交流异步电动机矢量控制仿真

合集下载

异步电动机矢量控制系统的设计与仿真.doc

异步电动机矢量控制系统的设计与仿真.doc

异步电动机矢量控制系统的设计与仿真.异步电动机矢量控制系统的设计与仿真在矢量控制技术出现之前,现代交流调速系统采用了恒压频比控制策略。

这种控制策略的缺点是,当电机低速旋转或在加减速、负载加减等动态条件下,系统性能显著降低,导致交流调速系统在低速、启动时转矩的动态响应和整个系统的稳定性方面不如DC调速系统,无法满足人们对高精度的要求。

后来,交流异步电动机控制开始从标量控制向矢量控制迈进。

以下是矢量控制理论的简要介绍。

矢量控制发展的基础和核心理论支撑是电机的一些概念,如坐标转换原理、机电能量转换理论等。

这种控制的基本思想和方法是将异步电机模拟成DC电机来控制。

只要建立等效于三相交流绕组组的两相绕组,就可以建立等效于异步电机的DC电机模型,并增加相应的比例积分调节环节,从而可以按照DC 电机的控制策略来控制异步电机。

因此,矢量控制可以实现对电机电磁转矩的动态实时控制,从而优化和提高调速性能。

根据这一思想,我在本项目中成功地进行了MATLAB仿真。

关键词:交流电机;矢量控制调速系统;矢量控制系统的设计与仿真交流调速系统的仿真采用常V/f比控制方法,通常称为标量控制。

采用这种方法的系统在电机低速运行时或在加速、减速、增加负载、减少负载等情况下会出现重大缺陷。

采用矢量控制的交流电机可以达到与恒流电机相同的控制性能,从此交流异步电机控制从标量控制向矢量控制迈进了一大步。

以下是矢量控制理论的简要介绍。

矢量控制发展的基础和核心理论支撑是电机的一些概念,如坐标转换原理、机电能量转换理论等。

这种控制的基本思想和方法是将异步电机模拟成DC电机来控制。

只要建立等效于三相交流绕组组的两相绕组,就可以建立等效于异步电机的DC电机模型,并增加相应的比例积分调节环节,从而可以按照DC电机的控制策略来控制异步电机。

因此,矢量控制可以实现对电机电磁转矩的动态实时控制,从而优化和提高调速性能。

根据这一思想,我在本项目中成功地进行了MATLAB仿真。

交流异步电动机矢量控制算法的仿真与实验研究

交流异步电动机矢量控制算法的仿真与实验研究
过 2 / S变换 , R2 也就是将矢 量从两 相旋转坐 标系转 换到 两相
学模型等效为直流电动机 , 实现 电机转矩和 电机 磁通 的解藕 , 达到对瞬时转矩的控制磁 场定 向控 制 , 多采 用作转 差率 矢量 控制 , 不需检测磁通 , 容易实现 , 控制效果 良好 。
静止坐标系中 , 完成矢量控制 的 d—q o一 /L 口坐标变换 功能 , 输
也 就是 完成矢量控制 的 3/ R坐标 变换 功能 , S2 输出为 i、 。 i 然
后用 2 / R变换将矢量从两相静止坐标系转换到两相旋转 坐 S2
标 系中 , 完成矢量控制 的 O一 d—q坐标变换功能 , S 2 / 以3 / R
变换 的结果 i、 作为输入 , 出为 i、 , 就是励 磁 电流 i i 输 i 这
Ab ta t:Byt e s a e v co o t l lo i m ,te id cin moo ban q i ln y a i a dsa i p r r n e sr c h p c e t rc n r g rh o a t h n u t t ro t is e uv e td n m c n tt e o ma c o a c f o fDC p e o to y t s e dc nr l sem.T esmuainmo e f e trc nr l y t m o n u t n moo sa l h da c rigt s h i lt d l co o t se f rid ci tri e tbi e c odn o o o v os o s s t e b scda r m fv co o t ,t e smuain i r aie t TL h a i ig a o e t rc nr ol h i lt s e l d wi MA AB / muik,a d t e smuain rs l r o z h Si l n n h i lt e ut a e o s c mp r dwi h x er ntrs l o s o t e e iin y o h lo i m . o a e t te e p i h me t e ut t h w h fce c ft e ag rh s t

