交流异步电动机的矢量控制系统设计原理
异步电机矢量控制可以转子磁链定向

在M-T坐标系上,磁链方程为
Ψms=Lsims+Lmimr Ψts=Lsits+Lmitr Ψmr=Lmims+Lrimr=Ψr Ψtr=Lmits+Lritr=0
(3) (4)
对于笼型转子异步电动机,其转子短路,端
对于矢量控制来说,i*ds类似于直流电动机的励磁 电流If,i*qs类似于直流电动机的电枢电流Ia。相 应地,我们希望类似地写出异步电动机的转矩表
达式为
Te CT r iqs
(1)
Te CT' idsiqs
(2)
式中 Ψr:正弦分布转子磁链空间矢量的峰值。
Ia
解耦
If
Ψa
Ia
Te CT f a CT' I f Ia If
正比关系,如果Ψr保持不变的话。
2.2 转子磁链模型
为了实现转子磁链定向矢量控制,关键是获
得实际转子磁链Ψr的幅值和相位角,坐标变换 需要磁链相位角(φ),转矩计算、转差计算等
需要磁链的幅值。但是转子磁链是电机内部的物 理量,直接测量在技术上困难很多。
在磁链计算模型中,根据所用实测信号的不 同,可以分为电压模型和电流模型两种。
2) 计算转子磁链的电流模型 根据磁链与电流的关系,由电流推算磁链,
称其为电流模型。
电流模型需要实测的电流与转速信号,优 点是:无论转速高低都能适用;但缺点是 都受电动机参数变化的影响。除了转子电 阻受温度和频率的影响有较大的变化外,
磁路的饱和程度也将影响电感Lm、Lr和Ls,
这些影响最终将导致计算出的转子磁链的 幅值和相位角偏离正确值,使磁场定向不 准,使磁链闭环控制性能降低。
异步电动机的矢量控制系统

isT 轴模型
cosφ sinφ
cosφ sinφ
注意:如果忽略变频器可能产生的滞后,并认为控制器中反 旋转变换器与电机内部的旋转变换环节相抵消,2/3变换器 与电机内部的3/2变换环节相抵消,则虚框内的部分可以删 去,剩下的就是直流调速系统。
第28页/共68页
28
控制Βιβλιοθήκη i*sM M Ti*sT
(7 21)
小结:矢量控制基本方程☆
r
Lm 1 Tr
p
isM
或 : isM
1
Tr Lm
p
r
(7 12)
Te
np
Lm Lr
isT r
(7 15)
sl
Lm
Tr r
isT
(7 -17)
24
第25页/共68页
25
二、矢量控制方法
既然异步电动机经过坐标变换可以等效成直流电动机,那 么,模仿直流电动机的控制方法,给出直流电动机的控制量, 再经过相应的反变换就能控制异步电动机。
第29页/共68页
cosφ sinφ
根据单位矢量获取方法的不同,矢量控制方法可分为两种: ✓直接矢量控制(由Blaschke发明) ✓间接矢量控制(由Hasse发明) 。
当矢量控制所用单位矢量和磁链是直接检测到的或由检 测到的电机的端子量及转速计算得到时,被称为直接矢量 控制,也可称为磁通反馈矢量控制(Feedback Vector Control)。
MT坐标系: 规定d轴沿转子磁链Ψr方向,并称之为M (Magnetization)轴, q轴则逆时针转90º,即垂直于转子磁链Ψr,称之为T (Torque)轴。这样的两相同步旋转坐标系就规定为MT坐标系, 或称按转子磁场定向(Field Orientation)的坐标系。
异步电机矢量控制原理

异步电机矢量控制原理一、引言异步电机是一种广泛应用的电动机,其控制方式主要有直接转矩控制和矢量控制两种。
