气相色谱仪原理、结构及操作

合集下载

气相色谱仪操作及原理

气相色谱仪操作及原理

气相色谱仪操作及原理
气相色谱仪(Gas Chromatograph, GC)是一种常用的色谱分析仪器,广泛应用于化学、环境、食品、药品等领域。

其操作过程主要包括样品进样、气相传递、分离、检测等步骤。

首先,将待分析的样品制备成气体或者气体相溶液,并通过进样口进入气相色谱仪。

进样口处的样品会被注射器吸入到色谱柱的载气(通常为惰性气体,如氢气或氦气)流中。

载气将样品带入色谱柱,色谱柱中填充了一种或多种吸附型物质,称为固定相。

样品组分在固定相上吸附和解吸的速率不同,因而会发生分离。

固定相的种类根据不同的分析需求选择。

接下来,样品组分随着载气流经色谱柱内的固定相,不同的组分会按照其亲、疏吸附性质在固定相中迅速分离,达到各自的平衡状态。

这个过程称为分离。

分离完成后,样品组分进入检测器进行检测。

常见的检测器包括火焰离子化检测器(FID)、热电导检测器(TCD)、质谱
检测器等。

检测器会将样品组分转化为电信号,并将其传递给记录仪或计算机进行分析和处理。

气相色谱仪的原理基于物质在不同固相上的吸附性质不同,通过控制固相类型、流速和温度等参数,可以实现对样品中各种物质的分离和定量分析。

总结起来,气相色谱仪的操作包括样品进样、气相传递、分离
和检测等步骤,其原理是基于吸附分离原理,通过调控条件实现对样品中物质的分离和定量分析。

气相色谱仪原理结构及操作

气相色谱仪原理结构及操作

气相色谱仪原理、结构及操作1、基本原理气相色谱GC是一种分离技术;实际工作中要分析的样品往往是复杂基体中的多组分混合物,对含有未知组分的样品,首先必须将其分离,然后才能对有关组分进行进一步的分析;混合物的分离是基于组分的物理化学性质的差异,GC主要是利用物质的沸点、极性及吸附性质的差异来实现混合物的分离;待分析样品在汽化室汽化后被惰性气体即载气,一般是N2、He等带入色谱柱,柱内含有液体或固体固定相,由于样品中各组分的沸点、极性或吸附性能不同,每种组分都倾向于在流动相和固定相之间形成分配或吸附平衡;但由于载气是流动的,这种平衡实际上很难建立起来,也正是由于载气的流动,使样品组分在运动中进行反复多次的分配或吸附/解附,结果在载气中分配浓度大的组分先流出色谱柱,而在固定相中分配浓度大的组分后流出;当组分流出色谱柱后,立即进入检测器,检测器能够将样品组分的存在与否转变为电信号,而电信号的大小与被测组分的量或浓度成比例,当将这些信号放大并记录下来时,就是如图2所示的色谱图假设样品分离出三个组分,它包含了色谱的全部原始信息;在没有组分流出时,色谱图的记录是检测器的本底信号,即色谱图的基线;2、气相色谱结构及维护进样隔垫进样隔垫一般为硅橡胶材料制成,一般可分普通型、优质型和高温型三种,普通型为米黄色,不耐高温,一般在200℃以下使用;优质型可耐温到300℃;高温型为绿色,使用温度可高于350℃,至色谱柱最高使用温度的400℃;正因为进样隔垫多为硅橡胶材料制成,其中不可避免地含有一些残留溶剂和/或低分子齐聚物,另外由于汽化室高温的影响,硅橡胶会发生部分降解,这些残留的溶剂和降解产物如果进入色谱柱,就可能出现“鬼峰”即不是样品本身的峰,从而影响分析;解决的办法有:一是进行“隔垫吹扫”,二是更换进样隔垫;一般更换进样隔垫的周期以下面三个条件为准:1出现“鬼峰”;2保留时间和峰面积重现性差;3手动进样次数70次,或自动进样次数50次以后;玻璃衬管气相色谱的衬管多为玻璃或石英材料制成,主要分成分流衬管、不分流衬管、填充柱玻璃衬管三种类型;衬管能起到保护色谱柱的作用,在分流/不分流进样时,不挥发的样品组分会滞留在衬管中而不进入色谱柱;如果这些污染物在衬管内积存一定量后,就会对分析产生直接影响;比如,它会吸附极性样品组分而造成峰拖尾,甚至峰分裂,还会出现“鬼峰”,因此一定要保持衬管干净,注意及时清洗和更换;玻璃衬管清洗的原则和方法当以下现象:1出现“鬼峰”;2保留时间和峰面积重现性差出现时,应考虑对衬管进行清洗;清洗的方法和步骤如下:1拆下玻璃衬管;2取出石英玻璃棉;3用浸过溶剂比如丙酮的纱布清洗衬管内壁; 玻璃衬管更换时要注意玻璃棉的装填:装填量3~6mg,高度5~10mm;要求填充均匀、平整;气体过滤器变色硅胶可根据颜色变化来判断其性能,但分子筛等吸附有机物的过滤器就不能用肉眼判断了,所以必须定期更换,一般3个月更换或再生一次;由于分流气路中的分子筛过滤器饱和或受污严重,就会出现基线漂移大的现象,这个时候就必须更换或再生过滤器了;再生的方法是:1卸下过滤器,反方向连接于原色谱柱位置;2再生条件:载气流速40~50ml/min,温度340℃,时间5h;检测器如果说色谱柱是色谱分离的心脏,那么,检测器就是色谱仪的眼睛;无论色谱分离的效果多么好,若没有好的检测器就会“看”不出分离效果;因此,高灵敏度、高选择性的检测器一直是色谱仪发展的关键技术;目前,GC所使用的检测器有多种,其中常用的检测器主要有火焰离子化检测器FID、火焰热离子检测器FTD、火焰光度检测器FPD、热导检测器TCD、电子俘获检测器ECD等;下面对检测器的日常维护作简单讨论:2.4.1火焰离子化检测器FID1 FID虽然是准通用型检测器,但有些物质在检测器上的响应值很小或无响应,这些物质包括永久气体、卤代硅烷、H2O、NH3、CO、CO2、CS2、CCl4,等等;所以检测这些物质时不应使用FID;2FID的灵敏度与氢气、空气、氮气的比例有直接关系,因此要注意优化,一般三者的比例应接近或等于1∶10∶1;3FID是用氢气在空气燃烧所产生的火焰使被测物质离子化的,故应注意安全问题;在未接上色谱柱时,不要打开氢气阀门,以免氢气进入柱箱;测定流量时,一定不能让氢气和空气混合,即测氢气时,要关闭空气,反之亦然;无论什么原因导致火焰熄灭时,应尽量关闭氢气阀门,直到排除了故障重新点火时,再打开氢气阀门;4为防止检测器被污染,检测器温度设置不应低于色谱柱实际工作的最高温度;检测器被污染的影响轻则灵敏度明显下降或噪音增大,重则点不着火;消除污染的办法是对喷嘴和气路管道的清洗;具体方法是:断开色谱柱,拔出信号收集极;用一细钢丝插入喷嘴进行疏通,并用丙酮、乙醇等溶剂浸泡;2.4.2 