导数的概念及计算、定积分检测题
高中 导数的概念、运算及应用知识点+例题+练习 含答案

教学过程【例3】(2013·新课标全国Ⅰ卷改编)设函数f(x)=e x(ax+b)-x2-4x,曲线y=f(x)在点(0,f(0))处的切线方程为y=4x+4.求a,b的值.规律方法已知曲线在某点处的切线方程求参数,是利用导数的几何意义求曲线的切线方程的逆用,解题的关键是这个点不仅在曲线上也在切线上.【训练3】(2013·福建卷改编)设函数f(x)=x-1+ae x(a∈R,e为自然对数的底数).曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值.1.在对导数的概念进行理解时,特别要注意f′(x0)与(f(x0))′是不一样的,f′(x0)代表函数f(x)在x=x0处的导数值,不一定为0;而(f(x0))′是函数值f(x0)的导数,而函数值f(x0)是一个常量,其导数一定为0,即(f(x0))′=0.2.对于函数求导,一般要遵循先化简再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.第2讲导数的应用(一)教学效果分析【例3】(2012·重庆卷)已知函数f(x)=ax3+bx+c在点x=2处取得极值c-16.(1)求a,b的值;(2)若f(x)有极大值28,求f(x)在[-3,3]上的最小值.规律方法在解决类似的问题时,首先要注意区分函数最值与极值的区别.求解函数的最值时,要先求函数y=f(x)在[a,b]内所有使f′(x)=0的点,再计算函数y=f(x)在区间内所有使f′(x)=0的点和区间端点处的函数值,最后比较即得.【训练3】设函数f(x)=x+ax2+b ln x,曲线y=f(x)过P(1,0),且在P点处的切线斜率为2.(1)求a,b的值;(2)令g(x)=f(x)-2x+2,求g(x)在定义域上的最值.1.求极值、最值时,要求步骤规范、表格齐全,区分极值点与导数为0的点;含参数时,要讨论参数的大小.2.求函数最值时,不可想当然地认为极值点就是最值点,要通过认真比较才能下结论.一个函数在其定义域内最值是唯一的,可以在区间的端点取得.。
导数的概念及运算1

例1. (14分)已知曲线y=31x 3+34. (1)求曲线在x=2处的切线方程; (2)求曲线过点(2,4)的切线方程. 解 (1)∵y ′=x 2,∴在点P (2,4)处的切线的斜率k=y ′|x=2=4. 3分 ∴曲线在点P (2,4)处的切线方程为y-4=4(x-2),即4x-y-4=0.6分(2)设曲线y=31x 3+34与过点P (2,4)的切线相切于点 A(x 0,31x 03+34),则切线的斜率 k=y ′|0x x ==x 02.8分∴切线方程为y-(31x 03+34)=x 02(x-x 0), 即y=x 02·x-32x 03+34.10分∵点P (2,4)在切线上,∴4=2x 02-32x 03+34,即x 03-3x 02+4=0,∴x 03+x 02-4x 02+4=0, ∴x 02 (x 0+1)-4(x 0+1)(x 0-1)=0,∴(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2,故所求的切线方程为4x-y-4=0或x-y+2=0.例 2.【2010·北京丰台一模】函数21(01)y x x =+≤≤图象上点P 处的切线与直线0,0,1y x x ===围成的梯形面积等于S ,则S 的最大值等于 ,此时点P 的坐标是 .【答案】54 15,24⎛⎫⎪⎝⎭【解析】函数()2101y x x =+≤≤在P ()200,1x x +点处的切线方程为()()200012y x x x x -+=⋅-,即20021y x x x =⋅-+,它与y 轴的交点为201x -,与1x =的交点为20021x x -+.于是题中梯形的面积()()222000001121112S x x x x x ⎡⎤=-+-+⋅=-++⎣⎦201524x ⎛⎫=--+ ⎪⎝⎭,当012x =时,S 取得最大值为54,此时P 点坐标为211,122⎛⎫⎛⎫+⎪ ⎪ ⎪⎝⎭⎝⎭即15,24⎛⎫ ⎪⎝⎭.例题3.【2010·湖北理数】复习巩固1.【2010·江西理数】如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记t 时刻五角星露出水面部分的图形面积为()()()00S t S =,则导函数()'y S t =的图像大致为( )【答案】A【解析】本题考查函数图像、导数图、导数的实际意义等知识,重点考查的是对数学的探究能力和应用能力。
高中数学 第一章 导数及其应用 1.5.3 定积分的概念学业分层测评(含解析)新人教A版选修22

1.5.3 定积分的概念学业分层测评 (建议用时:45分钟)[学业达标]一、选择题1.关于定积分m =⎠⎛02⎝ ⎛⎭⎪⎫-13d x ,下列说法正确的是( ) A .被积函数为y =-13xB .被积函数为y =-13C .被积函数为y =-13x +CD .被积函数为y =-13x 3【解析】 被积函数为y =-13.【答案】 B2.(2016·菏泽高二检测)已知定积分⎠⎛06f (x )d x =8,且f (x )为偶函数,则⎠⎛-66f (x )d x =( )A .0B .16C .12D .8【解析】 偶函数图象关于y 轴对称,故⎠⎛-6 6f (x )d x =2⎠⎛06f (x )d x =16.故选B.【答案】 B3.设f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,2x,x <0,则⎠⎛-11f (x )d x 的值是( )A. ⎠⎛-11x 2d xB. ⎠⎛-112xd x C. ⎠⎛-1 0x 2d x +⎠⎛012xd xD. ⎠⎛-102x d x +⎠⎛01x 2d x【解析】 被积函数f (x )是分段函数,故将积分区间[-1,1]分为两个区间[-1,0]和[0,1],由定积分的性质知选D.【答案】 Db[f(x)-g(x)]d x求出的是( ) 4.