫=⎪⎝⎭,22tE O P AQ O O ⎛⎫= ⎪⎝⎭故存在可逆矩阵12P O O P ⎛⎫⎪⎝⎭,12Q O O Q ⎛⎫ ⎪⎝⎭,使得 12P O O P ⎛⎫ ⎪⎝⎭A O O B ⎛⎫ ⎪⎝⎭12Q O O Q ⎛⎫ ⎪⎝⎭=1122P AQ O OP BQ ⎛⎫ ⎪⎝⎭=st E O O O O O O O OO E O OOOO ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭因为左乘及右乘可逆矩阵不改变原矩阵的秩,故有A O R OB ⎛⎫ ⎪⎝⎭=st E O O O O O O O R O O E O OOOO ⎛⎫⎪ ⎪⎪ ⎪⎝⎭=s t +=()()R A R B +证明(5) 设,A B 为n m ⨯矩阵.方法1 利用初等列变换.对矩阵(,)A B B + 进行初等列变换(,)A B B +1,2,,i n i c c i n+-=(,)A B由于矩阵A B +是矩阵(,)A B B +的子矩阵,并利用性质(4)及上式有 ()(,)R A B R A B B +≤+=(,)()()R A B R A R B ≤+方法2 利用线性表示和最大线性无关组的性质(利用向量组的线性关系证明). 设()R A s =,()R B t =,将,A B 按列分块为A =(12,,,n ααα),B =12(,,,)n βββ即 A B +=1122(,,,)n n αβαβαβ+++不妨设A 和B 的列向量组的最大线性无关组分别为12,,,s ααα和12,,,t βββ,于是A B +的列向量组可由向量组12,,,s ααα,12,,,t βββ线性表示,如1112120000s t αβαααβββ+=+++++++故 ()R A B +=A B +的列秩≤秩{12,,,s ααα,}12,,,t βββs t ≤+.证明(8) 方法1 利用方程组解的性质证明.设C AB =,知矩阵方程AX C =有解X B =,故()(,)R A R A C =,而()(,)R C R A C ≤,因此()()R C R A ≤.又T T TB AC =,同上段证明知有()()TTR C R B ≤,即()()R C R B ≤.综合便得()R AB ≤{}min (),()R A R B 。

高等代数3.4 矩阵的秩

高等代数3.4 矩阵的秩

由引理,这个方程的系数矩阵
a11 a21 ar1
a12

a1n
a22 a2n

ar 2 arn

,
的行秩 r . 因此在它的行向量中可以找到 r 个是
线性无关的,不妨设为
(a11, a21,, arபைடு நூலகம்) , (a12 , a22 ,, ar2 ) ,
x11 + x22 + … xrr = 0
只有零解,这也就是说,齐次线性方程组
a11x1 a21x2 ar1xr 0 ,

a12
x1


a22 x2 ar2 xr

0
,
a1n x1 a2n x2 arn xr 0 ,
只有零解.
ain
)

i

ai1 a11
1
,
i 2,, n .
由 | A | = 0 可知 n - 1 级矩阵
a22 a2n


an 2 ann
的行列式为零. 根据归纳法假定,这个矩阵的行向
量组线性相关. 因而向量组
2

a21 a11
1
,
3

a31 a11
1
, ,n

an1 a11
1
线性相关,这就是说,有不全为零的数 k2 , … , kn
使
k2
( 2

a21 a11
1)



kn
( n

an1 a11
1)