其中,矢量控制是一种更加精确、灵活的控制方式,可以实现高效率、高性能的运行。
本文将详细介绍异步电机矢量控制原理。
二、异步电机基础知识1. 异步电机结构和工作原理异步电机由定子和转子两部分组成,定子上有三个相位交流绕组,转子上则有导体条。
当三相电源施加在定子上时,会产生旋转磁场,进而感应出转子中的感应电动势,并使得导体条在旋转磁场中感受到一个旋转力矩,从而带动转子运动。
2. 异步电机参数异步电机的参数包括定子电阻、定子漏抗、定子互感、转子漏抗等等。
这些参数对于确定异步电机的特性非常重要。
3. 感应电动势和反电动势当三相交流电源施加在定子上时,会产生一个旋转磁场,并且这个旋转磁场的频率与供电频率相同。
这个旋转磁场会感应出转子中的感应电动势,从而产生一个旋转力矩。
同时,由于异步电机的运动,转子中也会产生一个反电动势,其大小与运动速度成正比。
三、矢量控制基础知识1. 矢量控制简介矢量控制是一种通过模拟直流电机的方式来控制交流电机的方法。
它可以实现非常精确的控制,并且可以根据需要调整转速和转矩。
2. 矢量控制原理在矢量控制中,将交流电机看作一个带有两个分量(即直流分量和交流分量)的向量。
通过对这两个分量进行分别控制,就可以实现对交流电机的精确控制。
四、异步电机矢量控制原理1. 矢量控制与异步电机结合在异步电机中使用矢量控制时,需要将交流电源输入到变频器中,并将其输出到异步电机上。
变频器会将交流信号转换为直流信号,并将其分解为两个分量:一个用于产生旋转磁场(即定子磁通),另一个用于产生反向转矩(即转子电流)。
2. 矢量控制中的定子电流和磁通在矢量控制中,定子电流和磁通是非常重要的参数。
定子电流决定了旋转磁场的大小,而磁通则决定了旋转磁场的方向。
因此,在进行异步电机矢量控制时,需要对定子电流和磁通进行精确控制。
交流异步电动机矢量控制系统的分析

图 1 异步 电动 机 的坐 标 变换 结 构 图
12 矢量变 换控制 系统的原理 .
异步电动机可以等效成直流 电动机 , 可以模仿直
流 电动机 的控 制方法 , 得 直 流电动 机 的控 制量 , 求 再 经过相应的反变换 , 即可 以按照控制 直流 电动机的方 式控制异步 电动机 。
只要 上述 3种方 法产 生的旋 转磁 动 势大 小和转 速都相等 时 , 可认 为三 相 绕组 、 就 两相 交 流绕 组和 旋 转的直 流绕组 等效。 即在三 相坐 标系 的定 子交 流 电流 “、 、c通 过三 相两相变换 , 以等效成 两相静 i 可
转子总磁链 = i
式 中
则是在不同的坐标 系下 , 电动机模 型所产生 的磁动势
相同。
1 矢量控制系统
11 异步 电动机的坐标变换结构 图 . ( ) 流电动机三相对称 的静止 绕组 A、 C, 1交 B、 通
过三相平衡正弦 电流时 , 生的合成 磁动 势是旋转 所产
磁动势 ,, 它在空 间呈 正弦分布 , 以同步转速 , 着 顺 A、 C的相序旋转 。 B、
r
() 3 同理 , 2 匝数 相等且 互相 垂直 的绕 组 埘 当 个
和 , 分别通 以直 流 电流 和 i 产 生 合成 磁动 势
电 磁 转矩 =P
…
i 。
.
,
,. 其位 置相 对 于绕 组 来 说是 固定 的 , 果让 包 含 2 如 个 绕组在 内的整个 铁 心 , 以同步 转 速旋 转 , 磁动 势 则 , 自然也随之旋转 , 成为旋 转磁动势 。
1 l } L Lf __【 __ l I I I . _ . .
