异步电动机矢量控制系统的仿真
异步电动机矢量控制系统的设计与仿真.doc

异步电动机矢量控制系统的设计与仿真.异步电动机矢量控制系统的设计与仿真在矢量控制技术出现之前,现代交流调速系统采用了恒压频比控制策略。
这种控制策略的缺点是,当电机低速旋转或在加减速、负载加减等动态条件下,系统性能显著降低,导致交流调速系统在低速、启动时转矩的动态响应和整个系统的稳定性方面不如DC调速系统,无法满足人们对高精度的要求。
后来,交流异步电动机控制开始从标量控制向矢量控制迈进。
以下是矢量控制理论的简要介绍。
矢量控制发展的基础和核心理论支撑是电机的一些概念,如坐标转换原理、机电能量转换理论等。
这种控制的基本思想和方法是将异步电机模拟成DC电机来控制。
只要建立等效于三相交流绕组组的两相绕组,就可以建立等效于异步电机的DC电机模型,并增加相应的比例积分调节环节,从而可以按照DC 电机的控制策略来控制异步电机。
因此,矢量控制可以实现对电机电磁转矩的动态实时控制,从而优化和提高调速性能。
根据这一思想,我在本项目中成功地进行了MATLAB仿真。
关键词:交流电机;矢量控制调速系统;矢量控制系统的设计与仿真交流调速系统的仿真采用常V/f比控制方法,通常称为标量控制。
采用这种方法的系统在电机低速运行时或在加速、减速、增加负载、减少负载等情况下会出现重大缺陷。
采用矢量控制的交流电机可以达到与恒流电机相同的控制性能,从此交流异步电机控制从标量控制向矢量控制迈进了一大步。
以下是矢量控制理论的简要介绍。
矢量控制发展的基础和核心理论支撑是电机的一些概念,如坐标转换原理、机电能量转换理论等。
这种控制的基本思想和方法是将异步电机模拟成DC电机来控制。
只要建立等效于三相交流绕组组的两相绕组,就可以建立等效于异步电机的DC电机模型,并增加相应的比例积分调节环节,从而可以按照DC电机的控制策略来控制异步电机。
因此,矢量控制可以实现对电机电磁转矩的动态实时控制,从而优化和提高调速性能。
根据这一思想,我在本项目中成功地进行了MATLAB仿真。
异步电动机矢量控制系统仿真研究

摘要 :以异步电机矢量控制原理为基础 ,通过坐标变换和转子磁链位置计算 ,利用 M t b i u n 构建一种异 步电动机矢量 控 aa/m lk l S i 制系统的模型。通过 仿真不仅验证 了模型的正确性 ,而且 还为实际调速 系统控制算法实现提供可靠的分析 依据 。 关键词 : 矢量 控制 ;异步 电动机 ;M t b i u n a a 矩
分别独立控制 ,从而使交 流电动
收稿 日期 :2 1 一l ~0 01 1 2
— 嚣
图 1 异步电动机矢量控制 系统结构 图
耳 曩 — —— — — — —下 尊 碍
弱 j ]
L l l 4 一一l —ll 0L i \
Ab t a t s r c :Ac o d n o t e ba i rn i ls o n u t n moo e tr c n r l a smu a i n mo e f s e d o h nn r t r ue n c r i g t h sc p i c p e f i d c i t r v e o o to , i l t d l o p e ft e i e o q a d o o
1 言 引
直 流 电动 机调 速 系 统具 有 优 良的静 、动态 调
机具 有 了直 流 电动机 的全 部点 。 由于 直轴 和 转 子 磁场 重合 ,因此 也称 转子 磁场定 向控 制 。
速 特性 ,其 根本 原 因在 于作为控 制对象 的他励
直 流 电动 机 电磁 转 矩 能 够 容 易 而 灵 活 地 进 行 控 制 ” 。。在 17 年 德 国学 者提 出 的矢量变 换控 制方 91 法 中 ,正 交 旋 转 坐标 系 的直 轴 励 磁 轴 ( 与 转 子 磁 场 重 合 ,交 M) 轴为转矩轴 () T ,转 子磁 场 的交 轴 分 量 为 零 , 电磁转 矩 的方 程 得
异步电机SVPWM矢量控制系统仿真

第27卷第1期2010年1月机 电 工 程Journal of Mechanical &Electrical EngineeringVol .27No .1Jan .2010收稿日期:2009-07-08作者简介:余秋实(1985-),男,湖北荆州人,主要从事电机控制方面的研究.E 2mail:yuqiushi_cq@异步电机SVP W M 矢量控制系统仿真余秋实,王秋晓(重庆大学机械工程学院,重庆400044)摘 要:为了研究异步电机矢量控制系统在不同负载下的动态特性,在利用Matlab /Si m ulink 构建二相静止α2β坐标下异步电机数学模型的基础上,建立了基于电压空间矢量脉宽调制(S VP WM )的异步电机矢量控制模型,并对电机的启动性能以及负载为阶跃、斜坡和正弦输入的情况进行了仿真分析。