火焰热离子检测器FTDFTD使用注意事项:1 铷珠:避免样品中带水,使用寿命大约600~700h;2 载气:N2或He,要求纯度%;一般He的灵敏度高;3 空气:最好是选钢瓶空气,无油;4 氢气:要求纯度%;另外需要注意的是使用FTD时,不能使用含氰基固定液的色谱柱,比如OV-1701;2.4.3火焰光度检测器FPDFPD使用注意事项:1 FPD也是使用氢火焰,故安全问题与FID相同;2 顶部温度开关常开250℃;3 FPD的氢气、空气和尾吹气流量与FID不同,一般氢气为60~80ml/min,空气为100~120ml/min,而尾吹气和柱流量之和为20~25ml/min;分析强吸附性样品如农药等,中部温度应高于底部温度约20℃;4 更换滤光片或点火时,应先关闭光电倍增管电源;5 火焰检测器,包括FID、FPD,必须在温度升高后再点火;关闭时,应先熄火再降温;2.4.4热导检测器TCDTCD使用注意事项:1确保热丝不被烧断;在检测器通电之前,一定要确保载气已经通过了检测器,否则,热丝就可能被烧断,致使检测器报废;关机时一定要先关检测器电源,然后关载气;任何时候进行有可能切断通过TCD的载气流量的操作,都要关闭检测器电源;2载气中含有氧气时,热丝寿命会缩短,所以载气中必须彻底除氧;3用氢气作载气时,气体排至室外;4基线漂移大时,要考虑以下几个问题:双柱是否相同,双柱气体流速是否相同;是否漏气;更换色谱柱至检测器的石墨垫圈; 池体污染;清洗措施:正己烷浸泡冲洗;2.4.5 电子俘获检测器ECDECD使用注意事项:1 气路安装气体过滤器和氧气捕集器;氧气捕集器再生:2 使用填充柱时也需供给尾吹气2~3ml/min;3 操作温度为250~350℃;无论色谱柱温度多么低,ECD的温度均不应低于250℃, 否则检测器很难平衡;4 关闭载气和尾吹气后,用堵头封住ECD出口,避免空气进入;3、基本操作加热由于气相色谱仪的生产厂家和质量的不同.测定温度的方式也不相同对于用微机设数法或拨轮选择法给定温度.一般是直接设数或选择合适给定温度值加以升温.而如果是采用旋钮定位法.则有技巧可言3.1.1过温定位法将温控旋钮调至低于操作温度约30℃处给气相色谱仪升温当过温至约为操作温度时.配台温度指示和加热指示灯.再逐渐将温控旋钮调至台适位置3.1.2 分步递进定位法将温控旋钮朝升温方向转动一个角度.升温开始.指示灯亮:当温度基本稳定时再同向转动温控旋钮.开始继续升温:如此递进调节、直至恒温在工作温度上. 调池平衡调池平衡实际是调热导电桥平衡.使之有较为台适的输出讲调节技巧.其实是对具有池平衡、调零和记录调零等第一步.用池平衡或调零旋钮将记录仪指针调至台适位置;第二步.自衰减至l6倍左右.观察记录仪指针移动情况;第三步.用记录谓零旋钮将记录仪指针调回原处;第四步.退回衰减.观察记录仪指针移动情况;第五步.用调零或池平衡旋钮将记录仪指针调回原处点火氢焰气相色谱仪开机时需要点火.有时因各种原因致使熄火后.也需要点火然而.我们经常会遇到点火不着的情况下面介绍两种点火技巧.供同行们相试3.3.1 加大氢气流量法先加大氢气流量.点着火后.再缓慢调回工作状况此法通用3.3.2 减少尾吹气流量法先减少尾吹气流量.点着火后.再调回工作状况此法适用于用氢气怍载气.用空气作助燃气和尾畋气情况气比的调节氢焰气相色谱仪三气的流量比.有关资料均建议为:氮气:氢气:空气:l:l:10 但由于转子流量计指示流量的不准确性.事实上谁会去苛求这个配比呢本人认为为各气旌以良好匹配.目的是既有高的检测器灵敏度又能有较好的分离效果.还不致于容易熄火;本着上述原则气比应按下法调节:1氮气流量的调节在色谱柱条件确定后、样品组分分离效果的好坏、氮气的流量大小是决定因素调节氮气流量时.要进样观察组分分离情况.直至氮气流量尽可能大且样品组分有较好分离为止2氢气和空气流量的调节氢气和空气流量的调节效果.可以用基流的大小来检验先调节氢气流量使之约等于氮气的流量.再调节空气流量在调节空气流量时.要观察基流的改变情况只要基流在增加.仍应相向调节.直至基流不再增加不止最后.再将氢气流量上调少许;进样技术在气相色谱分析中,一般是采用注射器或六通阀门进样在考虑进样技术的时候.主要是以注射器进样为对象3.5.1 进样量进样量与气化温度、柱容量和仪器的线性响应范围等因素有关,也即进样量应控制在能瞬间气化.达到规定分离要求和线性响应的允许范围之内填充柱冲洗法的瞬间进样量:液体样品或固体样品溶液一般为0.01~ 10微升.气体样品一般为0.1~ 10毫升在定量分析中.应注意进样量读数准确1排除注射器里所有的空气用微量注射器抽取液体样品时.只要重复地把液体抽凡注射器又迅速把其排回样品瓶.就可做到遗一点;还有一种更好的方法.可以排除注射器里所有的空气那就是用计划注射量的约2倍的样品置换注射器3~5次.每扶取到样品后,垂直拿起注射器.针尖朝上任何依然留在注射器里的空气都应当跑到针管顶部推进注射器塞子.空气就会被排掉;2保证进样量的准确用经畿换过的注射器取约计划进样量2倍左右的样品.垂直拿起注射器.针尖朝上.让针穿过一层纱布.这样可用纱布吸收从针尖排出的液体推进注射器塞子.直到读出所需要的数值用纱布擦干针尖至此准确的液体体积已经测得.需要再抽若干空气到注射器里.如果不慎推动柱塞.空气可以保护液体使之不被排走3.5.2 进样方法双手章注射器用一只手通常是左手把针插入垫片.洼射大体积样品即气体样品或输入压力极高时.要防止从气相色谱仪来的压力把柱塞弹出用右手的大拇指让针尖穿过垫片尽可能踩的进入进样口.压下柱塞停留1~ 2秒钟.然后尽可能快而稳地抽出针尖继续压住柱塞3.5.3 进样时间进样时间长短对柱效率影响很大,若进样时间过长.遇使色谱区域加宽而降低柱效率因此.对于冲洗法色谱而言.进样时间越短越好.一般必须小于1秒钟;。

