中考第一轮复习29全等三角形

合集下载

中考数学一轮复习全等三角形角平分线辅助(讲义及答案)及解析

中考数学一轮复习全等三角形角平分线辅助(讲义及答案)及解析

中考数学一轮复习全等三角形角平分线辅助(讲义及答案)及解析一、全等三角形角平分线辅助1.已知点C 是∠MAN 平分线上一点,∠BCD 的两边CB 、CD 分别与射线AM 、AN 相交于B ,D 两点,且∠ABC +∠ADC =180°.过点C 作CE ⊥AB ,垂足为E .(1)如图1,当点E 在线段AB 上时,求证:BC =DC ;(2)如图2,当点E 在线段AB 的延长线上时,探究线段AB 、AD 与BE 之间的等量关系; (3)如图3,在(2)的条件下,若∠MAN =60°,连接BD ,作∠ABD 的平分线BF 交AD 于点F ,交AC 于点O ,连接DO 并延长交AB 于点G .若BG =1,DF =2,求线段DB 的长.2.在ABC 中,60A ∠=︒,BD ,CE 是ABC 的两条角平分线,且BD ,CE 交于点F .(1)如图1,用等式表示BE ,BC ,CD 这三条线段之间的数量关系,并证明你的结论;小东通过观察、实验,提出猜想:BE CD BC +=.他发现先在BC 上截取BM ,使BM BE =,连接FM ,再利用三角形全等的判定和性质证明CM CD =即可. ①下面是小东证明该猜想的部分思路,请补充完整:ⅰ)在BC 上截取BM ,使BM BE =,连接FM ,则可以证明BEF 与 全等,判定它们全等的依据是 ;ⅱ)由60A ∠=︒,BD ,CE 是ABC 的两条角平分线,可以得出EFB ∠= °; ②请直接利用ⅰ),ⅱ)已得到的结论,完成证明猜想BE CD BC +=的过程. (2)如图2,若40ABC ∠=︒ ,求证:BF CA =.3.阅读资料,解决问题.人教版《数学九年级(下册)》的30页有这样一个思考问题:问题:如图,在ABC △中,DE BC ∥交AB ,AC 于点D ,E ,如果通过“相似的定义”证明ADE ABC △△∽?分析:根据“两直线平行,同位角相等”容易得出三对对应角分别相等,再根据“平行线分线段成比例”的基本事实,容易得出AD AE AB AC =,所以这个问题的核心时如何证明“DE AE BC AC =”. 证明思路:过点E 作EF AB ∥交BC 于点F ,构造平行四边形BDEF ,得到DE BF =,从而将比例式中的DE ,BC 转化为共线的两条线段BF ,BC ,同时也构造了基本图形“”,得到BF AE BC AC=,从而得证.解决问题:(1)①类比资料中的证明思路,请你证明“三角形内角平分线定理”.三角形内角平分线定理:三角形的内角平分线分对边所得的两条线段和这个角的两边对应成比例.已知:如图1,ABC △中,AD 是角平分线.求证:AB BD AC DC=.②运用“三角形内角平分线定理”填空:已知:如图2,ABC △中,AD 是角平分线,7AB =,4AC =,6BC =,则BD =__________.(2)我们知道,如果两个三角形有相同的高或者相等的高,那么它们面积的比就等于底的比.请你通过研究ABD △和ACD 面积的比来证明三角形内角平分线定理.已知:如图3,ABC △中,AD 是角平分线. 求证:AB BD AC DC=.4.直线MN 与直线PQ 垂直相交于点O ,点A 在直线PQ 上运动,点B 在直线MN 上运动.(1)如图1,已知AE BE 、分别是BAO ∠和ABO ∠角的平分线,点A B 、在运动的过程中,AEB ∠的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出AEB ∠的大小.(2)如图2,已知AB 不平行CD AD BC ,、分别是BAP ∠和ABM ∠的角平分线,又DE CE 、分别是ADC ∠和BCD ∠的角平分线,点A B 、在运动的过程中,CED ∠的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出CED ∠的度数. (3)如图3,延长BA 至G ,已知BAO OAG ∠∠、的角平分线与BOQ ∠的角平分线及反向延长线相交于E F 、,在AEF 中,如果有一个角是另一个角的3倍,则ABO ∠的度数为____(直接写答案)5.如图,已知 B (-1, 0) , C (1, 0) , A 为 y 轴正半轴上一点, AB = AC ,点 D 为第二象限一动点,E 在 BD 的延长线上, CD 交 AB 于 F ,且∠BDC = ∠BAC .(1)求证: ∠ABD = ∠ACD ;(2)求证: AD 平分∠CDE ;(3)若在 D 点运动的过程中,始终有 DC = DA + DB ,在此过程中,∠BAC 的度数是否变化?如果变化,请说明理由;如果不变,请求出∠BAC 的度数?6.如图,已知BC 是⊙O 的弦,A 是⊙O 外一点,△ABC 为正三角形,D 为BC 的中点,M 为⊙O 上一点.(1)若AB 是⊙O 的切线,求∠BMC ;(2)在(1)的条件下,若E ,F 分别是AB ,AC 上的两个动点,且∠EDF =120︒,⊙O 的半径为2,试问BE +CF 的值是否为定值?若是,求出这个定值;若不是,请说明理由. 7.如图所示,在ABC ∆中,=60ACB ∠,,AE BD 是ABC ∆的角平分线,,AE BD 交于点G ,求证:GD GE =.8.如图,在Rt △ABC 中,∠BAC=90°,AB=3,M 为边BC 上的点,连结AM.如果将△ABM 沿直线AM 翻折后,点B 恰好落在边AC 的中点处,求点M 到AC 的距离.9.如图,在ABC ∆中,60B ∠=︒,AD 、CE 分别是BAC ∠、ACB ∠的平分线,AD 、CE 相交于点F ,试判断FE 和FD 之间的数量关系.10.如图,已知:在△ABC 中,AD 平分∠BAC ,AB=AD ,CE ⊥AD ,交AD 的延长线于E.求证:AB+AC=2AE.【参考答案】***试卷处理标记,请不要删除一、全等三角形角平分线辅助1.(1)见解析;(2)AD ﹣AB =2BE ,理由见解析;(3)3.【分析】(1)过点C 作CF ⊥AD ,根据角平分线的性质得到CE =CF ,证明△BCE ≌△DCF ,根据全等三角形的性质证明结论;(2)过点C 作CF ⊥AD ,根据角平分线的性质得到CE =CF ,AE =AF ,证明△BCE ≌△DCF ,得到DF =BE ,结合图形解答即可;(3)在BD 上截取BH =BG ,连接OH ,证明△OBH ≌△OBG ,根据全等三角形的性质得到∠OHB =∠OGB ,根据角平分线的判定定理得到∠ODH =∠ODF ,证明△ODH ≌△ODF ,得到DH =DF ,计算即可.【详解】(1)证明:如图1,过点C 作CF ⊥AD ,垂足为F ,∵AC 平分∠MAN ,CE ⊥AB ,CF ⊥AD ,∴CE =CF ,∵∠CBE +∠ADC =180°,∠CDF +∠ADC =180°,∴∠CBE =∠CDF ,在△BCE 和△DCF 中,90CBE CDF CEB CFD CE CF ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩,∴△BCE ≌△DCF (AAS )∴BC =DC ;(2)解:AD ﹣AB =2BE ,理由如下:如图2,过点C 作CF ⊥AD ,垂足为F ,∵AC 平分∠MAN ,CE ⊥AB ,CF ⊥AD ,∴CE =CF ,AE =AF ,∵∠ABC +∠ADC =180°,∠ABC +∠CBE =180°,∴∠CDF =∠CBE ,在△BCE 和△DCF 中,90CBE CDF CEB CFD CE CF ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩,∴△BCE ≌△DCF (AAS ),∴DF =BE ,∴AD =AF +DF =AE +DF =AB +BE +DF =AB +2BE ,∴AD ﹣AB =2BE ;(3)解:如图3,在BD 上截取BH =BG ,连接OH ,∵BH =BG ,∠OBH =∠OBG ,OB =OB在△OBH 和△OBG 中,BH BG OBH OBG OB OB =⎧⎪∠=∠⎨⎪=⎩,∴△OBH ≌△OBG (SAS )∴∠OHB =∠OGB ,∵AO 是∠MAN 的平分线,BO 是∠ABD 的平分线,∴点O 到AD ,AB ,BD 的距离相等,∴∠ODH =∠ODF ,∵∠OHB =∠ODH +∠DOH ,∠OGB =∠ODF +∠DAB ,∴∠DOH =∠DAB =60°,∴∠GOH =120°,∴∠BOG =∠BOH =60°,∴∠DOF =∠BOG =60°,∴∠DOH =∠DOF ,在△ODH 和△ODF 中,DOH DOF OD OD ODH ODF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ODH ≌△ODF (ASA ),∴DH =DF ,∴DB =DH +BH =DF +BG =2+1=3.