仿真结果表明所构建的系统模型动态过程符合实际调速系统运动过程。
关键词:Matlab /Si m ulink;异步电机;空间矢量脉宽调制;矢量控制中图分类号:T M921.51 文献标识码:A 文章编号:1001-4551(2010)01-0076-04S im ul a ti on of the SVP W M vector con trol syste m for a synchronous m otorY U Q iu 2shi,WANG Q iu 2xiao(College of M echanical Engineering,Chongqing U niversity,Chongqing 400044,China )Abstract:A i m ing at studying dynam ic characteristics of vect or contr ol system for asynchr onous mot or on different l oad on this ba 2sis,a mathematical model of asynchr onous mot or in static α2βcoordinate was established by the M atlab /Si m ulink,a si m ulati on model of asynchr onous mot or vect or contr ol syste m based on s pace vect or pulse width modulati on (S VP WM )was established .Then s ome situati ons such as starting perfor mance and input l oad for step,ra mp and sine wave were si m ulated and analyzed .The si m ulati on results p r ove that the above model πs dyna m ic p r ocess accords with p ractical s peed regulating p r ocess .Key words:Matlab /Si m ulink;asynchr onous mot or;s pace vect or pulse width modulati on (S VP WM );vect or contr ol0 引 言交流电动机是多变量、非线性、强耦合的被控对象,20世纪70年代德国学者B laschke 等人提出了矢量控制理论,使得交流异步电机定子电流励磁分量和转矩分量之间实现解耦,从而使交流异步电动机的磁通和转矩分别进行独立控制,这样交流异步电动机变频调速系统就具有了直流调速系统的全部优点。
异步电机矢量控制系统的设计及仿真研究

在定子 电流的两 个分 量之 间实 现 了解耦 , i 唯一 决定 磁链 i则 只影 响转矩 , 与直流 电机 中的励磁 电流和 电枢 电流
相对应 , 这样就大大简化 了多变量强耦合 的交流变频调 速系
r b s e s h p e e u ao n ec re t e l tro a i o a e trc n rlu e P o tolr a d t e s e d o u t s .T e s e d r g l tra d t u r n g ao ft d t n lv c o o t s 1 n r l , n h p e n h ru r i o c e r s o s s o e v rh o n t e c n r lp o e s n o d rt o v h s rb e ,we p o o e e in meh d o e p n e f n o e s o ti h o t r c s .I r e o s l e t e e p o lms t o rp s