下列各阴影部分的面积S不可以用S=⎠⎛ab[f(x)-g(x)]d x的几何意义是求函数f(x)与g(x)之间的阴影【解析】定积分S=⎠⎛a部分的面积,必须注意f(x)的图象要在g(x)的图象上方,对照各选项,知D中f(x)的图象不全在g(x)的图象上方.【答案】 Db f(x)d x的大小( )5.定积分⎠⎛aA.与f(x)和积分区间[a,b]有关,与ξi的取法无关B.与f(x)有关,与区间[a,b]以及ξi的取法无关C.与f(x)以及ξi的取法有关,与区间[a,b]无关D.与f(x),积分区间[a,b]和ξi的取法都有关【解析】定积分的大小与被积函数以及区间有关,与ξi的取法无关.【答案】 A二、填空题3(-3)d x=__________.6.(2016·长春高二检测)定积分⎠⎛1【解析】由定积分的几何意义知,定积分3(-3)d x表示由x=1,x=3与y=-3,y=0⎠⎛13(-3)d x所围成图形面积的相反数.所以⎠⎛1=-(2×3)=-6.【答案】-62-1|x|d x=__________.7.定积分⎠⎛-1【解析】 如图,⎠⎛-12|x |d x =12+2=52.【答案】 528.曲线y =1x与直线y =x ,x =2所围成的图形面积用定积分可表示为________.【解析】 如图所示,阴影部分的面积可表示为⎠⎛12x d x -⎠⎛121x d x =⎠⎛12⎝⎛⎭⎪⎫x -1x d x .【答案】 ⎠⎛12⎝ ⎛⎭⎪⎫x -1x d x三、解答题9.(2016·济南高二检测)已知⎠⎛01x 3d x =14,⎠⎛12x 3d x =154,⎠⎛12x 2d x =73,⎠⎛24x 2d x =563,求:(1)⎠⎛023x 3d x ;(2)⎠⎛146x 2d x ;(3)⎠⎛12(3x 2-2x 3)d x .【解】 (1)⎠⎛023x 3d x =3⎠⎛02x 3d x=3⎝⎛⎭⎫⎠⎛01x 3d x +⎠⎛12x 3d x=3⎝ ⎛⎭⎪⎫14+154=12. (2)⎠⎛146x 2d x =6⎠⎛14x 2d x=6⎝⎛⎭⎫⎠⎛12x 2d x +⎠⎛24x 2d x =6⎝ ⎛⎭⎪⎫73+563=126. (3)⎠⎛12(3x 2-2x 3)d x =3⎠⎛12x 2d x -2⎠⎛12x 3d x =3×73-2×154=-12.10.利用定积分的几何意义,求⎠⎛-1111-x 2d x 的值.【解】 y =1-x 2(-1≤x ≤1)表示圆x 2+y 2=1在x 轴上方的半圆(含圆与x 轴的交点).根据定积分的几何意义,知⎠⎛-111-x 2d x 表示由曲线y =1-x 2与直线x =-1,x =1,y =0所围成的平面图形的面积,所以⎠⎛-111-x 2d x =S 半圆=12π.[能力提升]1.(2016·黄冈高二检测)设曲线y =x 2与直线y =x 所围成的封闭区域的面积为S ,则下列等式成立的是( )A .S =⎠⎛01(x 2-x )d xB .S =⎠⎛01(x -x 2)d x C .S =⎠⎛01(y 2-y )d y D .S =⎠⎛01(y -y )d y【解析】 作出图形如图,由定积分的几何意义知,S =⎠⎛01(x -x 2)d x ,选B.【答案】 B2.已知和式S =1p+2p+3p+…+npnp +1(p >0),当n 趋向于∞时,S 无限趋向于一个常数A ,则A 可用定积分表示为( )A.⎠⎛011xd xB.⎠⎛01x pd xC.⎠⎛01⎝ ⎛⎭⎪⎫1x pd x D.⎠⎛01⎝ ⎛⎭⎪⎫x n p d x【解析】 S =1n ⎣⎢⎡⎝ ⎛⎭⎪⎫1n p+⎝ ⎛⎭⎪⎫2n p +⎝ ⎛⎭⎪⎫3n p+…+⎦⎥⎤⎝ ⎛⎭⎪⎫n n p =∑i =1n⎝ ⎛⎭⎪⎫i n p ·1n ,∴lim n →∞∑i =1n⎝ ⎛⎭⎪⎫i n p ·1n =⎠⎛01x pd x .【答案】 B3.(2016·深圳高二检测)定积分⎠⎛2 0162 0172 017 d x =________________.【解析】 由定积分的几何意义知,定积分表示由直线x =2 016,x = 2 017与y =2 017,y =0所围成矩形的面积,所以⎠⎛2 0162 0172 017d x =(2 017-2 016)×2 017=2 017.【答案】 2 0174.已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ∈[-2,2,2x ,[2,π,cos x ,[π,2π],求f (x )在区间[-2,2π]上的积分.【解】 由定积分的几何意义知⎠⎛-22x 3d x =0,⎠⎛2π2x d x =2π+4π-22=π2-4,⎠⎛π2πcos x d x =0.由定积分的性质得⎠⎛-22πf (x )d x =⎠⎛-22x 3d x +⎠⎛2π2x d x +⎠⎛π2πcos x d x =π2-4。
高考数学导数的概念与运算选择题

高考数学导数的概念与运算选择题1. 下列关于导数的说法中正确的是()A. 导数是函数在某一点的瞬时变化率B. 导数可以表示函数在某一点的切线斜率C. 导数表示函数在某一点的切线斜率,同时也可以表示函数在某一点的瞬时变化率D. 导数可以表示函数在某一点的切线斜率,但不是瞬时变化率2. 设函数f(x)在x=1处可导,且f'(1)=2,则f(x)在x=1处的导数是()A. 2B. 3C. 4D. 53. 下列关于导数的定义,错误的是()A. 函数f(x)在某一点x0处的导数定义为f(x0+h)-f(x0)/h,当h趋近于0时B. 导数表示函数在某一点的瞬时变化率C. 导数可以表示函数在某一点的切线斜率D. 导数表示函数在某一点的切线斜率,同时也可以表示函数在某一点的瞬时变化率4. 函数f(x)在x=1处的导数f'(1)为2,则f(x)在区间[1, 2]上的最大值和最小值分别是()A. 最大值4,最小值2B. 最大值3,最小值1C. 最大值2,最小值1D. 最大值3,最小值25. 设函数f(x)在x=1处可导,且f'(1)=2,则f(x)在x=1处的切线方程为()A. y=2x-1B. y=2x+1C. y=-2x+1D. y=-2x-16. 