【点睛】本题考查了角平分线的性质,三角形全等的判定和性质,关键是依照基础示例引出正确辅助线.2.(1)①ⅰ)△BMF ,边角边;ⅱ)60;②详见解析;(2)详见解析【分析】(1)先得出结论;①利用三角形内角和求出∠ABC+∠ACB=120°,进而得出∠FBC+∠FCB=60°,得出∠BFC=120°,即可得出结论;②利用角平分线得出∠EBF=∠MBF ,进而得出△BEF ≌△BMF ,求出∠BFM ,即可判断出∠CFM=∠CFD ,即可判断出△FCM ≌△FCD ,即可得出结论;(2)先求出相关角的度数,进而判断出BG=CE ,进而判断出△BGF ≌△CEA ,即可得出结论.【详解】(1)BC CD BE =+①如图1,在BC 上取一点M ,使BM BE =,ⅰ)BD 是ABC ∠的平分线,EBF MBF ∴∠=∠, 在BEF ∆和BMF ∆中,BE BM EBF MBF BF BF =⎧⎪∠=∠⎨⎪=⎩,()BEF BMF SAS ∴∆≅∆;ⅱ)BD ,CE 是ABC ∆的两条角平分线,12FBC ABC ∴∠=∠,12BCF ACB ∠=∠, 在ABC ∆中,180A ABC ACB ∠+∠+∠=︒,60A ∠=︒,180120ABC ACB A ∴∠+∠=︒-∠=︒,1180()180()1202BFC CBF BCF ABC ACB ∴∠=︒-∠+∠=︒-∠+∠=︒, 18012060EFB ∴∠=︒-︒=︒;故答案为:ⅰ)ΔBMF ,SAS ;ⅱ)60;②由①知,60BFE ∠=︒,BEF BMF ∆≅∆,60CFD BFE ∴∠=∠=︒,∵BEF BMF ∆≅∆,60BFE BFM ∴∠=∠=︒,60CFM BFC BFM ∴∠=∠-∠=︒,60CFM CFD ∴∠=∠=︒,CE 是ACB ∠的平分线,FCM FCD ∴∠=∠,在FCM ∆和FCD ∆中,CFM CFD CF CF FCM FCD ∠=∠⎧⎪=⎨⎪∠=∠⎩()FCM FCD ASA ∴∆≅∆, CM CD ∴=,BC CM BM CD BE ∴=+=+;(2)如图2,在ABC ∆中,60A ∠=︒,40ABC ∠=︒,80ACB ∴∠=︒,BD ,CE 是ABC ∆的两条角平分线,1202ABD CBD ABC ∴∠=∠=∠=︒,1402BCE ACE ACB ∠=∠=∠=︒, 80AEC ABC BCE ∴∠=∠+∠=︒,ABC BCE ∠=∠,BE CE ∴=,在ABC ∆的边AB 左侧作20ABG ∠=︒,交CE 的延长线于G ,40FBG ABD ABG ACE ∴∠=∠+∠=︒=∠.80AEC ∠=︒,80BEG ∴∠=︒,18080G ABG BEG BEG AEC ∴∠=︒-∠-∠=︒=∠=∠,BG BE ∴=,BG CE ∴=,在BGF ∆和CEA ∆中,4080FBG ACE BG CE BGF AEC ∠=∠=︒⎧⎪=⎨⎪∠=∠=︒⎩,BGF CEA ∴∆≅∆,BF AC ∴=.【点睛】此题是三角形综合题,主要考查了角平分线的定义,三角形内角和定理,全等三角形的判定和性质,解本题的关键是(1)判断出CFM CFD ∠=∠,(2)作出辅助线,判断出BG CE =.3.(1)①证明见解析②4211(2)证明见解析 【解析】【分析】(1)①如图过点C 作AB 的平行线交AD 的延长线于点E ,然后说明ADB EDC △∽△,利用相似三角形的性质即可完成证明;②设BD x =,然后利用(1)的结论和已知条件即可完成解答; (2)过点D 作AB ,AC 的垂线,垂足为M 、N ,过点A 作BC 的垂线,垂足为H ;先利用角平分线定理说明DM DN =,然后再利用等面积法得到11:::22ABD ADC S S AB MD AC DN AB AC =⋅⨯=△△和11:::22ABD ADC S S BD AH OC AH BD DC =⋅⋅=△△,从而得到::AB AC BD DC =,即AB BD AC DC=. 【详解】(1)①证明:过点C 作AB 的平行线交AD 的延长线于点E ,∴1E ∠=∠,又∵AD 平分BAC ∠,∵12∠=∠,∴2E ∠=∠,∴AC CE =,又∵34∠=∠,∴ADB EDC △∽△, ∴AB BD CE DC =, ∴AB BD AC DC=. ②设BD x =,∴6DC x =-,又∵AB BD AC DC =, ∴746x x=-, ∴4427x x =-,∴1142x =,42x 11=.(2)过点D 作AB ,AC 的垂线,垂足为M 、N ,过点A 作BC 的垂线,垂足为H ,∵AD 为BAC ∠的角分线,∴DM DN =,11:::22ABD ADC S S AB MD AC DN AB AC =⋅⨯=△△, 又∵11:::22ABD ADC S S BD AH OC AH BD DC =⋅⋅=△△, ∴::AB AC BD DC =, ∴AB BD AC DC=. 【点睛】 本题主要考查了相似三角形的知识,其中运用等面积法、相似三角形的性质和证明、做辅助线均是解答本题的关键.4.(1)不发生变化,∠AEB =135°;(2)不发生变化,∠CED =67.5°;(3)60°或45°【分析】(1)根据直线MN 与直线PQ 垂直相交于O 可知∠AOB =90°,再由AE 、BE 分别是∠BAO 和∠ABO 的角平分线得出∠BAE =12∠OAB ,∠ABE =12∠ABO ,由三角形内角和定理即可得出结论;(2)延长A D 、BC 交于点F ,根据直线MN 与直线PQ 垂直相交于O 可得出∠AOB =90°,进而得出∠OAB +∠OBA =90°,故∠PAB +∠MBA =270°,再由A D 、BC 分别是∠BAP 和∠ABM 的角平分线,可知∠BAD =12∠BAP ,∠ABC =12∠ABM ,由三角形内角和定理可知∠F =45°,再根据DE 、CE 分别是∠ADC 和∠BCD 的角平分线可知∠CDE +∠DCE =112.5°,进而得出结论;(3)由∠BAO 与∠BOQ 的角平分线相交于E 可知∠EAO =12∠BAO ,∠EOQ =12∠BOQ ,进而得出∠E 的度数,由AE 、AF 分别是∠BAO 和∠OAG 的角平分线可知∠EAF =90°,在△AEF 中,由一个角是另一个角的3倍分四种情况进行分类讨论.【详解】解:(1)∠AEB 的大小不变,∵直线MN 与直线PQ 垂直相交于O ,∴∠AOB =90°,∴∠OAB +∠OBA =90°,∵AE 、BE 分别是∠BAO 和∠ABO 角的平分线,∴∠BAE =12∠OAB ,∠ABE =12∠ABO , ∴∠BAE +∠ABE =12(∠OAB +∠ABO )=45°, ∴∠AEB =135°;(2)∠CED 的大小不变.延长A D 、BC 交于点F .∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠PAB+∠MBA=270°,∵A D、BC分别是∠BAP和∠ABM的角平分线,∴∠BAD=12∠BAP,∠ABC=12∠ABM,∴∠BAD+∠ABC=12(∠PAB+∠ABM)=135°,∴∠F=45°,∴∠FDC+∠FCD=135°,∴∠CDA+∠DCB=225°,∵DE、CE分别是∠ADC和∠BCD的角平分线,∴∠CDE+∠DCE=112.5°,∴∠CED =67.5°;(3)∵∠BAO与∠BOQ的角平分线相交于E,∴∠EAO=12∠BAO,∠EOQ=12∠BOQ,∴∠E=∠EOQ-∠EAO=12(∠BOQ-∠BAO)=12∠ABO,∵AE、AF分别是∠BAO和∠OAG的角平分线,∴∠EAF=90°.在△AEF中,∵有一个角是另一个角的3倍,故有:①∠EAF=3∠E,∠E=30°,∠ABO=60°;②∠EAF=3∠F,∠E=60°,∠ABO=120°(舍弃);③∠F=3∠E,∠E=22.5°,∠ABO=45°;④∠E=3∠F,∠E=67.5°,∠ABO=135°(舍弃).∴∠ABO为60°或45°.故答案为:60°或45°.【点睛】本题考查的是平行线的判定和性质,三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.5.(1)见解析;(2)见解析;(3)∠BAC的度数不变化.∠BAC=60°.【解析】【分析】(1)根据三角形内角和定理等量代换可得结论;(2)作AM⊥CD于点M,作AN⊥BE于点N,证明△ACM≌△ABN即可;(3)用截长补短法在CD上截取CP=BD,连接AP,证明△ABD≌△ACP,由全等性质可知△ADP是等边三角形,易知 BAC 的度数.【详解】(1)∵∠BDC=∠BAC,∠DFB=∠AFC,又∵∠ABD+∠BDC+∠DFB=∠BAC+∠ACD+∠AFC=180°,∴∠ABD=∠ACD;(2)过点A作AM⊥CD于点M,作AN⊥BE于点N.则∠AMC=∠ANB=90°.∵OB=OC,OA⊥BC,∴AB=AC,∵∠ABD=∠ACD,∴△ACM≌△ABN (AAS)∴AM=AN.∴AD平分∠CDE.(到角的两边距离相等的点在角的平分线上);(3)∠BAC的度数不变化.在CD上截取CP=BD,连接AP.∵CD=AD+BD,AD=PD.∵AB=AC,∠ABD=∠ACD,BD=CP,∴△ABD≌△ACP.∴AD=AP;∠BAD=∠CAP.∴AD=AP=PD,即△ADP是等边三角形,∴∠DAP=60°.∴∠BAC=∠BAP+∠CAP=∠BAP+∠BAD=60°.【点睛】本题考查了三角形的综合,主要考查了三角形内角和定理、全等三角形的证明和性质,等腰等边三角形的性质和判定,采用合适的方法添加辅助线构造全等三角形是解题的关键. 6.(1)60°;(2)BE+CF的值是定值,BE+CF=3.【分析】(1)连接BO,由AB是切线可以得到∠ABO的度数,由△ABC为等边三角形,得到∠OBC 的度数,然后得到∠BOC,根据圆心角与圆周角的关系得到∠BMC的度数.(2)作DH⊥AB于H,DN⊥AC于N,连结AD ,OD,如图2,根据等边三角形三角形的性质得AD平分∠BAC,∠BAC=60°,则利用角平分线性质得DH=DN,根据四边形内角和得∠HDN=120°,由于∠EDF=120°,所以∠HDE=∠NDF,接着证明△DHE≌△DNF得到HE=NF,于是BE+CF=BH+CN,再计算出BH=12BD,CN=12DC,则BE+CF=12BC,于是可判断BE+CF的值是定值,为等边△ABC边长的一半,再计算BC的长即可.【详解】(1)解:如图,连接BO,∵AB是圆的切线,∴∠ABO=90°,∵△ABC是等边三角形,∴∠ABC=60°,∴∠CBO=90°-60°=30°,∵BO=CO,∴∠BCO=∠CBO=30°,∴∠BOC=120°,∴∠BMC=1BOC602∠=︒(2)解:BE+CF的值是为定值.理由:作DH⊥AB于H,DN⊥AC于N,连结AD,OD,如图2,∵△ABC为正三角形,D为BC的中点,∴AD平分∠BAC,∠BAC=60°,∴DH=DN,∠HDN=120°,∵∠EDF=120°,∴∠HDE=∠NDF,在△DHE和△DNF中,∴DHE DNFDH DNHDE NDF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△DHE≌△DNF,∴HE=NF,∴BE+CF=BH-EH+CN+NF=BH+CN,在Rt△DHB中,∵∠DBH=60°,∴BH=12BD,同理可得CN=12 OC,∴BE+CF=12DB+12DC=12BC,∵3∴BC=23∴3∴BE+CF3【点睛】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了等边三角形的性质.7.详见解析【解析】【分析】在AB 上截AF AD =,连接FG ,根据角平分线的性质、结合三角形内角和定理可得AGD=120AGB ∠︒∠=︒60,,证明ADG AFG ∆∆≌,得GD=GF ,AGD AGF ∠=∠=60°,可证得BGF BGE ∆∆≌,即可得GF=GE=GD.【详解】证明:在AB 上截AF AD =,连接FG ,∵AE 平分∠BAC ,∴∠EAC=∠EAB ,又∵AG=AG ,∴ADG AFG ∆∆≌,GD GF ∴=,AGD AGF ∠=∠ ,∵60ACB ∠=︒,AE,BD 是ΔABC 的角平分线,∴()111802211802120AGB CAB CBA CAB CBA ∠=︒-∠-∠=︒-∠+∠=︒, ∴60AGD AGF BGF BGE ∠=∠=∠=∠=︒,∵BGF BGE BG BG GBF GBE ∠=∠⎧⎪=⎨⎪∠=∠⎩()BGF BGE ASA ∴∆∆≌,∴GF GE = ,∴GD=GE.【点睛】本题考查角平分线的性质、全等三角形的判定和性质,作辅助线是解题的关键. 8.点M 到AC 的距离为2【解析】【分析】利用图形翻折前后图形不发生变化,从而得出AB=AB′=3,DM=MN ,再利用三角形面积分割前后不发生变化,求出点M 到AC 的距离即可.【详解】∵△ABM 沿直线AM 翻折后,点B 恰好落在边AC 的中点处,假设这个点是B′,作MN ⊥AC ,MD ⊥AB ,垂足分别为N ,D ,又∵Rt △ABC 中,∠BAC=90°,AB=3,∴AB=AB′=3,DM=MN ,AB′=B′C=3,S △BAC =S △BAM +S △MAC , 即12×3×6=12×MD×3+12×6×MN , ∴MD=2,所以点M 到AC 的距离是2.【点睛】本题考查了翻折变换(折叠问题),发现DM=MN ,以及AB=AB′=B′C=3,结合面积不变得出等式是解决问题的关键.9.详见解析【解析】【分析】如图,过点F 作FH BC ⊥,FG AB ⊥,垂足分别为H 、G ,根据角平分线,可得点F 是ABC ∆的内心,则有FG FH =,继而根据三角形内心的性质可得FDH FEG ∠=∠,从而可得FDH FEG ∆∆≌,继而可得FE=FD.【详解】FE=FD ,理由如下:如图,过点F 作FH BC ⊥,FG AB ⊥,垂足分别为H 、G.F 是BAC ∠,ACB ∠的平分线AD 、CE 的交点,F ∴为ABC ∆的内心,FG FH ∴=.60B ∠=︒,()1602FAC FCA BAC BCA ∴∠+∠=∠+∠=︒, 又60FDH B BAD BAD ∠=∠+∠=︒+∠;60FEG BAD FAC FCA BAD ∠=∠+∠+∠=︒+∠,FDH FEG ∴∠=∠,又GH FH =,FDH FEG ∴∆∆≌,FD FE ∴=.【点睛】本题考查了三角形的内心的性质,全等三角形的判定与性质解题的关键是注意数形结合思想的应用,注意辅助线的作法.10.详见解析【分析】延长AE到M,使ME=AE,连接CM,求出AC=CM,求出DM=MC,即可得出答案.【详解】延长AE到M,使ME=AE,连接CM,则AM=2AE,∵CE⊥AE,∴AC=CM,∴∠M=∠CAD=∠DAB,∴AB∥MC,∴∠B=∠MCD,∵AB=AD,∴∠B=∠ADB,∵∠ADB=∠MDC,∴∠MCD=∠MDC,∴MC=MD,∴AM=2AE=AD+MD=AB+AC,即AB+AC=2AE.【点睛】本题考查了平行线的性质和判定,线段垂直平分线性质,等腰三角形的性质和判定的应用,解此题的关键是推出DE=EC,有一定的难度.。