^
交流异步电动机矢量控制调速系统设计

目录摘要I1绪论11.1交流调速技术概况11。
2异步电动机矢量控制原理22矢量控制理论42.1矢量控制42.2异步电机的动态数学模型52.3坐标变换73矢量控制系统硬件设计93。
1矢量控制结构框图93.2矢量控制系统的电流闭环控制方式思想9 3。
3各个子系统模块103.4矢量控制的异步电动机调速系统模块124 SIMULINK仿真134.1MATLAB/S IMULINK概述134。
2仿真参数134。
3仿真结果145总结16参考文献17摘要异步电机的物理模型之所以复杂,关键在于各个磁通间的耦合。
本设计把异步电动机模型解耦成有磁链和转速分别控制的简单模型,就可以模拟直流电动机的控制模型来控制交流电动机。
综合矩阵变换的控制策略及异步电动机转子磁场定向理论,采用计算机仿真方法分别建立了矩阵变换仿真模型以及基于矩阵变换的异步电动机矢量控制系统仿真模型,对矩阵变换的控制原理、输入、输出性能以及矢量控制系统的优质的抗扰能力及四象限运行特性进行分析验证,展现了该新型交流调速系统的广阔发展前景,并针对基于矩阵变换的异步电动机矢量控制系统的特点,着重对矢量控制单元进行了软件设计。
直接矢量控制就是一种优越的交流电机控制方式,它模拟直流电机的控制方式使得交流电机也能取得与直流电机相媲美的控制效果.本文研究了矢量控制系统中磁链调节器的设计方法。
并用MATLAB最终得到了仿真结果。
关键词:坐标变换;矢量控制;MATLAB/simulink1绪论1.1交流调速技术概况工农业生产、交通运输、国防军事以及日常生活中广泛应用着电机传动,其中很多机械有调速要求,如车辆、电梯、机床及造纸机械等,而风机、水泵等为了减少损耗,节约电能也需要调速。
过去由于直流调速系统调速方法简单、转矩易于控制,比较容易得到良好的动态特性,因此高性能的传动系统都采用直流电机,直流调速系统在变速传动领域中占统治地位。
但是直流电机的机械接触式换向器结构复杂、制造成本高、运行中容易产生火花、需要经常的维护检修,使得直流传动系统的运营成本很高,特别是由于换向问题的存在,直流电机无法做成高速大容量的机组,如目前3000转/分左右的高速直流电机最大容量只有400千瓦左右,低速的也只能做到几千千瓦,远远不能适应现代生产向高速大容量化发展的要求.交流电机高效调速方法的典型是变频调速,它既适用于异步电机,也适用于同步电机.交流电机采用变频调速不但能实现无极调速,而且根据负载的特性不同,通过适当调节电压和频率之间的关系,可使电机始终运行在高效区,并保证良好的动态特性。
异步电动机矢量控制

19
3、定子绕组轴系的变换 (A B C )
下图表示三相异步电动机定子三相绕组A、C、C和与之等效的二相
异步电动机定子绕组 、 中各相磁势矢量的空间位置。三相的A轴
与二相的 轴重合。
B
假设当二者的磁势波形按正弦分 布,当二者的旋三相绕组和二相绕
12
矢量变换控制的基本思想和控制过程可用框图来表示:
旋转坐标系
静止坐标系
控制通道
ω* ψ*
控制器
iT* iM*
旋转变换 A-21
iα*
iβ*
2/3相变换
iA*
i
*
B
iC*
A
-1 1
变频器
iT iM 旋转变换
iα iβ 3/2相变换 iA iB i C
M
A2
A1
反馈通道
以下任务是,从交流电机三相绕组中分离产生磁通势的直流分量和产生 电磁转矩的直流分量,以实现电磁解耦。解耦的有效方法是坐标变换。
组的瞬时磁势沿 、 轴的投影
β
N3iB
N2iα N2iβ
α N3iA A
应该相等。(N2、N3为匝数)
C N3iC
3/2变换
N 2ia
N3iA
N3iB
cos
2
3
N 3iC
cos
4
3
2
4
N 2i 0 N3iB sin 3 N3iC sin 3
20
经计算整理,得:
i
N3 N2
i
A
1 2
iB
1 2
第八章 异步电动机矢量控制
主要内容:
矢量控制的基本思想 坐标变换 异步电动机在不同坐标系下的数学模型 异步电动机矢量控制系统举例
交流异步电动机VF控制原理

定子相 电动势 (V)
定子相绕组有效匝数
E1 4.44 f1W1KW1Φm 每极磁通量(Wb)
定子频率(Hz)
绕组常系数数
VF 控制基本原理分析
三相异步电动机定子每相电动势的有效值为:
E1 4.44 f1W1KW1Φm
E1 f1
CΦm
(恒磁通控制)
Φ的m 值是由 E和1 共f同1 决定的 和E 1 进行f1
标准字号:24号
标准字体: 思源黑体 CN Normal (正文) Times New Roman (正文)