d a d sg t o f s e d c n rl ri h n u t n mo o e trc n r l o e p r o e o u p e sn p e e p n e o es o t n i— p e o t l n t e id ci trv co o to rt u p s fs p r si g s e d r s o s v r h o n oe o f h i d ci n mo o e trc n r la d e h n i g i u t trv co o to n n a cn mmu i . T e i d ci n moo s d f l r n e e tr c n rl t — o nt y h n u t tr u e ed o e t d v c o o t o a o i i o
基于Matlab_Simulink的异步电机矢量控制系统仿真

L ss Ls = - Ms - Ms L rr Lr = - Mr - Mr
- Ms L ss - Ms - Mr L rr - Mr
- Ms - Ms L ss - Mr - Mr L rr
R1 和 R2 分别为定、 转子每相绕组的电阻。 磁链方程: 用 ψ s 和 ψ r 分别表示定子磁链和转子磁链的 i s 和 i r 分别表示定子电流和转子电流的 列矩阵, 列矩阵, 则磁链方程可写为:
* 电流的 给 定 信 号 ism 和 电 枢 电 流 的 给 定 信 号 * ist * , i* i* 经过 Park 变换得到 i A 、 与交流异步 B 、 C , * *
{
U B = r2 i B + p ψ B
( 1)
式中
iB 、 i C 通过电流滞环调节 电机的反馈电流信号 i A 、 uB , uC , 器后得到了交流异步电机的输入电压 u A , 监测三相异步电动机的转速, 即可输出交流异步 电机调速所需的三项变频电流。 根据模块化建 模的思想, 将控制系统分割为各个功能独立的子 其中主要包括: 交流异步电机本体模块、 矢 模块, 量控制模块、 帕克变换模块、 电流滞环控制模块、 速度控制模块。通过这些功能模块的有机整合,
Simulation of Asynchronous Motor Vector Control System based on Matlab / Simulink
Jia Rui, Kang Jinping
( North China Electric Power University, Beijing 102206 , China) Abstract: In this paper, the mathematical model of the asynchronous motor was analyzed based on ABC coordinate system. A common and simple dynamic simulation model of asynchronous motor was given using Matlab / Simulink, and the model was applied to asynchronous motor vector control system. Based upon rotor flux orientation, the simulation model of the asynchronous motor vector control system was constructed. When using this model , one only needed to transfer it to the workspace and input proper motor parameters, it is demonstrated that the model has quick rewith flexible, convenient , intuitive and a series of advantages. Through the simulation of the asynchronous mosponse, tor vector control system, it is verified that this model was correct and effective. Key words: ABC coordinate system; asynchronous motor; vector control ; Matlab ; simulation