下列关于导数的说法中正确的是()A. 导数是函数在某一点的瞬时变化率B. 导数可以表示函数在某一点的切线斜率C. 导数表示函数在某一点的切线斜率,同时也可以表示函数在某一点的瞬时变化率D. 导数可以表示函数在某一点的切线斜率,但不是瞬时变化率7. 函数f(x)在x=1处的导数f'(1)为2,则f(x)在区间[1, 2]上的最大值和最小值分别是()A. 最大值4,最小值2B. 最大值3,最小值1C. 最大值2,最小值1D. 最大值3,最小值28. 设函数f(x)在x=1处可导,且f'(1)=2,则f(x)在x=1处的切线方程为()A. y=2x-1B. y=2x+1C. y=-2x+1D. y=-2x-19. 下列关于导数的说法中正确的是()A. 导数是函数在某一点的瞬时变化率B. 导数可以表示函数在某一点的切线斜率C. 导数表示函数在某一点的切线斜率,同时也可以表示函数在某一点的瞬时变化率D. 导数可以表示函数在某一点的切线斜率,但不是瞬时变化率10. 函数f(x)在x=1处的导数f'(1)为2,则f(x)在区间[1, 2]上的最大值和最小值分别是()A. 最大值4,最小值2B. 最大值3,最小值1C. 最大值2,最小值1D. 最大值3,最小值211. 设函数f(x)在x=1处可导,且f'(1)=2,则f(x)在x=1处的切线方程为()A. y=2x-1B. y=2x+1C. y=-2x+1D. y=-2x-112. 下列关于导数的说法中正确的是()A. 导数是函数在某一点的瞬时变化率B. 导数可以表示函数在某一点的切线斜率C. 导数表示函数在某一点的切线斜率,同时也可以表示函数在某一点的瞬时变化率D. 导数可以表示函数在某一点的切线斜率,但不是瞬时变化率13. 函数f(x)在x=1处的导数f'(1)为2,则f(x)在区间[1, 2]上的最大值和最小值分别是()A. 最大值4,最小值2B. 最大值3,最小值1C. 最大值2,最小值1D. 最大值3,最小值214. 设函数f(x)在x=1处可导,且f'(1)=2,则f(x)在x=1处的切线方程为()A. y=2x-1B. y=2x+1C. y=-2x+1D. y=-2x-115. 下列关于导数的说法中正确的是()A. 导数是函数在某一点的瞬时变化率B. 导数可以表示函数在某一点的切线斜率C. 导数表示函数在某一点的切线斜率,同时也可以表示函数在某一点的瞬时变化率D. 导数可以表示函数在某一点的切线斜率,但不是瞬时变化率16. 函数f(x)在x=1处的导数f'(1)为2,则f(x)在区间[1, 2]上的最大值和最小值分别是()B. 最大值3,最小值1C. 最大值2,最小值1D. 最大值3,最小值217. 设函数f(x)在x=1处可导,且f'(1)=2,则f(x)在x=1处的切线方程为()A. y=2x-1B. y=2x+1C. y=-2x+1D. y=-2x-118. 下列关于导数的说法中正确的是()A. 导数是函数在某一点的瞬时变化率B. 导数可以表示函数在某一点的切线斜率C. 导数表示函数在某一点的切线斜率,同时也可以表示函数在某一点的瞬时变化率D. 导数可以表示函数在某一点的切线斜率,但不是瞬时变化率19. 函数f(x)在x=1处的导数f'(1)为2,则f(x)在区间[1, 2]上的最大值和最小值分别是()A. 最大值4,最小值2C. 最大值2,最小值1D. 最大值3,最小值220. 设函数f(x)在x=1处可导,且f'(1)=2,则f(x)在x=1处的切线方程为()A. y=2x-1B. y=2x+1C. y=-2x+1D. y=-2x-121. 下列关于导数的说法中正确的是()A. 导数是函数在某一点的瞬时变化率B. 导数可以表示函数在某一点的切线斜率C. 导数表示函数在某一点的切线斜率,同时也可以表示函数在某一点的瞬时变化率D. 导数可以表示函数在某一点的切线斜率,但不是瞬时变化率22. 函数f(x)在x=1处的导数f'(1)为2,则f(x)在区间[1, 2]上的最大值和最小值分别是()A. 最大值4,最小值2B. 最大值3,最小值1D. 最大值3,最小值223. 设函数f(x)在x=1处可导,且f'(1)=2,则f(x)在x=1处的切线方程为()A. y=2x-1B. y=2x+1C. y=-2x+1D. y=-2x-124. 下列关于导数的说法中正确的是()A. 导数是函数在某一点的瞬时变化率B. 导数可以表示函数在某一点的切线斜率C. 导数表示函数在某一点的切线斜率,同时也可以表示函数在某一点的瞬时变化率D. 导数可以表示函数在某一点的切线斜率,但不是瞬时变化率25. 函数f(x)在x=1处的导数f'(1)为2,则f(x)在区间[1, 2]上的最大值和最小值分别是()A. 最大值4,最小值2B. 最大值3,最小值1C. 最大值2,最小值126. 设函数f(x)在x=1处可导,且f'(1)=2,则f(x)在x=1处的切线方程为()A. y=2x-1B. y=2x+1C. y=-2x+1D. y=-2x-127. 下列关于导数的说法中正确的是()A. 导数是函数在某一点的瞬时变化率B. 导数可以表示函数在某一点的切线斜率C. 导数表示函数在某一点的切线斜率,同时也可以表示函数在某一点的瞬时变化率D. 导数可以表示函数在某一点的切线斜率,但不是瞬时变化率28. 函数f(x)在x=1处的导数f'(1)为2,则f(x)在区间[1, 2]上的最大值和最小值分别是()A. 最大值4,最小值2B. 最大值3,最小值1C. 最大值2,最小值1D. 最大值3,最小值229. 设函数f(x)在x=1处可导,且f'(1)=2,则f(x)在x=1处的切线方程为()A. y=2x-1B. y=2x+1C. y=-2x+1D. y=-2x-130. 下列关于导数的说法中正确的是()A. 导数是函数在某一点的瞬时变化率B. 导数可以表示函数在某一点的切线斜率C. 导数表示函数在某一点的切线斜率,同时也可以表示函数在某一点的瞬时变化率D. 导数可以表示函数在某一点的切线斜率,但不是瞬时变化率31. 函数f(x)在x=1处的导数f'(1)为2,则f(x)在区间[1, 2]上的最大值和最小值分别是()A. 