气相色谱仪的工作原理

气相色谱仪的工作原理

气相色谱仪的工作原理气相色谱仪(Gas Chromatograph,GC)是一种利用气相色谱技术对混合物中各组分进行分离、检测和定量的仪器。

气相色谱仪的核心部分是色谱柱,色谱柱内充填有吸附剂或分子筛,用于分离混合物中的各个组分。

仪器主要由进样系统、分离柱、检测器、数据处理系统和控制系统等组成。

工作原理如下:1. 进样系统:混合物通过进样系统插入气相色谱仪。

进样系统可以通过不同的方法将样品引入色谱柱中,如气相进样、液相进样、固相进样等。

样品进入色谱柱前,通常需要进行前处理,如稀释、浓缩、提取等。

2. 色谱柱:样品进入色谱柱后,被色谱柱内充填物质吸附或分离。

色谱柱内的填充物通常是具有高度选择性的固定相,例如液体或固体吸附剂。

不同组分在填充物上的亲和力不同,因此会以不同的速度通过色谱柱,实现组分分离。

3. 检测器:色谱柱中的分离组分通过移动相(也称为载气)带出柱后进入检测器进行检测。

常见的检测器包括热导检测器(Thermal Conductivity Detector,TCD)、火焰离子化检测器(Flame Ionization Detector,FID)、氮磷检测器(Nitrogen Phosphorus Detector,NPD)等。