异步电动机矢量控制系统的仿真

异步电动机矢量控制系统的仿真

异步电动机矢量控制系统仿真1.异步电机矢量控制系统的原理及其仿真1.1 异步电动机矢量控制原理异步电机矢量变换控制系统和直接转矩控制系统都是目前已经获得应用的高性能异步电机调速系统,对比直接转矩控制系统,矢量变换系统有可以连续控制,调速范围宽的优点,因此矢量变换控制系统为现代交流调速的重要方向之一。

本文采用的是转子磁场间接定向电流控制型交流异步电机矢量控制系统[1],如图1所示。

图1矢量变换控制系统仿真原理图如果把转子磁链方向按空间旋转坐标系的M轴方向定向,则可得到按转子磁场方式定向下的三相鼠笼式异步电动机的矢量控制方程。

(1)(2)(3)(4)(5)上列各式中,是转子励磁电流参考值;是转差角频率给定值;是定子电流的励磁分量;是定子电流的转矩分量;是定子频率输入角频率;是转子速度;是转子磁场定向角度;是转子时间常数;和分别是电机互感和转子自感。

图4所示控制系统中给定转速与实际电机转速相比较,误差信号送入转速调节器,经转速调节器作用产生给定转矩信号,电机的激磁电流给定信号根据电机实际转速由弱磁控制单元产生,再利用式(1)产生定子电流激磁分量给定信号,定子电流转矩分量给定信号则根据式(2)所示的电机电磁转矩表达式生成。

、和转子时间常数Lr一起产生转差频率信号,与ωr相加生成转子磁场频率给定信号,对积分则得到转子磁场空间角度给定信号。

和经坐标旋转和2/3相变换产生定子三相电流给定信号、和,与定子三相电流实测信号、和相比较,由滞环控制器产生逆变器所需的三相PWM信号。

1.2 异步电机转差型矢量控制系统建模在MATLAB/SIMULINK环境下利用电气系统模块库中的元件搭建交流异步电机转差型矢量控制系统[2],电流控制变频模型如图2所示。

图2 电流控制变频模型图整个仿真图由电气系统模块库中的元件搭建组成,元件的直观连接与实际的主电路相像似,其中主要包括:速度给定环节,PI速度调节器、坐标变换模块、磁场定向模块、滞环电流调节器、IGBT逆变器元件、异步电动机元件以及测量和显示模块。

矢量控制的异步电动机调速系统仿真设计

矢量控制的异步电动机调速系统仿真设计

摘要近年来,随着电力半导体器件及微电子器件特别是微型计算机及大规模集成电路的发展,再加上现代控制理论,特别是矢量控制技术向电气传动领域的渗透和应用,使得交流电机调速技术日臻成熟。

以矢量控制为代表的交流调速技术通过坐标变换重建电机模型,从而可以像直流电机那样对转矩和磁通进行控制,交流调速系统的调速性能已经可以和直流调速系统相媲美。

因此,研究由矢量控制构成的交流调速系统已成为当今交流变频调速系统中研究的主要发展方向。

最后,综合矩阵变换的控制策略及异步电动机转子磁场定向理论,采用计算机仿真方法分别建立了矩阵变换仿真模型以及基于矩阵变换的异步电动机矢量控制系统仿真模型,对矩阵变换的控制原理、输入、输出性能以及矢量控制系统的优质的抗扰能力及四象限运行特性进行分析验证,展现了该新型交流调速系统的广阔发展前景,并针对基于矩阵变换的异步电动机矢量控制系统的特点,着重对矢量控制单元进行了软件设计。