中考数学第一轮总复习教案(26-32课时)

中考数学第一轮总复习教案(26-32课时)

第六章 三角形课时26.几何初步及平行线、相交线【课前热身】1. 如图,延长线段AB 到C ,使4BC =, 若8AB =,则线段AC 是BC的 倍.2.如图,已知直线a b ∥,135=∠,则2∠的度数是 .3.如图,在不等边ABC △中,DE BC ∥,60ADE =∠,图中等于60的角还有______________.4.经过任意三点中的两点共可以画出的直线条数是( )A .一条或三条B .三条C .两条D .一条 5.如图,直线a b ∥,则A ∠的度数是( )A .28B .31C .39D .42【考点链接】1. 两点确定一条直线,两点之间线段最短._______________叫两点间距离.2. 1周角=__________平角=_____________直角=____________.3. 如果两个角的和等于90度,就说这两个角互余,同角或等角的余角相等;如果_____________________互为补角,__________________的补角相等.4. ___________________________________叫对顶角,对顶角___________.5. 过直线外一点心___________条直线与这条直线平行.6. 平行线的性质:两直线平行,_________相等,________相等,________互补.7. 平行线的判定:________相等,或______相等,或______互补,两直线平行.8. 平面内,过一点有且只有_____条直线与已知直线垂直.【典例精析】例1 如图:AB ∥CD ,直线EF 分别交AB 、CD 于E 、F ,EG 平分∠BEF ,若∠1=720,则∠2等于多少度?(第1题)E A B(第3题)1 2 (第2题)(第4题)图70°31°例2 如图,ABC △中,B C ∠∠,的平分线相交于点O ,过O 作DE BC ∥,若5BD EC +=,则DE 等于多少?【中考演练】1.(08永州) 如图,直线a 、b 被直线c 所截,若要a ∥ b ,需增加条件 _____________.(填一个即可) 2.(08义乌) 如图直线l 1//l 2,AB ⊥CD ,∠1=34°,那么∠2的度数是 . 3.(08河南) 如图, 已知直线25,115,//=∠=∠A C CD AB , 则=∠E ( ) A.70 B. 80 C. 90 D. 100( 第1题) ( 第2题) (第3题) 4.(08益阳) 如图,在△ABC 中,AB =BC =12cm ,∠ABC =80°,BD 是∠ABC 的平分线,DE ∥BC .(1) 求∠EDB 的度数;(2) 求DE 的长.21D CBAl 2l 1ABCD E5. (08宁夏)如图,AB ∥CD , AC ⊥BC ,∠BAC =65°,求∠BCD 度数.﹡6. (08东莞) 如图,在ΔABC 中,AB =AC =10,BC =8.用尺规作图作BC 边上的中线AD (保留作图痕迹,不要求写作法、证明),并求AD 的长.课时27.三角形的有关概念【课前热身】1. 如图,在△ABC 中,∠A =70°,∠B =60°,点D 在BC 的延长线上,则∠ACD = 度.2. ABC△中,D E ,分别是AB AC ,的 中点,当10cm BC =时,DE = cm . (第1题) 3. 如图在△ABC 中,AD 是高线,AE 是角平分线,AF 中线.(1) ∠ADC = =90°; (2) ∠CAE = =12 ;(3) CF = =12; (4) S △ABC = .C DB7060A A B CE DC BAF(第3题) (第4题)4. 如图,⊿ABC 中,∠A = 40°,∠B = 72°,CE 平分∠ACB ,CD ⊥AB 于D ,DF ⊥CE ,则∠CDF = 度. 5. 如果两条平行直线被第三条直线所截,一对同旁内角的度数之比为3:6,那么这两个角分别等于 °和 °.【考点链接】一、三角形的分类:1.三角形按角分为______________,______________,_____________. 2.三角形按边分为_______________,__________________. 二、三角形的性质:1.三角形中任意两边之和____第三边,两边之差_____第三边2.三角形的内角和为_______,外角与内角的关系:__________________. 三、三角形中的主要线段:1.___________________________________叫三角形的中位线.2.中位线的性质:____________________________________________. 3.三角形的中线、高线、角平分线都是____________.(线段、射线、直线)【典例精析】例1 如图,在△ABC 中,D 是BC 边上一点,∠1=∠2,∠3=∠4,∠BAC=63°. 求∠DAC 的度数.例2 如图,已知D 、E 分别是△ABC 的边BC 和边AC 的中点,连接DE 、AD ,若S ABC △=24cm 2,求△DEC 的面积.4321D CB A例3 如图,在等腰三角形ACB 中,5AC BC ==,8AB =,D 为底边AB 上一动点(不与点A B ,重合),DE AC ⊥,DF BC ⊥,垂足分别为E F ,,求DE DF +的长.【中考演练】1.在△ABC 中,若∠A =∠C=13∠B ,则∠A=,∠B = ,这个三角形是 .2. (07深圳)已知三角形的三边长分别为3、8、x ,若x 的值为偶数,则x 的值有( )A. 6个B. 5个C. 4 个D. 3个 3.(07济南)已知一个三角形三个内角度数的比是1:5:6,则其最大内角度数为( )A.60°B.75°C.90°D.120°4.如图,AB ∥CD ,AE 平分∠BAC ,CE 平分∠ACD ,求∠E 的度数.5. 如图,已知DE ∥BC ,CD 是∠ACB 的平分线,∠B =70°,∠ACB =50°, 求∠EDC 和∠BDC 的度数.﹡6. △ABC 中,AD 是高,AE 、BF 是角角平分线相交于点O ,∠BAC=50°,∠C=70°,EDCBAAB CD E求∠DAC,∠BOA的度数.课时28.等腰三角形与直角三角形【课前热身】1.等腰三角形的一个角为50°,那么它的一个底角为______.2. 在△ABC中,AB=AC,∠A=50°,BD为∠ABC的平分线,则∠BDC=_____°.3.在△ABC中,AB=AC,D为AC边上一点,且BD=BC=AD. 则∠A等于()A.30° B.36° C.45° D.72°(第2题)(第3题)(第4题)4.(07南充)一艘轮船由海平面上A地出发向南偏西40º的方向行驶40海里到达B地,再由B地向北偏西10º的方向行驶40海里到达C地,则A、C两地相距()A.30海里 B.40海里 C.50海里 D.60海里【考点链接】一.等腰三角形的性质与判定:1. 等腰三角形的两底角__________;2. 等腰三角形底边上的______,底边上的________,顶角的_______,三线合一;3. 有两个角相等的三角形是_________.二.等边三角形的性质与判定:1. 等边三角形每个角都等于_______,同样具有“三线合一”的性质;2. 三个角相等的三角形是________,三边相等的三角形是_______,一个角等于60°的_______三角形是等边三角形.三.直角三角形的性质与判定:1. 直角三角形两锐角________.2. 直角三角形中30°所对的直角边等于斜边的________.3. 直角三角形中,斜边的中线等于斜边的______.;4. 勾股定理:_________________________________________.5. 勾股定理的逆定理:_________________________________________________.【典例精析】例1 如图,等腰三角形ABC中,AB=AC,一腰上的中线BD 将这个等腰三角形周长分成15和6两部分,求这个三角形的腰长及底边长.例2 (06包头)《中华人民共和国道路交通管理条例》规定:“小汽车在城市街道上的行驶速度不得超过70千米/时”. 一辆小汽车在一条城市街道上由西向东行驶(如图所示),在距离路边25米处有“车速检测仪O”, 测得该车从北偏西60°的A点行驶到北偏西30°的B点,所用时间为1.5秒.(1)试求该车从A点到B的平均速度;(2)试说明该车是否超过限速.【中考演练】1.(08湖州)已知等腰三角形的一个底角为70,则它的顶角为____________.度.2.(08白银)已知等腰三角形的一条腰长是5,底边长是6,则它底边上的高为____. 3. (08武汉) 如图,小雅家(图中点O处)门前 有一条东西走向的公路,经测得有一水塔(图中点A处)在她家北偏东60度500m 处,那么水塔 所在的位置到公路的距离AB 是____________.(第3题)4.如图,已知在直角三角形中,∠C=90°,BD 平分∠ABC 且交AC 于D . ⑴ 若∠BAC=30°,求证:AD=BD ;⑵ 若AP 平分∠BAC 且交BD 于P ,求∠BPA 的度数.5.(08义乌) 如图,小明用一块有一个锐角为30的直角三角板测量树高,已知小明离 树的距离为4米,DE 为1.68米,那么这棵树大约有多高?(精确到0.1米)P D C B AA O B东北课时29.全等三角形【课前热身】1.如图1所示,若△OAD≌△OBC,且∠O=65°,∠C=20°,则∠OAD=____.ACFEDB(第1题)(第2题)(第3题)2.如图2,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B.带②去C.带③去D.带①和②去3.如图,已知AE∥BF, ∠E=∠F,要使△ADE≌△BCF,可添加的条件是________.4. 在⊿ABC和⊿A/B/C/中,AB=A/B/,∠A=∠A/,若证⊿ABC≌⊿A/B/C/还要从下列条件中补选一个,错误的选法是()A. ∠B=∠B/B. ∠C=∠C/C. BC=B/C/,D. AC=A/C/,【考点链接】1.全等三角形:____________、______________的三角形叫全等三角形.2. 三角形全等的判定方法有:_______、______、_______、______.直角三角形全等的判定除以上的方法还有________.3. 全等三角形的性质:全等三角形___________,____________.4. 全等三角形的面积_______、周长_____、对应高、______、_______相等.