不同的检测器对不同类型的分析物具有不同的灵敏度和选择性。

4. 数据处理系统:检测器会输出电信号,表示各组分的信号强度。

这些信号经过放大、滤波和转换等处理后,传送到数据处理系统进行电子信号的分析和处理。

数据处理系统可以绘制出色谱图,即通过峰的面积或高度计算各组分的相对含量。

5. 控制系统:控制系统用于控制进样系统、分离柱温度、检测器温度和流动相流速等参数,以保证分析的准确性和稳定性。

综上所述,气相色谱仪通过利用色谱柱对混合物中的组分进行分离,并通过检测器对分离后的组分进行检测和定量,最后通过数据处理系统进行数据分析,实现对不同组分的分析和定量。

气相色谱质谱仪的结构和基本原理

气相色谱质谱仪的结构和基本原理

一、气相色谱质谱仪的定义气相色谱质谱仪是一种高效、高灵敏度的分析仪器,结合了气相色谱和质谱两种分析技术,能够对样品中的化合物进行分离和鉴定。

它在环境监测、药物分析、食品安全等领域有着广泛的应用。

二、气相色谱质谱仪的结构1. 气相色谱部分气相色谱部分主要包括进样系统、色谱柱、色谱炉、检测器等组成。

进样系统用来引入样品,色谱柱用于分离混合物中的成分,色谱炉用来加热和蒸发样品,检测器用来检测色谱柱输出的化合物。

2. 质谱部分质谱部分主要包括离子源、质量分析器和检测器。

离子源用来将化合物转化为离子,质量分析器用来对这些离子进行分析,检测器则用来检测质谱输出的信号。

3. 数据处理系统数据处理系统用来接收、处理和输出色谱和质谱的数据,包括化合物的质谱图和色谱图等。

三、气相色谱质谱仪的基本原理1. 气相色谱原理气相色谱利用气体流动的作用将混合物中的成分分离开来。

当样品进入色谱柱后,不同成分会根据其在色谱柱固定相上的分配系数不同而在色谱柱中移动,最终被分离出来。

2. 质谱原理质谱是利用化合物在电场作用下产生碎片离子,并根据这些离子的质量比进行分析。

质谱仪会将化合物转化为带电离子,然后通过电场和磁场对这些离子进行分析,最终得到质谱图谱。

3. 联用原理气相色谱质谱联用仪将气相色谱和质谱联接在一起,样品首先经过气相色谱的分离,然后进入质谱进行离子化和分析,最终得到色谱和质谱的数据。

通过联用,可以更加准确地对化合物进行分析和鉴定。

四、气相色谱质谱仪的应用气相色谱质谱仪在环境监测、药物分析、食品安全等领域有着广泛的应用。

在环境监测中,可以用来分析空气中的挥发性有机物;在药物分析中,可以用来鉴定药物中的杂质和成分;在食品安全领域,可以用来检测食品中的农药残留和添加剂。

五、气相色谱质谱仪的发展趋势近年来,随着科学技术的不断进步,气相色谱质谱仪在分析性能、数据处理和操作便捷性方面都有了很大的提升。

未来,气相色谱质谱仪将更加智能化,分析速度将更快,分辨率将更高,对于微量成分的分析将更加准确。

气相色谱仪的基本原理与结构

气相色谱仪的基本原理与结构

气相色谱仪的基本原理与结构一、气相色谱仪的基本原理:色谱法,又称色谱法或色谱法,是一种利用物质的溶解性和吸附性的物理化学分离方法。

分离原理是基于流动相和固定相混合物中各组分功能的差异。

以气体作为流动相的色谱法称为气相色谱法(Gas Chromatography,简称GC),气相色谱是机械化程度很高的色谱方法,广泛应用于小分子量复杂组分物质的定量分析。

流动相:携带样品通过整个系统的流体,也称为载气。

固定相:色谱柱中的固定相、载体、固定液和填料。

二、气相色谱仪的组成:气相色谱仪主要由气路系统、采样系统、分离系统、检测及温控系统和记录系统组成。

图1. 气相色谱仪结构简图1. 气相色谱仪的气路系统气相色谱仪的气路系统包括气源、净化干燥管和载气流速控制装置,是一个载气连续运行的密闭管路系统,通过气相色谱仪的气路系统获得纯净、流速稳定的载气。