关键词:坐标变换矢量控制异步电动机仿真ABSTRACTIn recent years, with the development of the power semiconductor device,the microelectronics component, the microcomputer and large-scale integrated circuit and modern control theory, especially the penetration from vector control technology to electric drive field and application, the feasible AC motor speed regulation technology has become more mature day by day.Depend on the control principle of the MC and the rotor-flux orientation theory, and using the computer simulation technology, the simulation model of the MC and the matrix converter fed induction motor vector control drive system has been build. The input-output characteristic and the ability of four-quadrant operation have been testified, which has proved that the system has wide application field. The software of the vector control unit was designed at the end.Key words: matrix converter vector control induction motor simulation目录1.绪论 (1)1.1引言 (1)1.2 交流调速技术概况 (2)1.3 系统仿真技术概述 (3)1.4仿真软件的发展状况与应用 (4)1.5 MATLAB 概述 (4)1.6 Simulink 概述 (6)2.矢量控制理论 (7)2.1 异步电机的动态数学模型 (7)2.2 坐标变换 (10)2.2.1变换矩阵的确定原则 (10)2.2.2功率不变原则 (10)2.3矢量控制 (11)2.3.1 问题分析 (11)2.3.2直流电机的转矩控制 (12)2.3.3异步电机的转矩分析 (12)2.3.4 矢量控制原理 (12)3.总体模块设计 (15)3.1矢量控制结构框图 (15)3.2各子系统模块 (16)3.2.1求解磁链模块 (16)3.2.2 求解转子磁链角模块 (17)3.2.3 ids*求解模块 (17)3.2.4 iqs*求解模块 (17)3.2.5 ABC到DQ坐标变换模块 (18)3.2.6 DQ到ABC坐标变换模块 (18)3.3 电机参数设置 (19)3.4矢量控制环节模块 (21)3.5矢量控制的异步电动机调速系统模块 (21)4.Simulink 仿真 (23)5.结论 (28)致谢 (29)参考文献 (30)附录1 3s/2r坐标变换 (32)附录2 ω*=100和ω*=150时的比较 (34)1.绪论1.1引言工农业生产、交通运输、国防军事以及日常生活中广泛应用着电机传动,其中很多机械有调速要求,如车辆、电梯、机床及造纸机械等,而风机、水泵等为了减少损耗,节约电能也需要调速。

基于交流电动机动态模型的直接矢量控制系统的仿真与设计

基于交流电动机动态模型的直接矢量控制系统的仿真与设计

基于交流电动机动态模型的直接矢量控制系统的仿真与设计姓名:班级:电气三班学号:专业:电气工程及其自动化1.引言异步电机的动态数学模型是一个高阶、非线性、强耦合的多变量系统,通过坐标变换,可以使之降阶并化简,但并没有改变其非线性、多变量的本质。

需要高动态性能的异步电机调速系统必须在其动态模型的基础上进行分析和设计,但要完成这一任务并非易事。

经过人们的多年的潜心研究和实践,有几种控制方案已经获得了成功的应用,目前应用最广的就是矢量控制系统。

直接矢量控制就是一种优越的交流电机控制方式,它模拟直流电机的控制方式使得交流电机也能取得与直流电机相媲美的控制效果。

本文研究了交流电动机动态模型的直接矢量控制系统的设计方法。

并用MATLAB 最终得到出仿真结果。

2. 矢量控制系统结构异步电动机经过坐标变换可以等效成直流电动机,那么,模仿直流电动机的控制策略,得到直流电动机的控制量,再经过相应的坐标反变换,就能够控制异步电动机了。

由于进行坐标变换的是电流(代表磁动势)的空间矢量,所以这样通过坐标变换实现的控制系统就称为矢量控制系统(VectorControlSystem),简称VC 系统。

VC 系统的原理结构如图1所示。

图中的给定和反馈信号经过类似于直流调速系统所用的控制器,产生励磁电流的给定信号*m i 和电枢电流的给定信号*t i ,经过反旋转变换1-VR 一得到*αi 和*βi ,再经过2/3变换得到*A i 、*B i 和*C i 。