【典例精析】例1 已知:在梯形ABCD中,AB//CD,E是BC的中点,直线AE与DC的延长线交于点F. 求证:AB=CF.例2 (06重庆)如图所示,A、D、F、B在同一直线上,AD=BF,AE=BC,且AE BC.求证:(1) AEF BCD;(2)EF CD.【中考演练】1.(08遵义)如图,OA OB =,OC OD =,50O ∠=,35D ∠=,则AEC ∠等于( )A .60B .50C .45D .302. ( 08双柏) 如图,点P 在AOB ∠的平分线上,AOP BOP △≌△,则需添加的一个条件是 (只写一个即可,不添加辅助线):(第1题) (第2题) (第3题)3. ( 08郴州) 如图,D 是AB 边上的中点,将ABC ∆沿过D 的直线折叠,使点A 落在BC上F 处,若50B ∠=︒,则BDF ∠= __________度.4. (08荆州)如图,矩形ABCD 中,点E 是BC 上一点,AE =AD ,DF ⊥AE 于F ,连结DE ,求证:DF =DC .5. 如图,AB=AD ,BC=DC ,AC 与BD 交于点E ,由这些条件你能推出哪些结论?(不再添加辅助线,不再标注其它字母,不写推理过程,只要求写出四个你认为正确的结论即可)F E DC B AEDO E AB D CA B C D F﹡6. (08东莞) 如图,点O 是线段AD 的中点,分别以AO 和DO 为边在线段AD 的同侧作等边三角形OAB 和等边三角形OCD ,连结AC 和BD ,相交于点E ,连结BC .求∠AEB 的大小.课时30.相似三角形【课前热身】1.两个相似三角形对应边上中线的比等于3:2,则对应边上的高的比为______,周长之比为________,面积之比为_________.2.若两个相似三角形的周长的比为4:5,且周长之和为45,则这两个三角形的周长分别为__________.C B ODA E3.如图,在△ABC 中,已知∠ADE=∠B ,则下列等式成立的是( )A.AD AE AB AC = B .AE ADBC BD =C .DE AE BC AB =D .DE ADBC AC=4.在△ABC 与△A′B ′C ′中,有下列条件: (1)''''AB BC A B B C =;(2)''''BC ACB C A C =;(3)∠A=∠A′;(4)∠C=∠C′. 如果从中任取两个条件组成一组,那么能判断△ABC ∽△A′B ′C ′的共有多少组( ) A .1 B .2 C .3 D .4【考点链接】一、相似三角形的定义三边对应成_________,三个角对应________的两个三角形叫做相似三角形. 二、相似三角形的判定方法1. 若DE ∥BC (A 型和X 型)则______________.2. 射影定理:若CD 为Rt △ABC 斜边上的高(双直角图形)则Rt △ABC ∽Rt △ACD ∽Rt △CBD 且AC 2=________,CD 2=_______,BC 2=__ ____.3. 两个角对应相等的两个三角形__________.4. 两边对应成_________且夹角相等的两个三角形相似.5. 三边对应成比例的两个三角形___________. 三、相似三角形的性质1. 相似三角形的对应边_________,对应角________.2. 相似三角形的对应边的比叫做________,一般用k 表示.3. 相似三角形的对应角平分线,对应边的________线,对应边上的_______•线的比等于_______比,周长之比也等于________比,面积比等于_________.【典例精析】例1 在△ABC 和△DEF 中,已知∠A=∠D ,AB=4,AC=3,DE=1,当DF 等于多少时,这两个三角形相似.E A D CBEADCBA D CB例2 如图,△ABC 是一块锐角三角形余料,边BC=120mm ,高AD=80mm , 要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB 、AC 上, 这个正方形零件的边长是多少?例3 一般的室外放映的电影胶片上每一个图片的规格为:3.5cm ×3.5cm ,放映的荧屏的规格为2m ×2m ,若放映机的光源距胶片20cm 时,问荧屏应拉在离镜头多远的地方,放映的图象刚好布满整个荧屏?【中考演练】1.(08大连)如图,若△ABC ∽△DEF ,则∠D 的度数为______________.2. (08杭州) 在中, 为直角, 于点,,写出其中的一对相似三角形是 _ 和 _;并写出它的面积比_____.(第1题) (第2题) (第3题) 3.( 08常州) 如图,在△ABC 中,若DE ∥BC,=,DE =4cm,则BC 的长为 ( ) A.8cm B.12cm C.11cm D.10cmRt ABC ∆C ∠AB CD ⊥D 5,3==AB BC AD DB 12B(0,-4)A(3,0)xy4. (08无锡) 如图,已知是矩形的边上一点,于,试证明.课时31.锐角三角函数【课前热身】1.(06黑龙江)在△ABC 中,∠C =90°,BC =2,sinA =23,则AC 的长是( ) A .5 B .3 C .45D .13 2.Rt ∆ABC 中,∠C=︒90,∠A ∶∠B=1∶2,则sinA 的值( )A .21B .22C .23D .13.如图,在平面直角坐标系中,已知点A (3,0), 点B (0,-4),则cos OAB ∠ 等于_______.4.︒+︒30sin 130cos =____________.【考点链接】1.sin α,cos α,tan α定义sin α=____,cos α=_______,tan α=______ . 2.特殊角三角函数值E ABCD CD BF AE ⊥F ABF EAD △∽△α bc【典例精析】例1 在Rt △ABC 中,a =5,c =13,求sinA ,cosA ,tanA .例2 计算:4sin 302cos 453tan 60︒-︒+︒.例3 等腰△ABC 中,AB =AC =5,BC =8,求底角∠B 的四个三角函数值.【中考演练】1.(08威海) 在△ABC 中,∠C = 90°,tan A =13,则sin B =( ) A .10 B .23 C .34D .310 2.若3cos 4A =,则下列结论正确的为( ) 30° 45° 60° sin α cos α tan αA . 0°< ∠A < 30°B .30°< ∠A < 45°C . 45°< ∠A < 60°D .60°< ∠A < 90° 3. (08连云港) 在Rt ABC △中,90C ∠=,5AC =,4BC =,则tan A = .4.(07济宁) 计算45tan 30cos 60sin -的值是 . 5. 已知3tan 30 A -=∠A =则 .6.△ABC 中,若(sinA -12)2+|32-cosB|=0,求∠C 的大小.﹡7.(07长春)图中有两个正方形,A ,C 两点在大正方形的对角线上,△HAC 是等边三角形,若AB=2,求EF 的长.﹡8. 矩形ABCD 中AB =10,BC =8, E 为AD 边上一点,沿BE 将△BDE 对折,点D 正好落在AB 边上,求 tan ∠AFE ._ E_ A_ F_ D_ C _ B_ O _ H_ G FA BC DE课时32.解直角三角形及其应用【课前热身】1.如图,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,这时测得大树在地面上的影子约为10米,则大树的高约为________米.(结果保留根号)(第1题) 2. 某坡面的坡度为1:3,则坡角是_______度.3.(07山东)王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( )A .150mB .350mC .100 mD .3100m【考点链接】1.解直角三角形的概念:在直角三角形中已知一些_____________叫做解直角三角形. 2.解直角三角形的类型:已知____________;已知___________________. 3.如图(1)解直角三角形的公式:(1)三边关系:__________________.(2)角关系:∠A+∠B =_____,(3)边角关系:sinA=___,sinB=____,cosA=_______.cosB=____,tanA=_____ ,tanB=_____. 4.如图(2)仰角是____________,俯角是____________. 5.如图(3)方向角:OA :_____,OB :_______,OC :_______,OD :________. 6.如图(4)坡度:AB 的坡度i AB =_______,∠α叫_____,tanα=i =____.(图2) (图3) (图4)αA C B45︒南北西东60︒A D C B 70︒O O A B Cc ba A C B【典例精析】例1 Rt ABC ∆的斜边AB =5, 3cos 5A =,求ABC ∆中的其他量.例2 (08十堰) 海中有一个小岛P ,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A 测得小岛P 在北偏东60°方向上,航行12海里到达B 点,这时测得小岛P 在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.例3(07辽宁)为了农田灌溉的需要,某乡利用一土堤修筑一条渠道,在堤中间挖出深为1.2米,下底宽为2米,坡度为1:0.8的渠道(其横断面为等腰梯形),并把挖出来的土堆在两旁,使土堤高度比原来增加了0.6米.(如图所示) 求:(1)渠面宽EF ;(2)修200米长的渠道需挖的土方数.【中考演练】1.在Rt ABC ∆中,090C ∠=,AB =5,AC =4,则 sinA 的值是_________.2.(07乌兰察布)升国旗时,某同学站在离旗杆24m 处行注目礼,当国旗升至旗杆顶端时,该同学视线的仰角恰为30°,若两眼距离地面 1.2m,则旗杆高度约为_______.(取 ,结果精确到0.1m)3 1.733.(07云南)已知:如图,在△ABC中,∠B = 45°,∠C = 60°,AB = 6.求BC的长. (结果保留根号)﹡4.(06哈尔滨)如图,在测量塔高AB时,选择与塔底在同一水平面的同一直线上的C、D两点,用测角仪器测得塔顶A的仰角分别是30°和60°.已知测角仪器高CE=1.5米,CD=30米,求塔高AB.(保留根号)。

