克莱森酯缩合机理与反应机制
Claisen(克莱森)缩合反应资料

CH2
COOC2H5
①C2H5ONa
COCOOC2H5
+ (COOC2H5)2
CH2
COOC2H5
②H2O
CH
COOC2H5
CH2
COOC2H5
COCOOH
NaOH
H+
CH
Δ
COOH
CH2
COOH
CH2COCOOH CH2COOH
2.3 甲酸酯与其它酯的反应
与甲酸酯发生酯缩合反应后,即在α碳原子上引入一 个甲酰基。
O O
C2H5ONa
O O
CH3C CHCOC2H5
H
H+
CH3C CCHOC2H5 Na
关键因素:
酯的缩合物与碱生成盐是缩合反应完成的关键 一步。
为使反应顺利进行,两个羰基之间的碳上必须 有活泼氢。因此原料酯上的α碳上至少需要两个 氢。一个用于被碱夺取,另一个用于生成盐。
假如原料酯的α碳上只有一个活泼氢,则缩合反 应必须在更强碱的作用下才能完成。如:异丁 酸乙酯在乙醇钠作用下,不能发生酯缩合反应, 但在三苯甲基钠的作用下就可进行缩合。
CH3CHCOOC2H5 COCOOC2H5
注:
草酸酯的缩合产物有一个α-羰基酸酯的集团,加热即失
去一分子一氧化碳,变成取代的丙二酸酯。苯基取代的
丙二酸酯,不能用溴苯进行芳基化取代,但可用此法制
得:
C6H5CH2COOC2H5
+ (COOC2H5)2
①C2H5ONa ②H+
C6H5CHCOOC2H5
Claisen(克莱森)缩合
定义:两分子酯在碱的作用下失去
一分子醇生成β- 羰基酯的反应称为酯
克莱森缩合 草酸二甲酯

克莱森缩合草酸二甲酯
克莱森缩合是一种有机合成反应,常用于合成酮和醛化合物。
草酸二甲酯是该反应中常用的底物之一。
克莱森缩合反应是一种通过酮或醛与碱反应生成烯醇盐的反应。
草酸二甲酯,化学式为(CH3OOC)2O,是一种无色液体,可作为该反应的醇性底物之一。
它在碱的作用下,通过消除甲醇分子,生成烯醇盐中间体。
这种反应的机理比较复杂,但总的来说,草酸二甲酯首先与碱形成酯盐,然后发生脱羰基反应,生成烯醇盐。
烯醇盐可以发生负离子迁移,生成烯醇化合物。
最后,烯醇化合物可以通过水解反应生成醛或酮。
克莱森缩合反应是有机合成中重要的反应之一,它可以用于合成多种有机化合物,尤其是含有活性羰基的化合物。
草酸二甲酯作为该反应的底物之一,具有较高的反应活性和广泛的适用性。
在实际应用中,草酸二甲酯可以通过多种途径合成,如甲醇和草酸的酯化反应。
此外,草酸二甲酯还可以作为某些催化剂的配体,用于催化其他有机反应。
克莱森缩合是一种重要的有机合成反应,草酸二甲酯作为该反应的底物之一,在有机合成中具有广泛的应用前景。
通过这种反应,可以合成多种有机化合物,为有机化学领域的研究和应用提供了重要
的手段。
克莱森缩合反应及其应用

克莱森缩合反应
是指两分子酯或者一分子酯与一分子羰基化合物,在强碱催化下缩合,失去一分 子醇生成一分子β-酮酸酯或者β-二酮的反应。 参与反应的两个酯分子不必相同,但其中一个必须在酰基的α-碳上连有至少一个 氢原子。简单的说,该反应是一个酯分子的酰基对另一酯分子的酰基α-碳原子进 行的酰化反应。
Definition
定义
实际上这个反应不限于酯类与酯类的缩合,酯与含活泼亚甲基的化合物 都可以发生这样的缩合反应。通式表示为:
一般酮和腈的酸性要比酯强,它们在碱作用下α-碳优先变成碳负离子
Mechanism
核心步骤:亲核取代反应。
反应机理
1. 一分子羧酸酯或酮在强碱的进攻下失去酰基的一个α-氢原子,这是一个E2消 除反应,并得到碳负离子
Mechanism
酸性强弱的判断
反应机理
大多数有机酸是指质子酸碱定义中的酸,酸性的强弱主要是给出H 能力的大小, 给出H+能力的大小判断可由其共轭碱的稳定性来判断。 共轭碱的稳定性愈大,据“稳定性原理”,则愈容易给出H+,酸性就大。由于 共轭碱的结构为负离子,因此,只需判断负离子的稳定性,就可判断酸的强 弱。负离子的稳定性可用电子效应来判断。
Direct Carbon-Carbon Bond Formation via Chemoselective Soft Enolization of Thioesters: A Remarkably Simple and Versatile Crossed-Claisen Reaction Applied to the Synthesis of LY294002 G. Zhou, D. Lim, D. M. Coltart, Org. Lett., 2008, 10, 3809-3812.
克莱森缩合 甲醇甲醇钠