把这三个电流控制信号和由控制器得到的频率信号1ω加到电流控制的变频器上,所输出的是异步电动机调速所需的三相变频电流。

图1 矢量控制系统原理结构图在设计VC 系统时,如果忽略变频器可能产生的滞后,并认为在控制器后面的反旋转变换器1-VR 与电机内部的旋转变换环节VR 相抵消,2/3变换器与电机内部的3/2变换环节相抵消,则图1中虚线框内的部分可以删去,剩下的就是直流调速系统了。

可以想象,这样的矢量控制交流变压变频调速系统在静、动态性能上完全能够与直流调速系统相媲美。

异步电机SVPWM矢量控制仿真分析

异步电机SVPWM矢量控制仿真分析

第12卷 第2期2008年3月电 机 与 控 制 学 报ELE CTR IC M ACH I NE S AND CONTRO LVo l 12N o 2M ar .2008异步电机S VP WM 矢量控制仿真分析张春喜, 廖文建, 王佳子(哈尔滨理工大学电气与电子工程学院,哈尔滨150040)摘 要:为了给实际电机控制系统提供必要的设计参数,依据异步电机矢量控制理论及空间电压矢量脉宽调制原理,在M atlab /Si m u li n k 下建立了基于空间电压矢量脉宽调制的异步矢量控制仿真模型,并针对仿真中的关键问题及系统的仿真结果进行了分析。

仿真结果表明,采用该控制系统电流、转矩波动小,转速响应迅速,系统的各项指标都满足电机实际运行特性要求。

关键词:空间电压矢量脉宽调制;矢量控制;仿真;异步电机中图分类号:TM 464文献标识码:A文章编号:1007-449X (2008)02-0160-04Si m ul ation analysis i n SVP WM vector control foras ynchronous motorZ HANG Chun -x,i LIAO W en -jian , WANG Jia -zi(Co ll ege of E l ectrical and E lectron ic Eng i neer i ng ,H a rbin U n i versity of Sc i ence and T echno logy ,H arb i n 150040)Abst ract :To prov ide the necessary design para m e ters for t h e actua lm otor contro l syste m ,the si m ulation m o led of vecto r contr o l syste m based on space vector pu lse w idth m odu lation (SVP WM )fo rA sychronousM otor is estab lished inMATLAB /Si m u li n k ,acco r d i n g to t h e princ i p le o fSVP WM and the theory of vector contro l syste m.The key prob le m s and resu lts of the si m ulation w ere analyzed i n detai.l The resu lts sho w that t h is syste m has s m a ller fluct u ations of current and torque ,qu icker response speed ,and all of the in -d icato rs accord w it h the perfor m ance of t h e actualm otor .K ey w ords :space vector pulse w i d th m odu lation ;vector con tro;l si m u lation ;asynchronous m oto r收稿日期:2007-09-12作者简介:张春喜(1964-),男,博士,教授,主要研究方向电机驱动控制、开关电源;廖文建(1983-),男,硕士研究生,主要研究方向交流调速;王佳子(1983-),女,硕士研究生,主要研究方向交流调速。

异步电机SVPWM矢量控制仿真分析

异步电机SVPWM矢量控制仿真分析一、本文概述Overview of this article随着电力电子技术和控制理论的发展,异步电机(也称为感应电机)的矢量控制已成为实现高性能电机驱动的重要手段。

空间矢量脉宽调制(SVPWM)技术,作为一种先进的调制策略,在电机驱动系统中得到了广泛应用。

本文旨在探讨异步电机基于SVPWM的矢量控制方法,并通过仿真分析验证其控制效果。

With the development of power electronics technology and control theory, vector control of asynchronous motors (also known as induction motors) has become an important means to achieve high-performance motor drive. Space Vector Pulse Width Modulation (SVPWM) technology, as an advanced modulation strategy, has been widely used in motor drive systems. This article aims to explore the vector control method of asynchronous motors based on SVPWM, and verify its control effect through simulation analysis.文章首先介绍了异步电机矢量控制的基本原理,包括坐标变换、磁场定向控制等关键技术。