最大值4,最小值2B. 最大值3,最小值1C. 最大值2,最小值1D. 最大值3,最小值232. 设函数f(x)在x=1处可导,且f'(1)=2,则f(x)在x=1处的切线方程为()A. y=2x-1B. y=2x+1C. y=-2x+1D. y=-2x-133. 下列关于导数的说法中正确的是()A. 导数是函数在某一点的瞬时变化率B. 导数可以表示函数在某一点的切线斜率C. 导数表示函数在某一点的切线斜率,同时也可以表示函数在某一点的瞬时变化率D. 导数可以表示函数在某一点的切线斜率,但不是瞬时变化率34. 函数f(x)在x=1处的导数f'(1)为2,则f(x)在区间[1, 2]上的最大值和最小值分别是()A. 最大值4,最小值2B. 最大值3,最小值1C. 最大值2,最小值1D. 最大值3,最小值235. 设函数f(x)在x=1处可导,且f'(1)=2,则f(x)在x=1处的切线方程为()A. y=2x-1B. y=2x+1C. y=-2x+1D. y=-2x-136. 下列关于导数的说法中正确的是()A. 导数是函数在某一点的瞬时变化率B. 导数可以表示函数在某一点的切线斜率C. 导数表示函数在某一点的切线斜率,同时也可以表示函数在某一点的瞬时变化率D. 导数可以表示函数在某一点的切线斜率,但不是瞬时变化率37. 函数f(x)在x=1处的导数f'(1)为2,则f(x)在区间[1, 2]上的最大值和最小值分别是()A. 最大值4,最小值2B. 最大值3,最小值1C. 最大值2,最小值1D. 最大值3,最小值238. 设函数f(x)在x=1处可导,且f'(1)=2,则f(x)在x=1处的切线方程为()B. y=2x+1C. y=-2x+1D. y=-2x-139. 下列关于导数的说法中正确的是()A. 导数是函数在某一点的瞬时变化率B. 导数可以表示函数在某一点的切线斜率C. 导数表示函数在某一点的切线斜率,同时也可以表示函数在某一点的瞬时变化率D. 导数可以表示函数在某一点的切线斜率,但不是瞬时变化率40. 函数f(x)在x=1处的导数f'(1)为2,则f(x)在区间[1, 2]上的最大值和最小值分别是()A. 最大值4,最小值2B. 最大值3,最小值1C. 最大值2,最小值1D. 最大值3,最小值241. 设函数f(x)在x=1处可导,且f'(1)=2,则f(x)在x=1处的切线方程为()A. y=2x-1C. y=-2x+1D. y=-2x-142. 下列关于导数的说法中正确的是()A. 导数是函数在某一点的瞬时变化率B. 导数可以表示函数在某一点的切线斜率C. 导数表示函数在某一点的切线斜率,同时也可以表示函数在某一点的瞬时变化率D. 导数可以表示函数在某一点的切线斜率,但不是瞬时变化率43. 函数f(x)在x=1处的导数f'(1)为2,则f(x)在区间[1, 2]上的最大值和最小值分别是()A. 最大值4,最小值2B. 最大值3,最小值1C. 最大值2,最小值1D. 最大值3,最小值244. 设函数f(x)在x=1处可导,且f'(1)=2,则f(x)在x=1处的切线方程为()A. y=2x-1B. y=2x+1D. y=-2x-145. 下列关于导数的说法中正确的是()A. 导数是函数在某一点的瞬时变化率B. 导数可以表示函数在某一点的切线斜率C. 导数表示函数在某一点的切线斜率,同时也可以表示函数在某一点的瞬时变化率D. 导数可以表示函数在某一点的切线斜率,但不是瞬时变化率46. 函数f(x)在x=1处的导数f'(1)为2,则f(x)在区间[1, 2]上的最大值和最小值分别是()A. 最大值4,最小值2B. 最大值3,最小值1C. 最大值2,最小值1D. 最大值3,最小值247. 设函数f(x)在x=1处可导,且f'(1)=2,则f(x)在x=1处的切线方程为()A. y=2x-1B. y=2x+1C. y=-2x+148. 下列关于导数的说法中正确的是()A. 导数是函数在某一点的瞬时变化率B. 导数可以表示函数在某一点的切线斜率C. 导数表示函数在某一点的切线斜率,同时也可以表示函数在某一点的瞬时变化率D. 导数可以表示函数在某一点的切线斜率,但不是瞬时变化率49. 函数f(x)在x=1处的导数f'(1)为2,则f(x)在区间[1, 2]上的最大值和最小值分别是()A. 最大值4,最小值2B. 最大值3,最小值1C. 最大值2,最小值1D. 最大值3,最小值250. 设函数f(x)在x=1处可导,且f'(1)=2,则f(x)在x=1处的切线方程为()A. y=2x-1B. y=2x+1C. y=-2x+1D. y=-2x-1。
2023年高考数学(理科)一轮复习—— 导数的概念及运算、定积分

有一个公共点. 4.函数 y=f(x)的导数 f′(x)反映了函数 f(x)的瞬时变化趋势,其正负号反映了变化
的方向,其大小|f′(x)|反映了变化的快慢,|f′(x)|越大,曲线在这点处的切线越 “陡”.
内容 索引
知识诊断 基础夯实
考点突破 题型剖析
分层训练 巩固提升
知识诊断 基础夯实
ZHISHIZHENDUANJICHUHANGSHI
知识梳理
1.函数y=f(x)在x=x0处的导数
(1)定义:称函数
y=f(x)在
x=x0 处的瞬时变化率
lim
x0
f(x0+ΔxΔ)x-f(x0)=
lim
x0
ΔΔxy为函数 y=f(x)在 x=x0 处的导数,记作 f′(x0)或 y′|x=x0,即 f′(x0)=
索引
2.函数y=f(x)的导函数
如果函数 y=f(x)在开区间(a,b)内的每一点处都有导数,当 x=x0 时,f′(x0)是一
个确定的数,当 x 变化时,f′(x)便是 x 的一个函数,称它为 f(x)的导函数(简称导
数),y=f(x)的导函数有时也记作
y′,即
f′(x)=y′=
lim
x0
f(x+Δx)-f(x)
索引
3.(2020·全国Ⅲ卷)设函数 f(x)=x+ex a.若 f′(1)=4e,则 a=_____1___.
解析 由 f′(x)=ex((xx++aa))-2 ex,可得 f′(1)=(1+eaa)2=4e,即(1+aa)2=14, 解得 a=1.