异步电动机矢量控制系统的仿真

异步电动机矢量控制系统仿真1.异步电机矢量控制系统的原理及其仿真1.1 异步电动机矢量控制原理异步电机矢量变换控制系统和直接转矩控制系统都是目前已经获得应用的高性能异步电机调速系统,对比直接转矩控制系统,矢量变换系统有可以连续控制,调速范围宽的优点,因此矢量变换控制系统为现代交流调速的重要方向之一。
本文采用的是转子磁场间接定向电流控制型交流异步电机矢量控制系统[1],如图1所示。
图1矢量变换控制系统仿真原理图如果把转子磁链方向按空间旋转坐标系的M轴方向定向,则可得到按转子磁场方式定向下的三相鼠笼式异步电动机的矢量控制方程。
(1)(2)(3)(4)(5)上列各式中,是转子励磁电流参考值;是转差角频率给定值;是定子电流的励磁分量;是定子电流的转矩分量;是定子频率输入角频率;是转子速度;是转子磁场定向角度;是转子时间常数;和分别是电机互感和转子自感。
图4所示控制系统中给定转速与实际电机转速相比较,误差信号送入转速调节器,经转速调节器作用产生给定转矩信号,电机的激磁电流给定信号根据电机实际转速由弱磁控制单元产生,再利用式(1)产生定子电流激磁分量给定信号,定子电流转矩分量给定信号则根据式(2)所示的电机电磁转矩表达式生成。
、和转子时间常数Lr一起产生转差频率信号,与ωr相加生成转子磁场频率给定信号,对积分则得到转子磁场空间角度给定信号。
和经坐标旋转和2/3相变换产生定子三相电流给定信号、和,与定子三相电流实测信号、和相比较,由滞环控制器产生逆变器所需的三相PWM信号。
1.2 异步电机转差型矢量控制系统建模在MATLAB/SIMULINK环境下利用电气系统模块库中的元件搭建交流异步电机转差型矢量控制系统[2],电流控制变频模型如图2所示。
图2 电流控制变频模型图整个仿真图由电气系统模块库中的元件搭建组成,元件的直观连接与实际的主电路相像似,其中主要包括:速度给定环节,PI速度调节器、坐标变换模块、磁场定向模块、滞环电流调节器、IGBT逆变器元件、异步电动机元件以及测量和显示模块。
异步电动机矢量控制系统的仿真

向的矢量控 制 系统 的仿 真模 型 , 并通过 仿真 实验验 证 了模 型的正确 性 。该模 型 可通 用于 笼型异 步电机 , 用时 只 使
维普资讯
《 气开 关 }2 0 . . ) 电 (0 6No 1
1 l
文章编号 :04 29 20 )1 01 -0 10- 8X(06 0 - 01 3
异步 电动机矢量控制 系统的仿真
胡君 臣
( 宁科 技 学院 自动 控 制 系 , 宁 本 溪 1 7 2 ) 辽 辽 1 0 2
提高系统仿真的效率和可靠性 。
在分 析异 步 电动 机矢 量 控 制方 法 的 基 础 上 , 用 使
流 异步 电动机 的数 学模型 是一个 高 阶 、 线性 、 耦合 非 强
的多变 量 系统 , 用经 典 的交 流 电机 理 论和 传 统 的控 采
MA L B的 SMU I K建立异步 电动机矢量控制 TA I LN 变 频调 速 系统 的仿 真模 型 , 用仿 真模型 , 行控制 系 利 进
实现 。
量控制系统的仿真模型, 可以有效地节省控制系统的 设计时间, 及时验证施加于系统的控制算法 , 观察系统 的控制输出, 同时可以充分利用计算机仿真的优越性 , 人为 地加入 不 同 的扰 动和 参 数变 化 , 以便考 察 系统 在
不 同工况下 的动 静态 特性 MAT AB提 供 的动 态系 L
isd ies se wi h ee e c r m eo in a e n r t rma n tcfed i e tb ih d t rv y tm t t er fr n efa r ttd o o o g ei il s sa l e .Th i lt n ro — h e s esmu a i d o o e h wst ev l iyo h c e fd sg n h d lc n b o v ne t s d b n u ig p o e t r ls o h ai t ft es h me o e in a dt emo e a ec n e in l u e y ip tn r p rmo o d y
异步电机矢量控制Matlab仿真实验(矢量控制部分).