中考数学一轮复习全全等三角形截长补短知识点-+典型题及解析

中考数学一轮复习全全等三角形截长补短知识点-+典型题及解析

中考数学一轮复习全全等三角形截长补短知识点-+典型题及解析一、全等三角形截长补短1.如图1,在ABC 中,AB AC =,AC 平分BCD ∠,连接BD ,2ABD CBD ∠=∠,BDC ABD ACD ∠=∠+∠.(1)求A ∠的度数:(2)如图2,连接AD ,AE AD ⊥交BC 于E ,连接DE ,求证:DEC BAE ∠=∠; (3)如图3,在(2)的条件下,点G 为CE 的中点,连接AG 交BD 于点F ,若32ABC S =△,求线段AF 的长.2.阅读与理解:折纸,常常能为证明一个命题提供思路和方法.例如,在ABC 中,AB AC >(如图),怎样证明C B ∠>∠呢?分析:把AC 沿A ∠的角平分线AD 翻折,因为AB AC >,所以,点C 落在AB 上的点C '处,即AC AC '=,据以上操作,易证明ACD AC D '△△≌,所以AC D C '∠=∠,又因为AC D B '∠>∠,所以C B ∠>∠.感悟与应用:(1)如图(a ),在ABC 中,90ACB ∠=︒,30B ∠=︒,CD 平分ACB ∠,试判断AC 和AD 、BC 之间的数量关系,并说明理由;(2)如图(b ),在四边形ABCD 中,AC 平分BAD ∠,16AC =,8AD =,12DC BC ==,①求证:180B D ∠+∠=︒;②求AB 的长.3.如图,已知 B (-1, 0) , C (1, 0) , A 为 y 轴正半轴上一点, AB = AC ,点 D 为第二象限一动点,E 在BD 的延长线上,CD 交AB 于F ,且∠BDC =∠BAC .(1)求证:∠ABD =∠ACD ;(2)求证:AD 平分∠CDE ;(3)若在D 点运动的过程中,始终有DC =DA +DB ,在此过程中,∠BAC 的度数是否变化?如果变化,请说明理由;如果不变,请求出∠BAC 的度数?4.如图1,在四边形ABCD中,AC交BD于点E,△ADE为等边三角形.(1)若点E为BD的中点,AD=4,CD=5,求△BCE的面积;(2)如图2,若BC=CD,点F为CD的中点,求证:AB=2AF;(3)如图3,若AB∥CD,∠BAD=90°,点P为四边形ABCD内一点,且∠APD=90°,连接BP,取BP的中点Q,连接CQ.当AB=2,AD=2,tan∠ABC=2时,求CQ+10BQ的最小值.5.如图,△ABC为等边三角形,直线l经过点C,在l上位于C点右侧的点D满足∠BDC=60°.(1)如图1,在l上位于C点左侧取一点E,使∠AEC= 60°,求证:△AEC≌△CDB;(2)如图2,点F、G在直线l上,连AF,在l上方作∠AFH =120°,且AF=HF,∠HGF =120°,求证:HG+BD=CF;(3)在(2)的条件下,当A、B位于直线l两侧,其余条件不变时(如图3),线段HG、CF、BD的数量关系为.6.(1)问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC,CD上的点且∠EAF=60°,探究图中线段BE、EF、FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明ABE≌ADG,再证明AEF≌AGF,可得出结论,他的结论应是______________;(2)探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF12∠BAD,上述结论是否仍然成立,并说明理由;(3)实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A 处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以45海里/小时的速度前进,同时舰艇乙沿北偏东50°的方向以60海里/小时的速度前进,2小时后,指挥中心观测到甲、乙两地分别到达E 、F 处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.7.如图,△ABC 中,AB=AC ,∠EAF=12∠BAC ,BF ⊥AE 于E 交AF 于点F ,连结 CF .(1)如图 1 所示,当∠EAF 在∠BAC 内部时,求证:EF =BE +CF .(2)如图 2 所示,当∠EAF 的边 AE 、AF 分别在∠BAC 外部、内部时,求证:CF =BF +2BE .8.如图,在菱形ABCD 中,∠A =60°,E 为菱形ABCD 内对角线BD 左侧一点,连接BE 、CE 、DE .(1)若AB =6,求菱形ABCD 的面积;(2)若∠BED =2∠A ,求证:CE =BE+DE .9.已知,在ABCD 中,AB BD AB BD E ⊥=,,为射线BC 上一点,连接AE 交BD 于点F .(1)如图1,若E 点与点C 重合,且25AF =AD 的长;(2)如图2,当点E 在BC 边上时,过点D 作DG AE ⊥于G ,延长DG 交BC 于H ,连接FH .求证:AF DH FH =+.(3)如图3,当点E 在射线BC 上运动时,过点D 作DG AE ⊥于G M ,为AG 的中点,点N 在BC 边上且1BN =,已知42AB =,请直接写出MN 的最小值.10.阅读下面材料,完成(1)﹣(3)题数学课上,老师出示了这样一道题:如图,四边形ABCD ,AD ∥BC ,AB =AD ,E 为对角线AC 上一点,∠BEC =∠BAD =2∠DEC ,探究AB 与BC 的数量关系.某学习小组的同学经过思考,交流了自己的想法:小柏:“通过观察和度量,发现∠ACB =∠ABE ”;小源:“通过观察和度量,AE 和BE 存在一定的数量关系”;小亮:“通过构造三角形全等,再经过进一步推理,就可以得到线段AB 与BC 的数量关系”.……老师:“保留原题条件,如图2, AC 上存在点F ,使DF =CF =k AE ,连接DF 并延长交BC 于点G ,求AB FG的值”. (1)求证:∠ACB =∠ABE ;(2)探究线段AB 与BC 的数量关系,并证明;(3)若DF =CF =k AE ,求AB FG的值(用含k 的代数式表示).【参考答案】***试卷处理标记,请不要删除一、全等三角形截长补短1.(1)90A ∠=︒;(2)见解析;(3)4【分析】(1)设.DBC x ∠=推出2ABC x ∠=,3ABC ACB ACD x ∠=∠=∠=,5D x ∠=,利用三角形内角和定理构建方程求出x 即可;(2)先依据ASA 证明BEA CDA △≌△,再依据全等三角形的性质得到AE AD =,结合AE AD ⊥,依据三角形内角和求出45AED ∠=︒,再依据三角形外角的性质及等式的基本性质即可求证;(3)根据直角三角形的面积公式求出AB ,延长AG 至K ,使GK AG =,连接CK ,先依据SAS 证明AEG KCG △≌△,结合等量代换得到AE KC AD ==,ACK BAD ∠=∠,再依据SAS 证明AKC BDA △≌△,依据全等的性质求得CAG ABD ∠=∠215=⨯︒30=︒,从而得到60BAF ∠=︒,继而得到90AFB ∠=︒,最后依据直角三角形30度角的性质解决问题.