导数的概念及运算专题练习(含参考答案)

数学 导数的概念及运算1.已知函数f (x )=1x cos x ,则f (π)+f ′⎝⎛⎭⎫π2=( ) A .-3π2B .-1π2C .-3πD .-1π2.曲线y =e x -ln x 在点(1,e)处的切线方程为( ) A .(1-e)x -y +1=0 B .(1-e)x -y -1=0 C .(e -1)x -y +1=0D .(e -1)x -y -1=03.已知f (x )=ax 4+b cos x +7x -2.若f ′(2 018)=6,则f ′(-2 018)=( ) A .-6 B .-8 C .6D .84.如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),其中g ′(x )是g (x )的导函数,则g ′(3)=( )A .-1B .0C .2D .45.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2距离的最小值为( ) A .1 B .2 C .22D .36.(2018·高考全国卷Ⅱ)曲线y =2ln x 在点(1,0)处的切线方程为________.7.(2019·南昌第一次模拟)设函数f (x )在(0,+∞)内可导,其导函数为f ′(x ),且f (ln x )=x +ln x ,则f ′(1)=________.8.(2017·高考天津卷)已知a ∈R ,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为________.9.已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ).(1)若函数f (x )的图象过原点,且在原点处的切线斜率为-3,求a ,b 的值; (2)若曲线y =f (x )存在两条垂直于y 轴的切线,求a 的取值范围. 10.已知函数f (x )=x 3+x -16.(1)求曲线y =f (x )在点(2,-6)处的切线的方程;(2)直线l 为曲线y =f (x )的切线,且经过原点,求直线l 的方程及切点坐标; (3)如果曲线y =f (x )的某一切线与直线y =-14x +3垂直,求切点坐标与切线的方程.1.(2019·成都第二次诊断检测)若曲线y =f (x )=ln x +ax 2(a 为常数)不存在斜率为负数的切线,则实数a 的取值范围是( )A .⎝⎛⎭⎫-12,+∞ B .[-12,+∞)C .(0,+∞)D .[0,+∞)2.已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,且与f (x )图象的切点为(1,f (1)),则m 的值为( )A .-1B .-3C .-4D .-23.(2019·云南第一次统考)已知函数f (x )=ax ln x +b (a ,b ∈R ),若f (x )的图象在x =1处的切线方程为2x -y =0,则a +b =________.4.设曲线y =e x 在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则P 的坐标为________.5.设有抛物线C :y =-x 2+92x -4,过原点O 作C 的切线y =kx ,使切点P 在第一象限.(1)求k 的值;(2)过点P 作切线的垂线,求它与抛物线的另一个交点Q 的坐标.6.已知函数f (x )=ax 3+3x 2-6ax -11,g (x )=3x 2+6x +12和直线m :y =kx +9,且f ′(-1)=0.(1)求a 的值;(2)是否存在k ,使直线m 既是曲线y =f (x )的切线,又是曲线y =g (x )的切线?如果存在,求出k 的值;如果不存在,请说明理由.【参考答案】1.已知函数f (x )=1xcos x ,则f (π)+f ′⎝⎛⎭⎫π2=( )A .-3π2B .-1π2C .-3πD .-1π解析:选C .因为f ′(x )=-1x 2cos x +1x (-sin x ),所以f (π)+f ′⎝⎛⎭⎫π2=-1π+2π·(-1)=-3π. 2.曲线y =e x -ln x 在点(1,e)处的切线方程为( ) A .(1-e)x -y +1=0 B .(1-e)x -y -1=0 C .(e -1)x -y +1=0D .(e -1)x -y -1=0解析:选C .由于y ′=e -1x ,所以y ′|x =1=e -1,故曲线y =e x -ln x 在点(1,e)处的切线方程为y -e =(e -1)(x -1),即(e -1)x -y +1=0.3.已知f (x )=ax 4+b cos x +7x -2.若f ′(2 018)=6,则f ′(-2 018)=( ) A .-6 B .-8 C .6D .8解析:选D.因为f ′(x )=4ax 3-b sin x +7.所以f ′(-x )=4a (-x )3-b sin(-x )+7=-4ax 3+b sin x +7. 所以f ′(x )+f ′(-x )=14.又f ′(2 018)=6,所以f ′(-2 018)=14-6=8,故选D.4.如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),其中g ′(x )是g (x )的导函数,则g ′(3)=( )A .-1B .0C .2D .4解析:选B .由题图可得曲线y =f (x )在x =3处切线的斜率等于-13,即f ′(3)=-13.又因为g (x )=xf (x ),所以g ′(x )=f (x )+xf ′(x ),g ′(3)=f (3)+3f ′(3),由图可知f (3)=1,所以g ′(3)=1+3×⎝⎛⎭⎫-13=0. 5.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2距离的最小值为( ) A .1B .2C .22D .3解析:选B .因为定义域为(0,+∞),令y ′=2x -1x =1,解得x =1,则在P (1,1)处的切线方程为x -y =0,所以两平行线间的距离为d =22= 2. 6.(2018·高考全国卷Ⅱ)曲线y =2ln x 在点(1,0)处的切线方程为________.解析:由题意知,y ′=2x ,所以曲线在点(1,0)处的切线斜率k =y ′|x =1=2,故所求切线方程为y -0=2(x -1),即y =2x -2. 答案:y =2x -27.(2019·南昌第一次模拟)设函数f (x )在(0,+∞)内可导,其导函数为f ′(x ),且f (ln x )=x +ln x ,则f ′(1)=________.解析:因为f (ln x )=x +ln x ,所以f (x )=x +e x , 所以f ′(x )=1+e x ,所以f ′(1)=1+e 1=1+e. 答案:1+e8.(2017·高考天津卷)已知a ∈R ,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为________.解析:因为f ′(x )=a -1x ,所以f ′(1)=a -1,又f (1)=a ,所以切线l 的方程为y -a =(a -1)(x -1),令x =0,得y =1.答案:19.已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ).(1)若函数f (x )的图象过原点,且在原点处的切线斜率为-3,求a ,b 的值; (2)若曲线y =f (x )存在两条垂直于y 轴的切线,求a 的取值范围. 解:f ′(x )=3x 2+2(1-a )x -a (a +2).