学号:课程设计题目异步电机矢量控制Matlab仿真实验(矢量控制部分)学院专业班级姓名指导教师2015 年 1 月7 日目录1 设计任务及要求 (1)2 异步电动机按转子磁链定向的矢量控制系统基本原理 (1)2.1异步电动机矢量控制的基本思想 (1)2.2异步电动机矢量控制系统具体分析 (2)2 坐标变换 (3)2.1 坐标变换基本思路 (3)2.2 三相——两相坐标系变换 (4)2.3 静止两相——旋转正交变换 (5)3 转子磁链计算 (6)4 矢量控制系统设计 (7)4.1 矢量控制系统的电流闭环控制方式思想 (7)4.2 异步电动机矢量控制MA TLAB系统仿真系统设计 (8)4.3 PI调节器设计 (10)5 仿真结果 (11)5.1 电机定子侧的电流仿真结果 (11)5.2 电机输出转矩仿真结果 (12)5.3 电机的转子速度及转子磁链仿真结果 (12)心得体会 (14)参考文献 (15)摘要异步电动机具有非线性、强耦合、多变量的性质,要获得高动态性能,必须从动态模型出发,分析异步电动机的转矩和磁链控制规律。
异步电动机的物理模型是一个高阶、非线性、强耦合的多变量系统,需要用一组非线性方程组来描述,所以控制起来极为不便。
异步电机的物理模型之所以复杂,关键在于各个磁通间的耦合。
如果把异步电动机模型解耦成有磁链和转速分别控制的简单模型,就可以模拟直流电动机的控制模型来控制交流电动机。
矢量控制系统是一种优越的交流电机控制方式,它模拟直流电机的控制方式使得交流电机也能取得与直流电机相媲美的控制效果。
本文研究了按转子磁链定向矢量控制系统的电流闭环控制的设计方法。
并用MATLAB进行仿真。
关键词:异步电动机矢量控制电流闭环 MATLAB仿真异步电机矢量控制Matlab 仿真实验(矢量控制部分)1 设计任务及要求异步电动机额定数据:三相20050 2.21430r/min,14.6,0.877, 1.47s r V Hz kW N m R R ∙=Ω=Ω,,, 2015.0,2,8.160,,142.165m kg J n mH L L L mH L p m s r s ∙=====采用二相静止坐标系(α-β)下异步电机数学模型,利用MATLAB/SIMULINK 完成异步电机的矢量控制系统仿真实验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
异步电动机矢量控制系统仿真
1.异步电机矢量控制系统的原理及其仿真
1.1 异步电动机矢量控制原理
异步电机矢量变换控制系统和直接转矩控制系统都是目前已经获得使用的高性能异步电机调速系统,对比直接转矩控制系统,矢量变换系统有可以连续控制,调速范围宽的优点,因此矢量变换控制系统为现代交流调速的重要方向之一。
本文采用的是转子磁场间接定向电流控制型交流异步电机矢量控制系统[1],如图1所示。
图1矢量变换控制系统仿真原理图
如果把转子磁链方向按空间旋转坐标系的M轴方向定向,则可得到按转子磁场方式定向下的三相鼠笼式异步电动机的矢量控制方程。
(1)
(2)
(3)
(4)
(5)
上列各式中,是转子励磁电流参考值;是转差角频率给定值;是定子电流的励磁分量;是定子电流的转矩分量;是定子频率输入角频率;
是转子速度;是转子磁场定向角度;是转子时间常数;和分别是电机互感和转子自感。
图4所示控制系统中给定转速和实际电机转速相比较,误差信号送入转速调节器,经转速调节器作用产生给定转矩信号,电机的激磁电流给定信号根据电机实际转速由弱磁控制单元产生,再利用式(1)产生定子电流激磁分量给定信号,定子电流转矩分量给定信号则根据式(2)所示的电机电磁转矩表达式生成。
、和转子时间常数Lr一起产生转差频率信号,和ωr相加生成转子磁场频率给定信号,对积分则得到转子磁场空间角度给定信号。
和经坐标旋转和2/3相变换产生定子三相电流给定信号、和,和定子三相电流实测信号、和相比较,由滞环控制器产生逆变器所需的三相PWM信号。
1.2 异步电机转差型矢量控制系统建模
在MATLAB/SIMULINK环境下利用电气系统模块库中的元件搭建交流异步电机转差型矢量控制系统[2],电流控制变频模型如图2所示。