0
.
改写一下,有

线性代数§3.3矩阵的秩

线性代数§3.3矩阵的秩

设A为n阶可逆方阵. 因为| A | 0, 所以, A的最高阶非零子式为| A |, 则R(A)=n.
故, 可逆方阵A的标准形为单位阵E, 即A E. 即可逆矩阵的秩等于阶数. 故又称可逆(非奇异)矩 阵为满秩矩阵, 奇异矩阵又称为降秩矩阵. 1 2 2 1 1 2 4 8 0 2 , b , 例5:设 A 2 4 2 3 3 3 6 0 6 4 求矩阵A和矩阵B=(A | b)的秩. 分析: 设矩阵B的行阶梯形矩阵为B=(A| b), 则A就是A的行阶梯形矩阵. 因此可以从B=(A| b)中同时考察出R(A)及R(B).
性质6: R(A + B) R(A) + R(B). 证明: 设A, B为mn矩阵, 对矩阵(A+B ¦ B)作列变 换: ci – cn+i (i =1,2, · · · , n)得, (A+B ¦ B) (A+O ¦ B) B) R(A) + R(B). 于是, R(A+B) R(A+B ¦ B) =R(A+O ¦ 性质7: R(AB) min{R(A), R(B)}. 性质8: 若AmnBnl =O, 则R(A)+R(B) n . 这两条性质将在后面给出证明. 例7: 设A为n阶方阵, 证明R(A+E)+R(A–E) n . 证明: 因为(A+E)+(E–A)=2E, 由性质6知, R(A+E)+R(E–A)R(2E)=n, 而R(E–A)=R(A–E), 所以 R(A+E)+R(A–E) n .
§3.3 矩阵的秩
一、矩阵秩的概念
由上节讨论知: 任何矩阵Amn, 总可以经过有限次 初等行变换把它们变为行阶梯形矩阵和标准形矩阵. 行阶梯形矩阵中非零行的行数, 也就是标准形矩阵中 的数字r 是唯一确定的. 它是矩阵理论中非常重要的数 量关系之一——矩阵的秩. 定义: 在mn矩阵A中任取 k 行 k 列( km, kn ), 位于这 k 行 k 列交叉处的 k2个元素, 不改变它们在A 中所处的位置次序而得到的 k 阶行列式, 被称为矩阵A 的k阶子式. k C k 个. mn矩阵A的k阶子式共有 C m n

求矩阵的秩的步骤

求矩阵的秩的步骤

矩阵秩的计算方法:将矩阵A按初等行数变换为梯形矩阵B,梯形矩阵B的非零行数即为矩阵A的秩。

在线性代数中,矩阵A的列秩是A的线性独立列数的最大值,类似地,行秩是A的线性独立的水平行数的最大值,一般说来,如果将矩阵看作行向量或列向量,则秩是这些行向量或列向量的秩,即包含在最大不相关群中的向量的个数。

矩阵秩的性质;
1.矩阵的行秩、列秩、秩均相等。

2.初等变换不改变矩阵的秩。

3.矩阵Rab<=min{Ra,Rb}乘积的秩。

4.如果p和q是可逆矩阵,则r(PA)=r(A)=r(AQ)=r(PAQ)。

5.当r(A)<=n-2时,最高阶非零子公式的阶数<=n-2,n-1阶子公式为零,而伴随矩阵中的每个元素都是n-1阶子公式加一个符号,所以伴随矩阵是零矩阵。

6.当r(A)<=n-1时,最高阶非零子公式的阶数为<=n-1,因此n-1
阶子公式可能不为零,因此伴随矩阵可能为非零(等号成立时伴随矩阵必须为非零)。

矩阵求秩计算方法

矩阵求秩计算方法

矩阵求秩计算方法
矩阵的秩可以通过以下几种方法计算:
1.通过初等行变换,将矩阵化为阶梯形,然后数一下非零行的行数(或非零
列的列数),即为矩阵的秩。

在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数,通常表示为r(A),rk(A)或rankA。

类似地,行秩是A的线性无关的横行的极大数目。

2.使用矩阵秩的定义,找到一个k阶子式不为0,k+1阶子式为0,则秩等于
k。

3.只要x1,x2,…,xn两两不同,就是满秩矩阵,秩为n。

如果有
x1=x2=x3,x4=x5,其他再无相等那么n-2-1,即秩为n-3。

4.通过矩阵的行列式值计算秩。

对于一个n阶方阵A,其行列式值为0,那么
它的秩r(A)小于n;如果行列式值不为0,那么它的秩r(A)等于n。

这是因为行列式值等于0意味着矩阵至少有一行或一列的所有元素都是0,因此该矩阵的秩不可能大于n-1。

以上就是计算矩阵秩的一些方法,具体使用哪种方法取决于矩阵的形式和大小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档