(1)由题意得⎩⎪⎨⎪⎧f (0)=b =0,f ′(0)=-a (a +2)=-3,解得b =0,a =-3或a =1.(2)因为曲线y =f (x )存在两条垂直于y 轴的切线,所以关于x 的方程f ′(x )=3x 2+2(1-a )x -a (a +2)=0有两个不相等的实数根,所以Δ=4(1-a )2+12a (a +2)>0, 即4a 2+4a +1>0, 所以a ≠-12.所以a 的取值范围为⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫-12,+∞. 10.已知函数f (x )=x 3+x -16.(1)求曲线y =f (x )在点(2,-6)处的切线的方程;(2)直线l 为曲线y =f (x )的切线,且经过原点,求直线l 的方程及切点坐标; (3)如果曲线y =f (x )的某一切线与直线y =-14x +3垂直,求切点坐标与切线的方程.解:(1)可判定点(2,-6)在曲线y =f (x )上. 因为f ′(x )=(x 3+x -16)′=3x 2+1.所以f (x )在点(2,-6)处的切线的斜率为k =f ′(2)=13. 所以切线的方程为y =13(x -2)+(-6), 即y =13x -32. (2)设切点为(x 0,y 0),则直线l 的斜率为f ′(x 0)=3x 20+1, 所以直线l 的方程为y =(3x 20+1)(x -x 0)+x 30+x 0-16,又因为直线l 过点(0,0),所以0=(3x 20+1)(-x 0)+x 30+x 0-16,整理得,x 30=-8, 所以x 0=-2,所以y 0=(-2)3+(-2)-16=-26, k =3×(-2)2+1=13.所以直线l 的方程为y =13x ,切点坐标为(-2,-26). (3)因为切线与直线y =-14x +3垂直,所以切线的斜率k =4. 设切点的坐标为(x 0,y 0), 则f ′(x 0)=3x 20+1=4, 所以x 0=±1.所以⎩⎪⎨⎪⎧x 0=1,y 0=-14或⎩⎪⎨⎪⎧x 0=-1,y 0=-18,即切点坐标为(1,-14)或(-1,-18), 切线方程为y =4(x -1)-14或y =4(x +1)-18. 即y =4x -18或y =4x -14.1.(2019·成都第二次诊断检测)若曲线y =f (x )=ln x +ax 2(a 为常数)不存在斜率为负数的切线,则实数a 的取值范围是( )A .⎝⎛⎭⎫-12,+∞ B .[-12,+∞)C .(0,+∞)D .[0,+∞)解析:选D.f ′(x )=1x +2ax =2ax 2+1x (x >0),根据题意有f ′(x )≥0(x >0)恒成立,所以2ax 2+1≥0(x >0)恒成立,即2a ≥-1x 2(x >0)恒成立,所以a ≥0,故实数a 的取值范围为[0,+∞).故选D.2.已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,且与f (x )图象的切点为(1,f (1)),则m 的值为( )A .-1B .-3C .-4D .-2解析:选D.因为f ′(x )=1x ,所以直线l 的斜率为k =f ′(1)=1, 又f (1)=0,所以切线l 的方程为y =x -1.g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0),则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0,于是解得m =-2. 3.(2019·云南第一次统考)已知函数f (x )=ax ln x +b (a ,b ∈R ),若f (x )的图象在x =1处的切线方程为2x -y =0,则a +b =________.解析:由题意,得f ′(x )=a ln x +a ,所以f ′(1)=a ,因为函数f (x )的图象在x =1处的切线方程为2x -y =0,所以a =2,又f (1)=b ,则2×1-b =0,所以b =2,故a +b =4.答案:44.设曲线y =e x 在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则P 的坐标为________.解析:y ′=e x ,曲线y =e x 在点(0,1)处的切线的斜率k 1=e 0=1,设P (m ,n ),y =1x (x >0)的导数为y ′=-1x 2(x >0),曲线y =1x (x >0)在点P 处的切线斜率k 2=-1m 2(m >0),因为两切线垂直,所以k 1 k 2=-1,所以m =1,n =1,则点P 的坐标为(1,1).答案:(1,1)5.设有抛物线C :y =-x 2+92x -4,过原点O 作C 的切线y =kx ,使切点P 在第一象限.(1)求k 的值;(2)过点P 作切线的垂线,求它与抛物线的另一个交点Q 的坐标. 解:(1)由题意得,y ′=-2x +92.设点P 的坐标为(x 1,y 1),则y 1=kx 1,① y 1=-x 21+92x 1-4,② -2x 1+92=k ,③联立①②③得,x 1=2,x 2=-2(舍去). 所以k =12.(2)过P 点作切线的垂线, 其方程为y =-2x +5.④ 将④代入抛物线方程得,x 2-132x +9=0.设Q 点的坐标为(x 2,y 2),则2x 2=9, 所以x 2=92,y 2=-4.所以Q 点的坐标为⎝⎛⎭⎫92,-4. 6.已知函数f (x )=ax 3+3x 2-6ax -11,g (x )=3x 2+6x +12和直线m :y =kx +9,且f ′(-1)=0.(1)求a 的值;(2)是否存在k ,使直线m 既是曲线y =f (x )的切线,又是曲线y =g (x )的切线?如果存在,求出k 的值;如果不存在,请说明理由.解:(1)由已知得f ′(x )=3ax 2+6x -6a , 因为f ′(-1)=0, 所以3a -6-6a =0, 所以a =-2.(2)存在.由已知得,直线m 恒过定点(0,9),若直线m 是曲线y =g (x )的切线, 则设切点为(x 0,3x 20+6x 0+12). 因为g ′(x 0)=6x 0+6,所以切线方程为y -(3x 20+6x 0+12)=(6x 0+6)(x -x 0), 将(0,9)代入切线方程,解得x 0=±1. 当x 0=-1时,切线方程为y =9; 当x 0=1时,切线方程为y =12x +9. 由(1)知f (x )=-2x 3+3x 2+12x -11, ①由f ′(x )=0得-6x 2+6x +12=0, 解得x =-1或x =2.在x =-1处,y =f (x )的切线方程为y =-18; 在x =2处,y =f (x )的切线方程为y =9, 所以y =f (x )与y =g (x )的公切线是y =9.②由f′(x)=12得-6x2+6x+12=12,解得x=0或x=1.在x=0处,y=f(x)的切线方程为y=12x-11;在x=1处,y=f(x)的切线方程为y=12x-10,所以y=f(x)与y=g(x)的公切线不是y=12x+9.综上所述,y=f(x)与y=g(x)的公切线是y=9,此时k=0.。
导数概念练习题

导数概念练习题导数是微积分的一个重要概念,它描述了函数在某一点处的变化率,即函数在该点处的斜率。
导数的概念在许多学科中都有广泛的应用,如物理学、工程学、经济学等。
下面是一些导数概念的练习题,帮助大家更好地理解这个概念。
已知函数f(x) = x^2 + 2x + 1,求f'(x)。
已知函数f(x) = sin(x),求f'(x)。
已知函数f(x) = log(x),求f'(x)。
已知函数f(x) = e^x,求f'(x)。