图2 电流控制变频模型图
整个仿真图由电气系统模块库中的元件搭建组成,元件的直观连接和实际的主电路相像似,其中主要包括:速度给定环节,PI速度调节器、坐标变换模块、
磁场定向模块、滞环电流调节器、IGBT逆变器元件、异步电动机元件以及测量和显示模块。
这些元件都有设置对话框,用户可以方便的选择元件类型和设置参数。
在整个控制系统的仿真模型中,交流异步电机的模型是最重要的元件,在Powerlib中给出了各种电机模型,这大大减少了交流调速系统的建模难度。
控制系统采用转速电流双闭环控制,其中的磁场定向模块提供矢量控制坐标变换需要的磁链位置角,电机模型如图3所示。
图3 矢量控制电机模型仿真框图
1.3异步电机转差型矢量控制系统仿真
由于系统中包含非线性Powerlib模块(电机、逆变器),因此仿真采用变步长算法,这样异步电机非线性部分和逆变器的过零点才能精确的计算出来,但是这样会增加仿真步数减少仿真速度。
由于在仿真初始化过程中,Power2sys函数将逐个检查模型中的各个模块是否为Powerlib模块,这样对一个复杂系统在一定程度上会降低仿真速度。
为此我们可以人为迫使Power2sys不去检查那些常规模块,方法是在常规模块以及包含常规模块的子系统的模块名字前加一个“$”符号,这样可以提高仿真速度。
仿真过程中由于初始值选择不当或者系统中存在分式,会出现奇异点使仿真过程停止,可以在分母中加上一个很小地值或选择适当的初值避免奇异点的出现。
图2中的电压测量单元和电机输出测量单元是Simulink模块和Powerlib 模块间的接口模块,分别把电机定子电压信号和电机输出信号反馈回Simulink 模块。
电压控制信号作为Simulink模块的信号送入到Powerlib模块—异步电机
时,是通过可控电流源(IGBT逆变器)作为中间环节。
仿真时要注意二者之间的联系,防止仿真出错停止,转子磁链观测模型如图4.
图4 转子磁链观测模型
4.4 仿真结果
在MATLAB/SIMULINK6.5环境下对所建立的交流异步电机转差型矢量控制系统采用变步长方法进行仿真,其中交流异步电机参数如下:RS=1.898Ω,
LS=0.196H,Rr=1.45Ω,Lr=0.196H,Lm=0.187H,PN=3kW,UN=380V,J=0.0067kg·m2,f=50Hz,pn=2。
为了验证所设计的交流异步电机矢量控制系统模型的静、动态性能,系统空载启动,待进入稳态后,在t=0.2s时转速突加为180r/min,t=0.4s时又突减为120r/min。
待系统稳定后,t=0.6s时突加负载5Nm,t=0.8s时突减负载,重新回到空载状态。
在经过一系列转速突变和负载扰动仿真后,得到电机各个量响应输出波形如图7~12。
图4 电磁转矩波形图5 电机转速波形图6 定子三相电流波形
图7 dq坐标系下转子两相电流波形图8 dq坐标系下转子磁链波形
图9 dq坐标系下定子磁链波形
由仿真波形可以看出,在的参考转速下,系统空载启动,转速很快达到给定值,电流和转矩波形较为理想。
t=0.2s时转速突加到180r/min,电流和电磁转矩相应增加,随即又到达稳定状态。
t=0.4s时转速突然下降,电流和转矩也立即跟随变化。
t=0.6s时突加负载扰动,转矩马上突变,电流也相应增加,而转速几乎没有变化。
t=0.8s时突减负载,转矩和电流同时变化,转速仍然稳定在给定的120r/min上。
定转子磁链响应也随着变化过程增大和减小。
可见,整个过程中转速给定和负载扰动频繁突变,而转速能很好的跟随给定值,且响应时间短,过渡过程快,有很好的跟随和抑制扰动的性能。
整个变化过程中电磁转矩也能够瞬间响应,并很快达到稳定。
在稳态时的转矩有很小的脉动,这主要是由于电流换向和滞环控制器频繁切换造成的,脉动大小跟滞环宽度有关。
参考文献:
[1] 李家荣,邓智全. 三相异步电动机矢量控制调速系统的建模和仿真[J].淮南工
学院学报.2001(6)
[2] 陈伯时,陈敏逊. 交流调速系统[M].北京:机械工业出版社,1998.。