【详解】()1解:如图1中,设DBC x ∠=.2ABD DBC ∠=∠,AB AC =,2ABD x ∴∠=,3ABD ACB x ∠=∠=, AC 平分BCD ∠,3ACD ACB x ∴∠=∠=,26DCB ACB x ∠=∠=,5D ABD ACD x ∠=+∠=,又∵在BCD ∆中,180D DBC DCB ∠+∠+∠=︒,56180x x x ∴++=︒,15x ∴=︒,45ABC ACB ∴∠=∠=︒,30ABD ∠=︒,180454590A ∴∠=︒-︒-︒=︒;(2)AE AD ⊥,90EAD ∴∠=︒,90BAC EAD ∠=∠=︒,BAC EAC EAD EAC ∴∠-∠=∠-∠,BAE CAD ∴∠=∠,=345ABE x ACD ∠=︒=∠,AB AC =()BEA CDA ASA ∴△≌△AE AD ∴=,又∵90EAD ∠=︒,∴45AED ADE ∠=∠=︒又AEC ABE BAE AED DEC ∠=∠+∠=∠+∠,DEC BAE ∴∠=∠;(3)延长AG 至K ,使GK AG =,连接CK点G 为CE 的中点,EG CG ∴=,AGE KGC ∠=∠,()AEG KCG SAS ∴△≌△,AE KC ∴=,AEG KCG ∠=∠,AE KC AD ∴==,45ACK ACB KCG AEC ∠=∠+∠=︒+∠4590ABE BAE BAE BAD =︒+∠+∠=︒+∠=∠AB AC =()AKC BDA SAS ∴△≌△21530CAG ABD ∠=∠=⨯︒=︒60BAF ∴∠=︒90AFB ∴∠=︒32ABC S =211=3222AB AC AB ∴⨯= 8AB ∴=142AF AB ∴==. 【点睛】本题属于三角形综合题,考查了三角形内角和定理,三角形外角的性质,三角形全等的判定和性质,含30度的直角三角形的性质,第(1)问的关键在于设未知数,列方程;第(2)问的关键得到了等腰直角三角形和利用三角形的外角性质建立起了两个待证量之间的等式;第(3)问的关键在于作辅助线证明了30CAG ∠=︒.2.(1)BC−AC =AD ;理由详见解析;(2)①详见解析;②AB=14【分析】(1)在CB 上截取CE =CA ,连接DE ,证△ACD ≌△ECD 得DE =DA ,∠A =∠CED =60°,据此∠CED =2∠CBA ,结合∠CED =∠CBA +∠BDE 得出∠CBA =∠BDE ,即可得DE =BE ,进而得出答案;(2)①在AB 上截取AM =AD ,连接CM ,先证△ADC ≌△AMC ,得到∠D =∠AMC ,CD =CM ,结合CD =BC 知CM =CB ,据此得∠B =∠CMB ,根据∠CMB +∠CMA =180°可得; ②设BN =a ,过点C 作CN ⊥AB 于点N ,由CB =CM 知BN =MN =a ,CN 2=BC 2−BN 2=AC 2−AN 2,可得关于a 的方程,解之可得答案.【详解】解:(1)BC−AC =AD .理由如下:如图(a ),在CB 上截取CE =CA ,连接DE ,∵CD 平分∠ACB ,∴∠ACD =∠ECD ,又CD =CD ,∴△ACD ≌△ECD (SAS ),∴DE =DA ,∠A =∠CED =60°,∴∠CED =2∠CBA ,∵∠CED =∠CBA +∠BDE ,∴∠CBA =∠BDE ,∴DE =BE ,∴AD =BE ,∵BE =BC−CE =BC−AC ,∴BC−AC =AD .(2)①如图(b ),在AB 上截取AM =AD ,连接CM ,∵AC 平分∠DAB ,∴∠DAC =∠MAC ,∵AC =AC ,∴△ADC ≌△AMC (SAS ),∴∠D =∠AMC ,CD =CM =12,∵CD =BC =12,∴CM =CB ,∴∠B =∠CMB ,∵∠CMB +∠CMA =180°,∴∠B +∠D =180°;②设BN =a ,过点C 作CN ⊥AB 于点N ,∵CB =CM =12,∴BN =MN =a ,在Rt △BCN 中,2222212CN BC BN a --==,在Rt △ACN 中,2222216(8)CN AC AN a --+==, 则22221216(8)a a --+=, 解得:a =3,即BN =MN =3,则AB =8+3+3=14,∴AB=14.【点睛】本题考查了四边形的综合题,以及全等三角形的判定与性质、勾股定理、等腰三角形的判定与性质;本题有一定难度,需要通过作辅助线证明三角形全等才能得出结果. 3.(1)见解析;(2)见解析;(3)∠BAC 的度数不变化.∠BAC=60°.【解析】【分析】(1)根据三角形内角和定理等量代换可得结论;(2)作AM ⊥CD 于点M ,作AN ⊥BE 于点N ,证明△ACM ≌△ABN 即可;(3)用截长补短法在CD 上截取CP=BD ,连接AP ,证明△ABD ≌△ACP ,由全等性质可知△ADP 是等边三角形,易知∠BAC 的度数.【详解】(1)∵∠BDC=∠BAC ,∠DFB=∠AFC ,又∵∠ABD+∠BDC+∠DFB=∠BAC+∠ACD+∠AFC=180°,∴∠ABD=∠ACD ;(2)过点A 作AM ⊥CD 于点M ,作AN ⊥BE 于点N .则∠AMC=∠ANB=90°.∵OB=OC ,OA ⊥BC ,∴AB=AC ,∵∠ABD=∠ACD ,∴△ACM ≌△ABN (AAS )∴AM=AN .∴AD 平分∠CDE .(到角的两边距离相等的点在角的平分线上);(3)∠BAC 的度数不变化.在CD 上截取CP=BD ,连接AP .∵CD=AD+BD ,AD=PD .∵AB=AC ,∠ABD=∠ACD ,BD=CP ,∴△ABD ≌△ACP .∴AD=AP ;∠BAD=∠CAP .∴AD=AP=PD ,即△ADP 是等边三角形,∴∠DAP=60°.∴∠BAC=∠BAP+∠CAP=∠BAP+∠BAD=60°.【点睛】本题考查了三角形的综合,主要考查了三角形内角和定理、全等三角形的证明和性质,等腰等边三角形的性质和判定,采用合适的方法添加辅助线构造全等三角形是解题的关键. 4.(1)3923S BCE =△证明见解析(3)CQ 10BQ 的最小值为5【分析】(1)根据点E 是BD 的中点,可得BCE CDE S S =△△ ,在作边CE 的高DF ,根据等边三角形三线合一DF 也是AED 的高,根据勾股定理计算出DF 的长度,在直角三角形DFC 中利用勾股定理计算出CF ,得出CE 的值,利用三角形的面积公式计算出面积.(2)延长AF ,是2AF =AG ,证明ADF CF ≅△△G ,得出CM=AD ,再根据ACD BDC ∠+∠= 60°,得出ACG ∠ =ABE ∠ ,从而证明ABE AMC ≅△△ ,得出AB=AG ,得出结论.(3)根据APD ∠ =90°,知道点P 的运动轨迹是以AD 为直径的圆,圆心记为N ,点Q 是BP 的中点,得到点Q 的运动轨迹是以BN 的中点为圆心,半径为2 的圆。