气相色谱仪的气路系统气密性、流量监测的准确性及载气流速的稳定性都是影响气相色谱仪性能的重要因素。

气相色谱仪中常用的载气有氢气、氮气和氩气,纯度要求99.999%以上,化学惰性好,不与待测组分反应。

载气的选择除了要求考虑待测组分的分离效果之外,还要考虑待测组分在不同载气条件下的检测器灵敏度。

2. 气相色谱仪的进样系统气相色谱仪的进样系统主要包括进样器和气化室两部分。

(1)注射器:根据待测组分的不同相态,采用不同的注射器。

通常,液体样品用平头微量进样器进样,如图2所示。

气体样品通常通过旋转六通阀或色谱仪提供的吸头微量进样器注入,如图2所示。

图2. 气体、液体进样器固体试样一般先溶解于适当试剂中,然后用微量注射器以液体方式进样。

(2)气化室:气化室一般由一根不锈钢管制成,管外绕有加热丝,作用是将液体试样瞬间完全气化为蒸气。

气化室热容量要足够大,且无催化效应,以确保样品在气化室中瞬间气化且不分解。

3. 气相色谱仪的分离系统气相色谱仪的分离系统是气相色谱仪的核心部分,作用是将待测样品中的各个组分进行分离。

气相质谱仪原理及用途

气相质谱仪原理及用途

气相质谱仪原理及用途气相质谱仪是一种广泛应用于化学、生物学和环境科学等领域的分析仪器。

它可以将复杂物质分解成单一的分子,进而得出每种分子的相对分子质量、结构和含量。

本文将介绍气相质谱仪的原理、结构和应用。

一、气相质谱仪的原理气相质谱仪将化合物分离和分析分为两个步骤,即气相色谱分离(Gas Chromatography,GC)和质谱分析(Mass Spectrometry,MS),分别分析溶液中的各种成分。

GC分离将混合物中的各种成分分开,并送入MS设备进行分析。

1.气相色谱分离(GC)GC是一种物理分离技术,它基于各成分在某一固定温度下在固定相中的不同分配行为,将混合物中各种化合物物质分离开来。

GC通常使用毛细管柱,将混合物注入进来,各种成分在柱中沿着固定相的不同速度进行分离。

GC分离的准确性和效率取决于柱的性能、温度和其它硬件参数。

2.质谱分析(MS)在GC未被完全分离的基础上,由相对流的不同物质逐一进入,被质量分析仪所脱离带电,产生各种质谱峰,质谱仪将这些质谱峰的相对质量测量出来,进而推断出样品中的各种成分。

质谱分析的准确性和效率取决于其质谱仪的性能和相关软件的性能。

二、气相质谱仪的结构气相质谱仪包含样品供应和处理装置、气相色谱分离装置、质谱分析装置、检测器和控制系统等五个主要组成部分。

1.样品供应和处理装置样品供应和处理装置通常由进样器和样品前处理模块组成。

进样器是将样品导入GC列之前的一个模块,因此它非常重要。

目前普遍使用的进样器有针式、热蒸汽及液体动态头式等。

样品前处理模块是对样品进行前处理的设备,旨在分离、浓缩和良好的制备样品液体带有针的GC进样。

样品前处理程序往往包括减压器、浓缩器、气化器、分离器、冷却器等。

2.气相色谱分离装置气相色谱分离装置是将混合物分离成各组分的主要手段。

主要包括样品注入口、色谱柱和梯度温控系统,其中色谱柱是最为重要的部分。

色谱柱的选择应明确所需分析度的大小,例:分析度只需要较粗略时可选择通用柱(5%-10%);而分析度较高时(1%-5%)需要选择高效柱。

气相色谱质谱联用仪方法原理及仪器概述

一、概述气相色谱质谱联用仪(GC-MS)是一种非常重要的分析仪器,它结合了气相色谱和质谱两种分析技术,能够对复杂样品中的化合物进行高灵敏度和高选择性的分析。

本文将介绍气相色谱质谱联用仪的基本原理,仪器组成和工作流程,希望能够对相关领域的研究人员和技术人员有所帮助。

二、气相色谱质谱联用仪的原理1. 气相色谱原理:气相色谱是一种基于化合物在气相载气流动相中分离的技术。

化合物混合物在进样口被蒸发成蒸气,随后通过载气将其引入色谱柱,不同化合物因分配系数的差异而在色谱柱中以不同的速率移动,最终被分离出来。

2. 质谱原理:质谱是一种利用化合物分子的质荷比进行分析的技术,化合物经过电离后,生成一系列离子,这些离子根据不同的质量和电荷来探测。

质谱技术的关键在于将离子进行分离并对其进行检测。

3. 联用原理:气相色谱质谱联用仪结合了气相色谱和质谱的优势,通过气相色谱对化合物进行分离和富集,再将分离后的化合物以雄厚的射流进入质谱进行离子化、分离和检测,从而实现对复杂混合物的高灵敏度和高选择性分析。