已知函数f(x) = x^n,求f'(x)。
已知函数f(x) = x/ln(x),求f'(x)。
解:f'(x) = (ln(x)-1)/(ln(x))^2已知函数f(x) = arctan(x),求f'(x)。
已知函数f(x) = e^(arctan(x)),求f'(x)。
解:f'(x) = e^(arctan(x))*(1/(1+x^2))已知函数f(x) = sin(e^x),求f'(x)。
解:f'(x) = cos(e^x)*e^x已知函数f(x) = x^sin(x),求f'(x)。
解:f'(x) = sin(x)x^(sin(x)-1)(cos(x)-1)以上练习题可以帮助大家理解导数的概念,并掌握一些常见的导数计算方法。
导数是数学中一个非常重要的概念,它描述了一个函数在某一点处的变化率。
求导数是数学分析中的一个基本技能,也是解决许多实际问题中必不可少的工具。
下面是一些求导数的练习题,供大家参考。
(1)θ=sinx,y=cosx。
(x)=3xx=0为函数的极值点。
随着素质教育的不断推进,高中数学课程中引入了越来越多的抽象概念,其中导数概念便是之一。
导数概念作为微积分的核心概念之一,对于高中生而言,是一个极具挑战性的知识点。
因此,本文旨在探讨高中学生对导数概念的理解情况,为教师提供有益的教学参考,从而提高学生对导数概念的理解和掌握程度。
高中数学第一章导数及其应用定积分的概念高效测评新人教A版选修

2016-2017学年高中数学 第一章 导数及其应用 1.5.3 定积分的概念高效测评 新人教A 版选修2-21.由定积分的几何意义可得⎠⎛02x2d x 的值等于( )A .1B .2C .3D .4解析: 定积分⎠⎛02x 2d x 等于直线y =x 2与x =0,x =2,y =0围成三角形的面积S =12×2×1=1.答案: A2.已知f (x )为偶函数,且⎠⎛06f (x )d x =8,则⎠⎛-66f (x )d x 等于( )A .0B .4C .8D .16解析: ∵被积函数f (x )是偶函数,∴在y 轴两侧的函数图象对称,从而对应的曲边梯形的面积相等.∴⎠⎛-66f (x )d x =2⎠⎛06f (x )d x =2×8=16.答案: D3.定积分⎠⎛01x d x 与⎠⎛01x d x 的大小关系是( ) A .⎠⎛01x d x =⎠⎛01x d x B .⎠⎛01x d x >⎠⎛01x d xC .⎠⎛01x d x <⎠⎛01x d xD .无法确定解析: 由定积分的几何意义结合右图可知⎠⎛01x d x <⎠⎛01x d x .4.函数y =⎠⎛-x x(cos t +t 2+2)d t (x >0)( )A .是奇函数B .是偶函数C .是非奇非偶函数D .以上都不正确解析: y =⎝ ⎛⎭⎪⎫sin t +t 33+2t | x-x =2sin x +2x 33+4x ,为奇函数.答案: A二、填空题(每小题5分,共10分) 5.定积分⎠⎛-12|x |d x =________.解析: 如图,⎠⎛-12|x |d x =12+2=52.答案: 526.下列等式成立的是________.(填序号)①⎠⎛a b [mf (x )+ng (x )]d x =m ⎠⎛a b f (x )d x +n ⎠⎛a bg (x )d x ; ②⎠⎛a b [f (x )+1]d x =⎠⎛a bf (x )d x +b -a ; ③⎠⎛a b f (x )g (x )d x =⎠⎛a b f (x )d x ·⎠⎛a bg (x )d x ;④⎠⎛-2π2πsin x d x =⎠⎛0-2πsin x d x +∫2π0sin x d x . 解析: 利用定积分的性质进行判断③不成立.例如⎠⎛01x d x =12,⎠⎛01x 2d x =13,⎠⎛01x 3d x =14,但⎠⎛01x 3d x ≠⎠⎛01x d x ·⎠⎛01x 2d x . 答案: ①②④三、解答题(每小题10分,共20分)7.已知⎠⎛01e x d x =e -1,⎠⎛12e x d x =e 2-e ,⎠⎛02x 2d x =83,⎠⎛122xd x =2ln 2.求: (1)⎠⎛02e xd x ; (2)⎠⎛02(e x +3x 2)d x ;(3)⎠⎛12⎝ ⎛⎭⎪⎫e x +1x d x . 解析: (1)⎠⎛02e x d x =⎠⎛01e x d x +⎠⎛12e x d x=e -1+e 2-e =e 2-1.(2)⎠⎛02(e x +3x 2)d x =⎠⎛02e x d x +⎠⎛02(3x 2)d x=⎠⎛02e x d x +3⎠⎛02x 2d x =e 2-1+8=e 2+7.(3)⎠⎛12⎝ ⎛⎭⎪⎫e x +1x d x =⎠⎛12e x d x +12⎠⎛122x d x =e 2-e +ln 2.8.已知函数f (x )=⎩⎪⎨⎪⎧x 5x ∈[-1,1x x ∈[1,πsin x x ∈[π,3π],求f (x )在区间[-1,3π]上的定积分.解析: 由定积分的几何意义知⎠⎛-11x 5d x =0.∫3ππsin x d x =0(如图所示).⎠⎛-13πf (x )d x =⎠⎛-1 1x 5d x +∫π1x d x +⎠⎛π3πsin x d x =⎠⎛1πx d x =12(π2-1).尖子生题库☆☆☆9.(10分)计算⎠⎛-33 (9-x 2-x 3)d x 的值.解析: 如图,由定积分的几何意义,得⎠⎛-339-x 2d x =π×322=9π2,⎠⎛-33x 3d x =0.由定积分的性质,得⎠⎛-33(9-x 2-x 3)d x =⎠⎛-339-x 2d x -⎠⎛-33x 3d x =9π2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数的概念及计算、定积分检测题(试卷满分100分,考试时间90分钟)一、选择题(每小题5分,共40分)1.已知函数f (x )=1xcos x ,则f (π)+f ′⎝⎛⎭⎫π2等于( ) A .-3π2B .-1π2C .-3πD .-1π解析:选C 因为f ′(x )=-1x 2cos x +1x (-sin x ),所以f (π)+f ′⎝⎛⎭⎫π2=-1π+2π×(-1)=-3π. 2.(2020·沈阳一中模拟)曲线f (x )=2e x sin x 在点(0,f (0))处的切线方程为( ) A .y =0 B .y =2x C .y =xD .y =-2x解析:选B ∵f (x )=2e x sin x ,∴f (0)=0,f ′(x )=2e x (sin x +cos x ),∴f ′(0)=2,∴所求切线方程为y =2x .3.一质点沿直线运动,如果由始点起经过t 秒后的位移为s =13t 3-32t 2+2t ,那么速度为零的时刻是( )A .0秒B .1秒末C .2秒末D .1秒末和2秒末解析:选D ∵s =13t 3-32t 2+2t ,∴v =s ′(t )=t 2-3t +2.令v =0,得t 2-3t +2=0,t 1=1或t 2=2.4.由曲线y =x 2和曲线y =x 围成的一个叶形图如图所示,则图中阴影部分的面积为( )A.13 B.310 C.14D.15解析:选A 由⎩⎨⎧ y =x 2,y =x ,解得⎩⎪⎨⎪⎧ x =0,y =0或⎩⎪⎨⎪⎧x =1,y =1,所以阴影部分的面积为⎠⎛0 1 (x -x 2)d x =⎝⎛⎭⎫23x 32-13x 3⎪⎪⎪1=13.5.设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处切线倾斜角的取值范围为⎣⎡⎦⎤0,π4,则点P 横坐标的取值范围为( ) A.