然后,详细阐述了SVPWM的基本原理和实现方法,包括空间矢量的合成、占空比的计算以及调制波形的生成等。

接下来,通过仿真模型的建立,对异步电机SVPWM矢量控制系统进行了仿真分析,包括启动过程、稳态运行、动态响应等多个方面。

三相交流异步电机矢量控制系统仿真建模

立 的仿 真模 型开展 了电机 空载 变速过 程 和恒速 加 载过 程仿 真. 仿 真 结果 表 明 , 所设 计 的仿 真模 型能 够 实
现 电机运 动过 程 中转 速和 转矩 的 准确计 算 ; 所设 计 的参数 化 仿 真模 型 可 用 于三 相 交流异 步 电机 矢量 控
制 系统 仿 真 研 究 .
0 引 言
三相 交流 异 步 电机 具有 结构 简 单 、 制 造方 便 、 可 靠性 高 和价 格便 宜 等 特点 , 在 工业 生产 和 日常 生 活
领域 中得 到 了广 泛应 用 . 随 着 三相 交 流 异 步 电机 应 用领 域 的不 断拓 宽 , 对 三 相 交 流 异步 电机 控 制 系统
的设 计 要求 也越 来 越 高 , 需 要 协 调 考虑 控 制 系统 的
控制 性 能 、 成 本 和开发 周期 . 矢 量控 制是 当前 三相 交
三相 交流 异 步 电机 在 d—q坐 标 系 下 的数 学模
Lm L,
型可 用如 下方 程式 描述 . 电压 方程 :
摘 要 分析 了三 相 交流异 步 电机 的数 学模 型 , 介 绍 了三相 交流异 步 电机 的 矢量控 制 原理. 采 用模块 式 设计 方 法和 结构化 设 计方 法 , 开发 了基 于 MATI AB / s I Muu NKV 参数 化 三相 交流异 步 电机 矢量控 制
仿真模 型 . 该模 型 的输入 参数 为 电机 转子 目标 转速 和 转子 实 时转速 , 输 出参数 为 电机 输 出转矩 . 基 于建
∞ 1 L
L P


R s +L s p
L Ⅲ
L P
鲫 Lm

异步电动机矢量控制系统设计及仿真.

中文摘要异步电动机矢量控制系统设计及仿真摘要现代交流调速系统在矢量控制技术出现以前多用恒压频比的控制策略,采用这个控制策略的不足之处是在电动机低速转动或者在加减速、加减负载等动态情况下,系统性能显著降低,致使交流调速系统在低速、启动时转矩的动态响应以及整个系统的稳定度方面比直流调速系统逊色,这样就不能满足人们的高精度需求。

后来,交流异步电动机控制开始大踏步从标量控制向矢量控制迈进了。

下面就来简要介绍下矢量控制理论。

矢量控制发展起来的基础和核心理论支撑是坐标转换原理,机电能量转换理论等一些电机学的概念。

这一控制的根本思想方法其实就是将异步电动机模仿成直流电动机来控制。

只要建立出与三相交流绕组等效的两相绕组,即可建立与异步电动机等效的直流电机模型,再加上相应的比例积分调节环节,于是就可按对直流电机的控制策略对异步电动机进行控制。