三、气相色谱质谱联用仪的仪器概述1. 气相色谱部分:主要包括进样口、色谱柱、载气源、检测器等组成部分。

进样口用于气相化合物的进样和蒸发,色谱柱用于分离化合物,载气源提供载气以及维持色谱柱的流动等。

2. 质谱部分:主要包括离子源、质量过滤器、检测器等组成部分。

离子源用于电离化合物产生离子,质量过滤器用于对离子进行分离,检测器用于对离子进行检测和计数。

3. 数据系统:用于控制仪器运行、采集数据和进行数据处理的计算机系统。

四、气相色谱质谱联用仪的工作流程1. 样品进样:将需要分析的样品通过进样口蒸发成气态,进入气相色谱部分进行分离。

2. 气相色谱分离:化合物在色谱柱中根据分配系数进行分离,不同化合物会在不同时间点出现在检测器中。

3. 化合物离子化:分离后的化合物通过离子源被电离成为离子,不同化合物产生的离子有不同的质荷比。

4. 质谱分析:离子经过质量过滤器进行分离,并被检测器进行检测和计数。

气相色谱仪操作及原理

气相色谱仪操作及原理气相色谱仪是一种应用于化学分析的仪器,用于分离和测定微量混合物的组成及其结构。

气相色谱仪通常由定量部分、分离部分、检测部分和控制部分组成,能够检测极低浓度的化学物质。

气相色谱仪在高分子,生物,环境,原料,生产和分析等领域中都有广泛的应用。

气相色谱仪的操作原理包括检测原理,分离原理,检测方法,定量原理,计算原理等。

检测原理指的是在气相色谱仪中,所有分子都必须在谱图上出现不同的保留时间或保留度,以便差分定位。

分离原理是指各种化合物在气相色谱仪中具有不同的流动速率,因此可以通过调节气体压力,温度和其他参数,让它们在仪器中分离。

检测方法是指从谱图上可以获得化合物的信息,从而推断由它们组成的混合物的特性。

定量原理指的是根据分离的结果,通过计算某一特定成分的峰面积来确定它的浓度,并以此作为结果的基础。

计算原理是指根据分离的结果,通过设定的参数,为确定实验的几何结构而求取分离的模型。

气相色谱仪的操作必须要掌握一定的技术,包括关于仪器的维护,样品的制备,气体准备,设置参数,执行实验和结果解读等。

首先,维护仪器是非常重要的,以确保其稳定性和准确性。

其次,样品的制备要求有一定的把握,以确保分析结果的准确性。

接下来是气体准备,要求气体的纯度要满足要求,以确保操作的准确性。

然后是设置参数,例如压力,温度,流量等,根据需要进行调整,以便获得最佳分析结果。

最后是实验执行和结果解读,可以根据实验获得的数据,建立准确的模型,并从中确定混合物的组成和比例。

气相色谱仪在分离精确,测量范围广泛,结果可靠的特点上,比起传统的化学分析技术具有显著的优势,广泛应用于生物、环境、材料科学领域。

合理的操作,能够达到最佳的分析效果,从而实现更准确的分析结果。

因此,有必要在操作气相色谱仪时,加强对操作及原理的认识,以获得更准确的结果。

气相色谱仪原理及操作步骤

气相色谱仪原理及操作步骤
一、气相色谱仪的原理
用色谱柱先将混合物分离,然后利用检测器依次检测已分离出来的组分。

色谱柱的分离原理在于惯用的具有吸附性的色谱柱填料,使得混合物中各组分在色谱柱中的两相间进行分配。

由于各组分的吸附能力不同,因此各组分在色谱柱中的运行速度就不同,经过一定的柱长后,便彼此分离,按顺序离开色谱柱进入检测器,产生的离子流讯号经放大后,在记录器上描绘出各组分的色谱峰。

二、气相色谱仪的操作步骤如下:
1. 准备工作:检查仪器安全阀是否处于开启状态,确认分析柱安装正确,温度设定在操作手册规定的温度范围内,并检查各部份是否连接完好。