克莱森缩合甲醇甲醇钠克莱森缩合克莱森缩合是一种有机化学反应,常用于合成芳香醛和芳香酮。
该反应以一种芳香化合物和一种碱性化合物(如胺)为原料,在碱性催化下进行缩合反应。
反应机理克莱森缩合的反应机理比较复杂,涉及多个步骤。
以下是一个简单的机理图示:1. 碱性条件下,硫酸钠使甲醛失去一个质子生成甲氧根离子。
2. 芳香环上的羰基吸引甲氧根离子,发生亲核加成。
3. 加成产物失去一个质子生成α-羟基芳香醛中间体。
4. 中间体经过去质子化形成最终产物。
反应条件克莱森缩合通常需要在碱性条件下进行。
常用的碱包括氢氧化钠、碳酸钠、三乙胺等。
此外,还需要使用适当的溶剂来促进反应。
常用的溶剂包括乙二醇、二甘醇、丁二醇等。
应用范围克莱森缩合广泛应用于有机合成领域。
它可以用于合成各种芳香醛和芳香酮,如苯甲醛、苯乙酮、对羟基苯甲醛等。
此外,克莱森缩合还可用于制备一些天然产物和药物分子。
甲醇甲醇是一种无色、有毒的液体,具有轻微的甜味和刺激性气味。
它是一种重要的化学品,在工业生产中广泛应用。
制备方法1. 从天然气中提取:通过天然气水蒸气重整反应得到合成气,再经过低温催化反应得到甲醇。
2. 从木材中提取:通过炭化木材得到木炭,再经过加热分解得到木质液体,最后通过蒸馏得到甲醇。
3. 合成法:将碳一氧化物和氢在高压下催化反应生成甲醇。
应用领域1. 化工行业:作为溶剂、原料、反应介质等。
2. 能源行业:作为汽油替代品、航空燃料等。
3. 医药行业:作为药物成分、消毒剂等。
4. 食品行业:作为食品添加剂、香精等。
甲醇钠甲醇钠是一种无色晶体,易溶于水和乙醇,具有碱性。
它可以用于有机合成领域中的一些反应,如克莱森缩合反应。
制备方法1. 直接反应法:将甲醇和金属钠在惰性气体保护下反应得到甲醇钠。
2. 溶液法:将金属钠加入甲醇溶液中反应得到甲醇钠。
应用领域1. 有机合成领域:作为碱催化剂参与克莱森缩合反应等。
2. 化学分析领域:作为分析试剂进行滴定等实验。
克莱森酯缩合法制备乙酰乙酸乙酯

乙酰乙酸乙酯的制备一、 实验目的1、了解 Claisen 酯缩合反应的机理和应用;2、 熟悉在酯缩合反应中金属钠的应用和操作;3、 复习液体干燥和减压蒸馏操作。
二、 实验原理含α - 活泼氢的酯在强碱性试剂(如 Na , NaNH 2 , NaH ,三苯甲基钠或格氏试剂)存在下,能与另一分子酯发生 Claisen 酯缩合反应,生成β - 羰基酸酯。
乙酰乙酸乙酯就是通过这一反应制备的。
虽然反应中使用金属钠作缩合试剂,但真正的催化剂是钠与乙酸乙酯中残留的少量乙醇作用产生的乙醇钠。
2CH 3CO 2EtCH 32COOEt O+ C 2H 5OH乙酰乙酸乙酯与其烯醇式是互变异构(或动态异构)现象的一个典型例子,它们是酮式和烯醇式平衡的混合物,在室温时含 92% 的酮式和 8% 的烯醇式。
单个异构体具有不同的性质并能分离为纯态,但在微量酸碱催化下,迅速转化为二者的平衡混合物。
三、 主要试剂及产品的物理常数:(文献值)四、 实验装置和主要流程五、 实验步骤1、熔钠:在干燥的50mL 圆底烧瓶中加入0.9g 金属钠和5mL 二甲苯,装上冷凝管,加热使钠熔融。
拆去冷凝管,用磨口玻塞塞紧圆底烧瓶,用力振摇得细粒状钠珠。
回收二甲苯。
2、加酯回流:迅速放入10ml 乙酸乙酯,反应开始。
若慢可温热。
回流约2h 至钠直至所有金属钠全部作用完为止,得橘红色溶液,有时析出黄白色沉淀(均为烯醇盐)。
3、酸 化 :加50%醋酸,至反应液呈弱酸性(固体溶完)。
4、分 液:反应液转入分液漏斗,加等体积饱和氯化钠溶液,振摇,静置。
5、干 燥 :分出乙酰乙酸乙酯层,用无水硫酸钠干燥。
(2)6、蒸馏和减压蒸馏。
先在沸水浴上蒸去未作用的乙酸乙酯,然后将剩余液移入25mL圆底烧瓶中,用减压蒸馏装置进行减压蒸馏。
减压蒸馏时须缓慢加热,待残留的低沸点物质蒸出后,再升高温度,收集乙酰乙酸乙酯。
产量约1.5g。
乙酰乙酸乙酯沸点与压力的关系如下表:压力760 80 60 40 30 20 18 14 12 10 5 1.0 0.1 /mmHg*沸点181 100 97 92 88 82 78 74 71 67.3 54 28.5 5 /℃* 1mmHg= 1 Torr = 133.322Pa乙酰乙酸乙酯的沸点为180.4℃,折光率 =1.4199。
克莱森酯缩合反应机理