⎣⎡⎦⎤-1,-12 B. [-1,0] C. [0,1]D. ⎣⎡⎦⎤12,1解析:选A 设P (x 0,y 0),P 点处切线倾斜角为α, 则0≤tan α≤1,由f (x )=x 2+2x +3,得f ′(x )=2x +2, 令0≤2x 0+2≤1,得-1≤x 0≤-12.故选A.6.已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N *,则f 2 021(x )=( )A .-sin x -cos xB .sin x -cos xC .-sin x +cos xD .sin x +cos x解析:选D ∵f 1(x )=sin x +cos x , ∴f 2(x )=f 1′(x )=cos x -sin x , f 3(x )=f 2′(x )=-sin x -cos x , f 4(x )=f 3′(x )=-cos x +sin x , f 5(x )=f 4′(x )=sin x +cos x ,…, ∴f n (x )的解析式以4为周期重复出现,∵2 021=505×4+1,∴f 2 021(x )=f 1(x )=sin x +cos x .7.已知函数f (x )=12x 2sin x +x cos x ,则其导函数f ′(x )的图象大致是( )解析:选C 由f (x )=12x 2sin x +x cos x ,得f ′(x )=x sin x +12x 2cos x +cos x -x sin x=12x 2cos x +cos x . 由此可知,f ′(x )是偶函数,其图象关于y 轴对称,排除选项A 、B.又f ′(0)=1,故选C.8.[数学抽象、逻辑推理]若曲线y =f (x )=ln x +ax 2(a 为常数)不存在斜率为负数的切线,则实数a 的取值范围是( )A.⎝⎛⎭⎫-12,+∞ B.⎣⎡⎭⎫-12,+∞ C .(0,+∞)D .[0,+∞)解析:选D f ′(x )=1x +2ax =2ax 2+1x (x >0),根据题意有f ′(x )≥0(x >0)恒成立,所以2ax 2+1≥0(x >0)恒成立,即2a ≥-1x 2(x >0)恒成立,所以a ≥0,故实数a 的取值范围为[0,+∞).故选D.二、填空题(每小题5分,共25分)9.若函数f (x )=⎩⎪⎨⎪⎧x +1,x <0,cos x ,0≤x ≤π2,则f (x )与x 轴围成封闭图形的面积为________. 解析:S =⎠⎛0-1(x +1)d x +∫π20cos x d x =⎝⎛⎭⎫12x 2+x |0-1+sin x |π20=12+1=32. 答案:3210.(2020·重庆质检)若曲线y =ln (x +a)的一条切线为y =e x +b ,其中a ,b 为正实数,则a +e b +2的取值范围为________.解析:由y =ln (x +a),得y ′=1x +a.设切点为(x 0,y 0),则有⎩⎪⎨⎪⎧1x 0+a =e ,ln (x 0+a )=e x 0+b ⇒b=a e -2.∵b>0,∴a>2e,∴a +e b +2=a +1a ≥2,当且仅当a =1时等号成立.答案:[2,+∞)11.若一直线与曲线y =ln x 和曲线x 2=ay(a>0)相切于同一点P ,则a 的值为________. 解析:设切点P(x 0,y 0),则由y =ln x ,得y ′=1x ,由x 2=ay ,得y ′=2ax ,则有⎩⎪⎨⎪⎧1x 0=2a x 0,y 0=ln x 0,x 2=ay 0,解得a =2e .答案:2e12.如图,已知y =f (x )是可导函数,直线l 是曲线y =f (x )在x =4处的切线,令g (x )=f (x )x,则g ′(4)=________.解析:g ′(x )=⎣⎡⎦⎤f (x )x ′=xf ′(x )-f (x )x 2.由已知图象可知,直线l 经过点P (0,3)和Q (4,5), 故k 1=5-34-0=12. 由导数的几何意义可得f ′(4)=12,因为Q (4,5)在曲线y =f (x )上,所以f (4)=5. 故g ′(4)=4×f ′(4)-f (4)42=4×12-542=-316.答案:-31613.设函数F (x )=ln x +a x (0<x ≤3)的图象上任意一点P (x 0,y 0)处切线的斜率k ≤12恒成立,则实数a 的取值范围为________.解析:由F (x )=ln x +ax (0<x ≤3),得F ′(x )=x -a x 2(0<x ≤3 ),则有k =F ′(x 0)=x 0-a x 20≤12在(0,3]上恒成立,所以a ≥⎝⎛⎭⎫-12x 20+x 0max .当x 0=1时,-12x 20+x 0在(0,3]上取得最大值12,所以a ≥12.答案:⎣⎡⎭⎫12,+∞三、综合题(3个题,共35分)14.(11分)已知曲线y =x 3+x -2在点P 0处的切线l 1平行于直线4x -y -1=0,且点P 0在第三象限.(1)求P 0的坐标;(2)若直线l ⊥l 1,且l 也过切点P 0,求直线l 的方程. 解:(1)由y =x 3+x -2,得y ′=3x 2+1, 由已知令3x 2+1=4,解得x =±1. 当x =1时,y =0;当x =-1时,y =-4.又∵点P 0在第三象限,∴切点P 0的坐标为(-1,-4). (2)∵直线l ⊥l 1,l 1的斜率为4,∴直线l 的斜率为-14.∵l 过切点P 0,点P 0的坐标为(-1,-4), ∴直线l 的方程为y +4=-14(x +1),即x +4y +17=0.15.(12分)设f(x)是定义在R 上的奇函数,且当x ≥0时,f (x )=2x 2. (1)求x <0时,f (x )的表达式;(2)令g (x )=ln x ,问是否存在x 0,使得f (x ),g (x )在x =x 0处的切线互相平行?若存在,求出x 0的值;若不存在,请说明理由.解:(1)当x <0时,-x >0, f (x )=-f (-x )=-2(-x )2=-2x 2. ∴当x <0时,f (x )的表达式为f (x )=-2x 2. (2)若f (x ),g (x )在x 0处的切线互相平行,则f ′(x 0)=g ′(x 0),当x >0时,f ′(x 0)=4x 0=g ′(x 0)=1x 0,解得x 0=±12.故存在x 0=12满足条件.16.(12分)已知函数f (x )=ax +bx (x ≠0)在x =2处的切线方程为3x -4y +4=0.(1)求a ,b 的值;(2)求证:曲线上任一点P 处的切线l 与直线l 1:y =x ,直线l 2:x =0围成的三角形的面积为定值.16.解:(1)由f (x )=ax +b x ,得f ′(x )=a -bx 2(x ≠0).由题意得⎩⎪⎨⎪⎧f ′(2)=34,3×2-4f (2)+4=0.即⎩⎨⎧a -b 4=34,5-2⎝⎛⎭⎫2a +b 2=0.解得a =1,b =1.(2)证明:由(1)知f (x )=x +1x,设曲线的切点为P ⎝⎛⎭⎫x 0,x 0+1x 0,f ′(x 0)=1-1x 20, 曲线在P 处的切线方程为y -⎝⎛⎭⎫x 0+1x 0=⎝⎛⎭⎫1-1x 20(x -x 0). 即y =⎝⎛⎭⎫1-1x 20x +2x 0.当x =0时,y =2x 0. 即切线l 与l 2:x =0的交点坐标为A ⎝⎛⎭⎫0,2x 0. 由⎩⎪⎨⎪⎧y =⎝⎛⎭⎫1-1x 20x +2x 0,y =x ,得⎩⎪⎨⎪⎧x =2x 0,y =2x 0,即l 与l 1:y =x 的交点坐标为B (2x 0,2x 0).又l 1与l 2的交点为O (0,0),则所求的三角形的面积为S =12·|2x 0|·⎪⎪⎪⎪2x 0=2. 即切线l 与l 1,l 2围成的三角形的面积为定值.。