2. 样品溶解:将样品加入溶剂中,采用高速搅拌混匀,以确保样品完全溶解,得到浓缩的溶液。

3. 溶液导入:将溶液加入检测器中,控制流量大小,确保流量的稳定性。

4. 调零:使用空白样品进行调零,确保实验数据准确性。

5. 开始实验:按照实验要求逐次放入样品,并监测色谱图及色谱曲线。

6. 记录数据:记录实验数据,包括色谱图及色谱曲线。

7. 清理仪器:关闭安全阀,拆卸分析柱,清理仪器,确保下次实验的正确进行。

气相色谱仪的工作原理

气相色谱仪的工作原理
气相色谱仪(Gas Chromatograph, GC)是一种用于分离和分析化合物的仪器。

它的工作原理基于分子在固定相(柱填料)和流动相(气体载气)之间的相互作用差异,利用这种差异使化合物在柱中发生分离。

气相色谱仪由以下主要部件组成:进样装置、色谱柱、检测器和数据处理系统。

在分析开始前,待测试样品通常需要经过前处理步骤,如萃取、浓缩等。

然后,样品通过进样装置引入气相色谱仪系统。

进样装置通常采用注射器,将样品溶解于溶剂中,并在固定温度和气压条件下,经由进样口进入色谱柱。

色谱柱是整个系统的关键部分。

它通常由一种或多种特定材料组成,如硅胶、聚酯醚等。

样品进入柱后,发生了固相和气相之间的相互作用,其中一部分化合物被截留在固定相上,其他化合物则会在固定相上前进。

不同化合物的截留时间取决于它们与固定相的相互作用力的差异。

接下来,化合物会经过检测器进行检测。

常见的检测器包括热导检测器(TCD)、火焰离子化检测器(FID)、质谱检测器(MS)等。

这些检测器能够将化合物转化为电子信号,通过
对信号的分析和处理,可以得到样品中各种化合物的含量及种类信息。

最后,数据处理系统会对得到的数据进行分析和处理。

通常,
色谱图会显示出各个峰的峰面积、峰高、峰宽等信息,这些信息可用于定量分析和定性分析。

通过以上的过程,气相色谱仪能够实现对复杂混合物中化合物的分离和定量分析。

这一技术在化学分析、环境监测、药物研发等领域中有着广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

气相色谱仪原理、结构及操作
1、基本原理
气相色谱(GC)是一种分离技术。

实际工作中要分析的样品往往是复杂基体中的多组分混合物,对含有未知组分的样品,首先必须将其分离,然后才能对有关组分进行进一步的分析。

混合物的分离是基于组分的物理化学性质的差异,GC主要是利用物质的沸点、极性及吸附性质的差异来实现混合物的分离。

待分析样品在汽化室汽化后被惰性气体(即载气,一般是N2、He等)带入色谱柱,柱内含有液体或固体固定相,由于样品中各组分的沸点、极性或吸附性能不同,每种组分都倾向于在流动相和固定相之间形成分配或吸附平衡。

但由于载气是流动的,这种平衡实际上很难建立起来,也正是由于载气的流动,使样品组分在运动中进行反复多次的分配或吸附/解附,结果在载气中分配浓度大的组分先流出色谱柱,而在固定相中分配浓度大的组分后流出。

当组分流出色谱柱后,立即进入检测器,检测器能够将样品组分的存在与否转变为电信号,而电信号的大小与被测组分的量或浓度成比例,当将这些信号放大并记录下来时,就是如图2所示的色谱图(假设样品分离出三个组分),它包含了色谱的全部原始信息。

在没有组分流出时,色谱图的记录是检测器的本底信号,即色谱图的基线。

2、气相色谱结构及维护
2.1 进样隔垫
进样隔垫一般为硅橡胶材料制成,一般可分普通型、优质型和高温型三种,普通型为米黄色,不耐高温,一般在200℃以下使用;优质型可耐温到300℃;高温型为绿色,使用温度可高于350℃,至色谱柱最高使用温度的400℃。

正因为进样隔垫多为硅橡胶材料制成,其中不可避免地含有一些残留溶剂和/或低分子齐聚物,另外由于汽化室高温的影响,硅橡胶会发生部分降解,这些残留的溶剂和降解产物如果进入色谱柱,就
可能出现“鬼峰”(即不是样品本身的峰),从而影响分析。

解决的办法有:一是进行“隔垫吹扫”,二是更换进样隔垫。

一般更换进样隔垫的周期以下面三个条件为准:(1)出现“鬼峰”;(2)保留时间和峰面积重现性差;(3)手动进样次数70次,或自动进样次数50次以后。

2.2 玻璃衬管
气相色谱的衬管多为玻璃或石英材料制成,主要分成分流衬管、不分流衬管、填充柱玻璃衬管三种类型。

衬管能起到保护色谱柱的作用,在分流/不分流进样时,不挥发的样品组分会滞留在衬管中而不进入色谱柱。

如果这些污染物在衬管内积存一定量后,就会对分析产生直接影响。

比如,它会吸附极性样品组分而造成峰拖尾,甚至峰分裂,还会出现“鬼峰”,因此一定要保持衬管干净,注意及时清洗和更换。

玻璃衬管清洗的原则和方法
当以下现象:(1)出现“鬼峰”;(2)保留时间和峰面积重现性差出现时,应考虑对衬管进行清洗。

清洗的方法和步骤如下:(1)拆下玻璃衬管;(2)取出石英玻璃棉;(3)用浸过溶剂(比如丙酮)的纱布清洗衬管内壁。

玻璃衬管更换时要注意玻璃棉的装填:装填量3~6mg,高度5~10mm。

要求填充均匀、平整。

2.3 气体过滤器
变色硅胶可根据颜色变化来判断其性能,但分子筛等吸附有机物的过滤器就不能用肉眼判断了,所以必须定期更换,一般3个月更换或再生一次。

由于分流气路中的分子筛过滤器饱和或受污严重,就会出现基线漂移大的现象,这个时候就必须更换或再生过滤器了。

再生的方法是:(1)卸下过滤器,反方向连接于原色谱柱位置。

(2)再生条件:载气流速40~50ml/min,温度340℃,时间5h。

2.4 检测器
如果说色谱柱是色谱分离的心脏,那么,检测器就是色谱仪的眼睛。

无论色谱分离的效果多么好,若没有好的检测器就会“看”不出分离效果。

因此,高灵敏度、高选择
性的检测器一直是色谱仪发展的关键技术。

目前,GC所使用的检测器有多种,其中常用的检测器主要有火焰离子化检测器(FID)、火焰热离子检测器(FTD)、火焰光度检测器(FPD)、热导检测器(TCD)、电子俘获检测器(ECD)等。

下面对检测器的日常维护作简单讨论:
2.4.1火焰离子化检测器(FID)
(1) FID虽然是准通用型检测器,但有些物质在检测器上的响应值很小或无响应,这些物质包括永久气体、卤代硅烷、H2O、NH3、CO、CO2、CS2、CCl4,等等。