克莱森酯缩合反应机理克莱森酯缩合反应是一种重要的有机合成反应,被广泛应用于生物化学、有机合成和药物合成等领域。
这种反应的基本原理是以β-酰基联合物(如乙酰乙酸和苯酚)为底物,经过酸催化下的水解和缩合反应,生成新的酰化产物。
本文将从反应机理以及主要反应步骤两个方面详细介绍克莱森酯缩合反应。
一、反应机理克莱森酯缩合反应的机理较复杂,主要可分为三个步骤:酸催化水解、质子转移和羰基加成。
(1)酸催化水解首先,β-酰基联合物在酸的作用下发生水解反应,生成相应的酸和醇。
例如:乙酰乙酸与苯酚可以在硫酸的作用下水解成苯基丙酮和水。
(2)质子转移随着底物的水解,产生的苯基丙酮分子中的一个羰基带有正电荷,另一个羰基则带有负电荷。
为达到中性,α碳上的氢离子会向带负电荷的羰基迁移,形成稳定的偶电子共轭结构。
质子转移反应是本反应中最重要的步骤。
(3)羰基加成最后,由于酮与酯基序列相连,可能发生Ⅰ型加成,形成的β-酰羰基联合物是反应产物的主要组成部分。
二、主要反应步骤1、准备反应底物首先需要准备出乙酰乙酸和苯酚这两种反应底物。
其中,乙酰乙酸是一种有机酸,常为无色无臭的液体,可以通过将醋酸称为之后脱水得到。
苯酚则是一种无色透明的液体,可通过苯的氢氧化反应制得。
2、加入催化剂将乙酰乙酸和苯酚按照一定的比例混合,加入适量的硫酸作为催化剂,用磁力搅拌器搅拌至混合均匀。
3、反应将混合物放置在用于加热的反应器中,加热至适宜的温度继续搅拌,持续反应1-2小时。
反应结束后,用硫酸中和反应产物酸,然后用冰水洗涤,干燥后得到产物。
综上所述,克莱森酯缩合反应具有较高的化学反应性和广泛的应用前景,是有机合成和化学生物学领域不可或缺的重要反应之一。
克莱森-施密特反应的应用

克莱森-施密特反应的应用一、引言克莱森-施密特反应,作为有机化学中的一种重要反应,自发现以来一直在合成化学领域发挥着重要作用。
该反应以其独特的反应机制和广泛的应用范围,成为许多化学领域研究者和工业界关注的焦点。
本文将深入探讨克莱森-施密特反应的原理及其在各个领域中的应用,以期为相关研究和工业生产提供有价值的参考。
二、克莱森-施密特反应的原理简介克莱森-施密特反应,又称为克莱森酯缩合反应,是指在酸催化剂的作用下,两个酯类化合物进行缩合反应,生成一个β-酮酸酯类化合物和一个醇类化合物的反应。
该反应的关键步骤是形成一个新的碳碳键,同时伴随着酯基的迁移。
这一过程涉及电子和质子的转移,为有机化学合成提供了丰富的手段。
三、克莱森-施密特反应的应用领域1.药物合成:许多药物分子中包含β-酮酸酯结构,克莱森-施密特反应在药物合成中发挥了重要作用。
通过该反应,可以高效地合成具有特定结构的药物中间体,为药物研发提供了便利。
2.天然产物合成:自然界中存在许多具有生物活性的化合物,其结构中包含β-酮酸酯片段。
利用克莱森-施密特反应,可以模拟自然界中的合成过程,高效地合成这些具有生物活性的化合物。
3.材料科学:在材料科学领域,克莱森-施密特反应被用于合成功能性材料,如聚合物、涂料和纤维等。
这些材料在电子、光学和生物医学等领域具有广泛的应用前景。
4.组合化学:组合化学中,克莱森-施密特反应可用于构建和筛选化合物库。
通过在反应过程中引入不同的取代基团,可以快速生成大量具有不同结构的化合物,为新药发现和材料探索提供有力支持。
5.有机合成方法学:克莱森-施密特反应作为一种经典的有机合成方法,不断被优化和改进。
通过研究该反应与其他反应的串联过程,可以发展出新的有机合成方法,简化复杂化合物的合成路线。
四、未来展望随着科学技术的发展,克莱森-施密特反应在未来的研究和应用中仍有广阔的发展空间。
以下是对其未来发展的展望:1.绿色合成路径:目前,许多克莱森-施密特反应仍使用传统的酸催化剂,这可能带来环境污染问题。
carr price反应名词解释