运动控制技术及应用
交流异步电动机 VF 控制基本原理
目录
01 VF 控制基本原理定义 02 VF 控制基本原理分析
01 VF 控制 基本原理定义
VF 控制基本原理定义
变频器的控制方式
V/f 控制方式 转差频率控制
矢量控制 直接转矩控制
VF 控制基本原理定义
异步电动机为了保证电机磁通和转矩 不变,电机改变频率时,需维持电压 V 和 频率 F 的比率近似不变,这种方式称为恒 压频比控制,即:VF控制。
适当的控制,就可以使气隙磁通 保Φ持m额定值
不变。
VF 控制基本原理分析
三相异步电动机定子每相电动势的有效值为:
U1 Z1I1 E1
E1 f1
U1
- Z1I1 f1
CΦm
VF 控制基本原理分析
E1 f1
U1 -Z1I1 f1
U1 f1
CΦm
带定子压降补偿
VF控制特性图
不带定子压降补偿
补录
VF 控制基本原理分析
电机高速运行时,定子阻抗压降 Z1I1所占 E 1
的比重较小,可以忽略。电机低速运行时,定子
异步电动机矢量控制_FOC_和直接转矩控制_DTC_方案的比较

异步电动机矢量控制_FOC_和直接转矩控制_DTC_方案的比较首先,我们来看看FOC方案。
FOC方案是基于电机矢量控制理论而发展起来的一种控制方法,在控制异步电动机时,可以通过精确测量和控制转子磁链矢量的方向和大小,来实现精确控制电机的转矩和转速。
其核心思想是将电动机的三相定子电流进行矢量拆分,分为一个磁场矢量和一个转矩矢量,从而实现转子磁链方向和大小的控制。
FOC方案的优点是控制精度高,响应速度快。
由于可以实时测量和控制电机的磁链矢量,FOC方案可以精确控制电机的转矩和转速。
此外,由于转子磁链矢量可以根据需要即时调整,FOC方案可以快速响应转矩和速度的变化,从而适用于需要快速响应和精确控制的应用。
然而,FOC方案也存在一些缺点。
首先,FOC方案的实现较为复杂,需要进行电流和电压的矢量控制,以及相应的转子定位和速度估算算法。
这些复杂的控制算法在实践中需要较高的计算能力和较多的计算资源,因此实现起来较为困难。
其次,FOC方案对于电机参数和系统模型的准确性要求较高。
由于FOC方案需要测量和控制转子磁链矢量,因此对电机参数和系统模型的准确性要求较高,如果参数不准确,将导致控制性能下降。
接下来,我们来看看DTC方案。
DTC方案是一种基于直接转矩控制原理的控制方法,其核心思想是通过采用转矩和磁链两个控制变量直接控制电机的转矩和速度。
DTC方案通过测量和计算磁链和转矩的误差,根据预定的控制规则直接调节电机的电压和频率,以实现对电机转矩和速度的控制。
DTC方案的优点是实现简单,控制快速。
DTC方案不需要进行电流和电压的矢量控制,只需要测量和控制磁链和转矩的误差,因此实现起来相对简单。
此外,DTC方案由于直接控制电机的电压和频率,可以快速响应转矩和速度的变化,适用于需要快速相应和简单控制的应用。
然而,DTC方案也存在一些缺点。
首先,DTC方案的动态性能较差。
由于DTC方案是基于磁链和转矩误差进行控制的,其控制性能受到不可避免的误差和延迟的影响,因此其动态性能较差,不能达到FOC方案的精确度和响应速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
交流异步电动机的矢量控制系统设计原理
本文主要利用电机矢量控制系统原理,提出了一种异步电机矢量控制系统及其控制策略总体设计方案,采用Simulink工具构建了矢量变频调速系统数学模型,详细介绍了各个子模块的构建方法和功能。
通过仿真可得系统的动态及稳态性能,表明系统具有较高的响应能力和鲁棒性,为矢量控制技术提供了一种前期检验方法和研究手段。
0引言
异步电动机的动态数学模型是一个高阶、非线性、强耦合的多变量系统,矢量控制是电机控制系统的一种先进控制方法,由于其交流调速时的优越性被广泛应用到异步电机调速系统中。
基于Simulink的交流异步电机仿真可以验证系统设计方案的有效性,在实验室应用过程中可能遇到系统设计难题。
本文以双闭环矢量控制系统为研究对象,在Simu-link中进行仿真来验证控制系统的有效性。
通过分析仿真结果得到矢量控制系统的动静态特性,从而证实了本设计方案的可行性。
1矢量控制原理
矢量控制系统,简称VC系统,坐标变换是核心思想。
矢量控制的基本思想是以产生同样的旋转磁动势为准则,将异步电动机在静止三相坐标系上的定子交流电流等效成两相静止坐标系上的交流电流,在通过坐标旋转变换将其等效成同步旋转坐标系上的直流电流,等效过程中实现磁通和转矩的解耦控制,达到直流电机的控制效果,得到直流电动机的控制量。