所以检测这些物质时不应使用FID。

(2)FID的灵敏度与氢气、空气、氮气的比例有直接关系,因此要注意优化,一般三者的比例应接近或等于1∶10∶1。

(3)FID是用氢气在空气燃烧所产生的火焰使被测物质离子化的,故应注意安全问题。

在未接上色谱柱时,不要打开氢气阀门,以免氢气进入柱箱。

测定流量时,一定不能让氢气和空气混合,即测氢气时,要关闭空气,反之亦然。

无论什么原因导致火焰熄灭时,应尽量关闭氢气阀门,直到排除了故障重新点火时,再打开氢气阀门。

(4)为防止检测器被污染,检测器温度设置不应低于色谱柱实际工作的最高温度。

检测器被污染的影响轻则灵敏度明显下降或噪音增大,重则点不着火。

消除污染的办法是对喷嘴和气路管道的清洗。

具体方法是:断开色谱柱,拔出信号收集极;用一细钢丝插入喷嘴进行疏通,并用丙酮、乙醇等溶剂浸泡。

2.4.3火焰光度检测器(FPD)
FPD使用注意事项:
(1) FPD也是使用氢火焰,故安全问题与FID相同;
(2)顶部温度开关常开(250℃);
(3) FPD的氢气、空气和尾吹气流量与FID不同,一般氢气为60~80ml/min,空气为 100~120ml/min,而尾吹气和柱流量之和为20~25ml/min。

分析强吸附性样品如农
药等,中部温度应高于底部温度约20℃;
(4)更换滤光片或点火时,应先关闭光电倍增管电源;
(5)火焰检测器,包括FID、FPD,必须在温度升高后再点火;关闭时,应先熄火再降温。

2.4.5 电子俘获检测器(ECD)
ECD使用注意事项:
(1)气路安装气体过滤器和氧气捕集器;氧气捕集器再生:
(2)使用填充柱时也需供给尾吹气(2~3ml/min);
(3)操作温度为250~350℃。

无论色谱柱温度多么低,ECD的温度均不应低于250℃,否则检测器很难平衡。

(4)关闭载气和尾吹气后,用堵头封住ECD出口,避免空气进入。

3、基本操作
3.4 气比的调节
氢焰气相色谱仪三气的流量比.有关资料均建议为:氮气:氢气:空气:l:l:10 但由于转子流量计指示流量的不准确性.事实上谁会去苛求这个配比呢?本人认为为各气旌以良好匹配.目的是既有高的检测器灵敏度又能有较好的分离效果.还不致于容易熄火。

本着上述原则气比应按下法调节:
(1)氮气流量的调节
在色谱柱条件确定后、样品组分分离效果的好坏、氮气的流量大小是决定因素调节氮气流量时.要进样观察组分分离情况.直至氮气流量尽可能大且样品组分有较好分离为止
(2)氢气和空气流量的调节氢气和空气流量的调节效果.可以用基流的大小来检验先调节氢气流量使之约等于氮气?的流量.再调节空气流量在调节空气流量时.要观察基流的改变情况只要基流在增加.仍应相向调节.直至基流不再增加不止最后.再
将氢气流量上调少许。

3.5 进样技术
在气相色谱分析中,一般是采用注射器或六通阀门进样在考虑进样技术的时候.主要是以注射器进样为对象
3.5.1 进样量
进样量与气化温度、柱容量和仪器的线性响应范围等因素有关,也即进样量应控制在能瞬间气化.达到规定分离要求和线性响应的允许范围之内填充柱冲洗法的瞬间进样量:液体样品或固体样品溶液一般为0.01~ 10微升.气体样品一般为0.1~ 10毫升在定量分析中.应注意进样量读数准确
(1)排除注射器里所有的空气
用微量注射器抽取液体样品时.只要重复地把液体抽凡注射器又迅速把其排回样品瓶.就可做到遗一点。

还有一种更好的方法.可以排除注射器里所有的空气那就是用计划注射量的约2倍的样品置换注射器3~5次.每扶取到样品后,垂直拿起注射器.针尖朝上任何依然留在注射器里的空气都应当跑到针管顶部推进注射器塞子.空气就会被排掉。

(2)保证进样量的准确
用经畿换过的注射器取约计划进样量2倍左右的样品.垂直拿起注射器.针尖朝上.让针穿过一层纱布.这样可用纱布吸收从针尖排出的液体推进注射器塞子.直到读出所需要的数值用纱布擦干针尖至此准确的液体体积已经测得.需要再抽若干空气到注射器里.如果不慎推动柱塞.空气可以保护液体使之不被排走
3.5.2 进样方法
双手章注射器用一只手(通常是左手)把针插入垫片.洼射大体积样品(即气体样品)或输入压力极高时.要防止从气相色谱仪来的压力把柱塞弹出(用右手的大拇指)让针尖穿过垫片尽可能踩的进入进样口.压下柱塞停留1~ 2秒钟.然后尽可能快而稳地抽
出针尖(继续压住柱塞)
3.5.3 进样时间
进样时间长短对柱效率影响很大,若进样时间过长.遇使色谱区域加宽而降低柱效率因此.对于冲洗法色谱而言.进样时间越短越好.一般必须小于1秒钟。

相关文档
最新文档