因而使用矢量控制可以实现对电机电磁转矩的动态实时控制,使得调速性能得以优化提高。

这次毕设中我根据这个思路成功地进行了MATLAB仿真。

关键词:交流电动机;矢量控制调速系统;仿真ABSTRACTThe Design and Simulation of Vector Control Systemof Asynchronous MotorAbstractBefore the technique of vector control system was invented, alternating current speed control system used constant V/f ratio control method witch is normally known as scalar control. Systems which take this method show vital defect when the motor running at low speed or under circumstances like acceleration, deceleration, adding load, reducing load. Alternating current motor witch use vector control can achieve the same control performance as constant current motor, even better.Vector control developed from the foundation of the theory of motor integration, mechanical-electric energy transition, coordinates transition. Its main idea is simulating constant current motor to control alternating current motor. Once the equivalent among three-phase alternating current wingding, two-phase alternating current wind and rotating constant current winding is established, the mode of alternating current motor that simulating constant current motor can be created as well. Therefore, asynchronous motor can be controlled in ways according to synchronous motor. So that vector control can achieve dynamic control of electrical torque of asynchronous motor and reach a high level of speed control performance. I have successfully made a MATLAB simulation of the system.Key Words: Asynchronous Motor; Vector Control; Simulation目录摘要 (I)Abstract (II)第 1章绪论 (1)1.1交、直流调速系统 (1)1.2交流调速系统概述 (2)第2章异步电动机之矢量控制理论 (5)2.1异步电动机之数学模型 (5)2.1.1关于异步电动机数学模型之性质 (5)2.1.2数学模型构建 (5)2.2异步电动机的坐标变换 (8)2.3异步地电动机根据矢量控制法则设计的调速系统 (10)第3章矢量控制系统的仿真 (14)3.1 MATLAB仿真工具介绍 (14)3.2 电动机的具体仿真设计 (15)3.2.1总体仿真结构图 (15)3.2.2仿真系统各子模块设计及参数设置 (16)3.3仿真结果分析 (24)3.3.1空载运行结果分析 (24)3.3.2电机带额定负载运行 (26)3.3.3电机动态运行性能 (28)第4章总结与展望 (32)谢辞 (33)参考文献 (34)附录A外文文献原文 (35)附录B外文文献译文 (43)华东交通大学毕业设计(论文)第1章绪论1.1 交、直流调速系统一般来说,电力传动控制系统由电动机和控制装置组成。

异步电机矢量控制系统的建模与仿真

2011 年第 1 期




13
异步电机矢量控制系统的建模与仿真
江 辉
1


2
( 1 马鞍山钢铁股份有限公司
摘 要
2 安徽工业大学)
介绍了异步电机空间矢量坐标交换 及其对 应的数 学模型 , 应用 SIM U L IN K 构建了 异步电 机的矢 量 异步电机 矢量控制 SIM L IN K 仿真
2011 年第 1 期
的运行, 均是通过矢量坐标变换来实现的, 因此将这 种控制系统称为矢量变换控制系统。
2. 4 按转子磁链定向的异步电机矢量控制系统的 方程式 L md L rd
2 矢量控制系统的描述及数学模型
2. 1
UA UB UC Ua Ub Uc =
异步电机的在三相静止坐标系下的数学模型 电压方程为 :
M T 坐标系( 同步旋转坐标系 ) 。 i MT = A 2 i = A 2 A 1 iabc 直流电机的模型可以用 MT 坐标系来等效, T 绕组上的电流等效电枢绕组电流分量 , M 绕组上的 电流等励磁电流分量。这样将直流标量作为电朵的 控 制量 , 然后又将其变换成交流量去控制交流电机
1 矢量控制的描述
0 前言
随着电力电子技术和自动化技术的不断发展 , 促进了交流异步电机取代直流电机成为工业传动的 主体 , 而矢量控制理论是实现这一转变的关键技术 之一 , 由于交流异步电机是一高阶的、 非线性、 强耦 合的多变量系统。在矢量控制的理论下通过坐标变 换, 可以消除瞬变过程中的周期性时变系统和降低 方程阶数, 从而简化数学模型。可以通过对磁链的 控制改善电机静态和动态性能 , 目前矢量控制已成 为国际上变频领域应用最广泛的控制技术之一。 笔者采用异步电机基于两相静止坐标系下的数 学模型, 结合坐标变换, 利用 M AT L AB 软件中的动 态仿真工具 SIM UL INK, 建立了异步电机带转矩内 环的转速、 磁链闭环的矢量控制系统的仿真模型, 并 给出了仿真结果。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档