便可将三相异步电动机等效为直流电动机来控制,获得与直流调速系统接近的动、静态性能。
矢量控制中矢量变换包括三相-两相变换和同步旋转变换,将d轴沿着转子总磁链矢量φr的方向称为M轴,将q轴逆时针转90°,即垂直于矢量φr的方向称为T轴,经过变换电压-电流方程改写为式(1),磁链方程为式(2):
化简可得转矩方程为:
由式(2)可得转子磁链φr仅由定子电流励磁分量isM产生,与转矩分量isT无关,而isM和isT是相互垂直的,这两者是解耦的。
矢量控制变频调速系统结构如图1所示,从图1上可以看出系统采用了转速、磁链的闭环控制。
图中标*的量为给定量,其余为实际测量值。
2基于Simulink的异步电机矢量控制系统仿真模型
2.1系统总体模型
根据矢量控制系统原理,利用Matlab/Simlink软件中的电气系统工具箱SimPowerSystems对系统进行仿真。
整体系统的仿真模型如图2所示。
2.2仿真模型中主要部分
2.2.1异步电动机与逆变模块
异步电动机选用SimPowerSystem模块库中的Asyn-chronous Machine SI Uints,选择在同步旋转坐标系的笼式异步电动机数学模型。
模块的A,B,C是异步电动机定子绕组输入端,与IGBT逆变器的输出相连。
逆变部分由SimPowerSystem模块库中的Power Electronic下的Universal Bridge 模块形成,逆变器的输入pulse端为PWM控制信号(6路),输出为三相ABC 交流电压。
2.2.2矢量控制模块
矢量控制模块的内部结构如图3所示。
子模块输入角速度给定和实际角速度值求偏差,并送入转速调节器(PI调节器);磁链给定的偏差信号用来作为磁链调节器(PI调节器)的输入,dq-abc、各计算环节及abc-dq实现转速和磁链的解耦控制,pulses generator单元产生脉冲信号控制IGBT逆变器达到变频调速的目的。
转子磁链相位角和励磁、转矩电流计算均根据矢量控制原理采用Simulink下的Fun模块设置函数,本文不再给出它们的具体仿真模型。
2.2.3脉冲发生器模块
脉冲发生器模块由滞环控制器和逻辑非运算器组成。
模块的输入信号是三相给定电流和三相实测电流,输出信号是由六路IGBT逆变器逆变来的六相脉冲信号。
模块将给定信号和实际测量信号进行比较,当实测电流小于给定电流且偏差大于滞环宽度时,输出为1,逆变器相正向导通,负向关断;当实际电流大于给定电流且偏差小于滞环宽度时,输出为0,逆变器相负向导通,正向关断。
采用逆变器通与断来调节逆变器输出线电压的频率,实现变频调速。
电流滞环控制器模型如图4所示。
2.2.4abc-dq,dq-abc坐标变换模块
abc-dq变换模块实现三相定子坐标到dq坐标的变换,变换模块模型如图5所示;dq-abc变换模块实现dq坐标到三相定子坐标的变换,变换模块仿真模型如图6所示。
采用三相到两相或两相到三相变换表达式设置变换模块中相应的函数表达式。
仿真采用的Simu-link/User-Defined Function/Matlab Fcn 模块实现不同形式的函数运算。
3仿真结果及分析
3.1参数设置
在启动仿真之前,首先要设置交流异步电机参数:
额定线电压220V、交变频率50Hz、磁极对数2,转动惯量J=1.662;阻尼系数D=0.1;定子内阻Rs=0.087Ω,定子漏感Ls=0.8mH;转子内阻Rr=0.028Ω,转子漏感Lr=0.8mH;定转子互感Lm=34.7mH.
逆变器参数:逆变器设置为三电平桥式电路IGBT,逆变器直流电源VDC= 780V,给定磁通值φ*r=0.96Wb;转速控制器(PI调节器)参数kp=13,ki
=26,限幅为300;电流控制器的滞环宽度H=20A.负载转矩为10N-m,给定角速度为20rad/s.
3.2仿真分析
通过选择适当的PID参数,采用不同的PID参数对电机的空载、负载及正常运行过程进行仿真,本仿真采用试凑的方法完成两个调节器PID参数选择。
结果得系统响应平稳、动静态性能都较好,转速超调小且稳态误差小。
仿真结果验证了该建模方法的有效性和正确性。
4结语
异步电机矢量控制系统一直都是系统原理和系统设计方案的重点和难点,基于Simulink的异步电机矢量控制系统模型为设计良好的矢量控制系统提供了完善的系统验证方法。
本文根据矢量控制原理完成了结构简明的按转子磁链定向的矢量控制系统,经过仿真实验,结果表明该矢量控制系统能有效控制异步电机的启动和调速,证明了本文所提出的设计方案具有很强的实用性。