carr price反应名词解释Carr Price反应是一种化学反应,也称为马来酸二乙酯或马来酸酯的Carr Price反应。
它是一种典型的克莱森酯缩合反应,其通过马来酸和醇或酰醇的反应产生酯。
Carr Price反应的机理比较简单,它通常是在酸性催化剂作用下进行,通过水解酯化反应将醇(或酰醇)中的羟基与马来酸分子中的双键结合在一起,生成羰基化合物。
具体来说,Carr Price反应的机理包括以下步骤:1. 马来酸分子中的双键在酸性催化剂的作用下被电离,生成马来酸阴离子。
2. 在酸性催化剂的存在下,醇中的羟基被质子化,形成质子化醇。
3. 马来酸阴离子和质子化醇发生缩合反应,产生酯类化合物。
Carr Price反应的应用广泛。
其中最重要的应用是制备低分子量脂肪酸酯和天然产品,特别是用于生物燃料、化妆品和人造材料等方面。
通过改变马来酸和醇的组成,可以控制所形成的酯的化学性质和物理特性,因此也可以根据所需的应用目的来优化反应条件。
此外,该反应还可以用于合成高分子聚合物。
在这种情况下,马来酸-醇缩合物进行缩聚反应,生成聚酯物。
这种聚合物具有独特的物理和化学性质,特别是在材料较硬、硬度有特殊要求等,有重要的应用。
需要注意的是,Carr Price反应在实践中也存在一些问题和限制。
例如,缩合反应的催化剂通常会被酯中的羟基和羰基进一步酯化,导致反应不能持续进行。
此外,一些反应条件需要加以控制,如催化剂类型、反应温度、反应时间等。
总的来说,Carr Price反应是一种重要的化学反应,通过它可以合成各种有机酯类化合物和高分子材料。
尽管存在一些问题和限制,但它的广泛应用和重要地位使得这种反应一直备受关注并得到不断改进。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Claisen 酯缩合反应
含有α-氢的酯在醇钠等碱性缩合剂作用下发生缩合作用,失去一分子醇得到β-酮酸酯。
如
2分子乙酸乙酯在金属钠和少量乙醇作用下发生缩合得到乙酰乙酸乙酯。
二元羧酸酯的分子内酯缩合见Dieckmann缩合反应。
反应机理
乙酸乙酯的α-氢酸性很弱(pK a-24.5),而乙醇钠又是一个相对较弱的碱(乙醇的pK a~15.9),因此,乙酸乙酯与乙醇钠作用所形成的负离子在平衡体系是很少的。
但由于最后产物乙酰乙酸乙酯
是一个比较强的酸,能与乙醇钠作用形成稳定的负离子,从而使平衡朝产物方向移动。
所以,尽管
反应体系中的乙酸乙酯负离子浓度很低,但一形成后,就不断地反应,结果反应还是可以顺利完成。
常用的碱性缩合剂除乙醇钠外,还有叔丁醇钾、叔丁醇钠、氢化钾、氢化钠、三苯甲基钠、二
异丙氨基锂(LDA)和Grignard试剂等。
反应实例
如果酯的α-碳上只有一个氢原子,由于酸性太弱,用乙醇钠难于形成负离子,需要用较强的碱才能把酯变为负离子。
如异丁酸乙酯在三苯甲基钠作用下,可以进行缩合,而在乙醇钠作用下则不能发生反应:
两种不同的酯也能发生酯缩合,理论上可得到四种不同的产物,称为混合酯缩合,在制备上没有太大意义。
如果其中一个酯分子中既无α-氢原子,而且烷氧羰基又比较活泼时,则仅生成一种缩合产物。
如苯甲酸酯、甲酸酯、草酸酯、碳酸酯等。
与其它含α-氢原子的酯反应时,都只生成一种缩合产物。
实际上这个反应不限于酯类自身的缩合,酯与含活泼亚甲基的化合物都可以发生这样的缩合反应,这个反应可以用下列通式表示:。