初三复习专题--全等三角形

初三复习专题--全等三角形


OA=OC,EA=EC,

请阐明∠ A=∠C。
AO C
DB
E
• 分析:欲证明∠A= ∠C,有三条思路,一 是证明△AOD与△COB全等,而由已知条件 不可直接得到,二是连结OE,阐明△AOE与 △COE全等,这条路显而易得, ∠A=∠C, 三是证明 △ABE与△CDE全等,这也是不能 直接证明到的,因此应采用第二条思路。
全等三角形
• 一:考纲规定与命题趋势
• 1. 理解并掌握五种识别三角形全等的办法, 会灵活的对的选择适宜的识别办法判断两 个三角形与否全等。
• 2. 对的运用全等三角形的性质计算三角形 中未知的边或角,逐步培养逻辑推理能力 和形象思维能力。
• 3. 全等三角形的应用是学习几何证明题的 基础,因此它自然是中考必考知识点,同 窗们务必学好它。
• 阐明:在解决几何问题的过程中,有时根 据条件不能较顺利的得到结论,这时添加 必要的辅助线是十分重要的捷径。
• 例3.P是线段AB上一点,△APC与△BPD都是
等边三角形,请你判断:AD与BC相等吗?
试阐明理由。
D
C
AP
B
• 分析:观察图形发现它们所在的三角形全
等,故考虑通过全等来阐明。
• 解:由△APC和△BPD都是等边三角形可知 AP=PC,BP=DP,∠APC=∠BPD=60°,
变化,结论往往仍然成立,解决大同小异,
要善于抓住规律。
A
A
B
l
3
E
12
D
C
E

D
1
l
2
B
C

• 例9.如图,等边△ABC的边长为a,在BC的 延长线上取点D,使CD=b,在BA的延长线 上取点E,使AE=a+b,证明EC=ED。

中考数学第一轮总复习全等三角形课件

中考数学第一轮总复习全等三角形课件

第3题图
第三节 全等三角形
返回目录
解法二:∵FC∥AB, ∴∠A=∠ECF,∠ADE=∠F,(1分) 在△ADE与△CFE中,
∠A=∠ECF
∠ADE=∠F ,(3分)
DE=FE ∴△ADE≌CFE(AAS),(5分) ∴AE=CE.(6分)
解法三:∵FC∥AB, ∴∠ADE=∠F,(1分) 在△ADE和△CFE中,
∠A=∠ECD,AB=CD.
求证:∠B=∠D.
证明:∵点C是AE的中点, ∴AC=CE.(2分) 在△ABC和△CDE中,
AC=CE
∠A=∠ECD
AB=CD ∴△ABC≌△CDE(SAS),(4分)
∴∠B=∠D.(6分)
第14题图
第三节 全等三角形
15. (2014昆明卷16题5分)已知:如图,点A、B、C、D在同一直线
返回目录
3. (2016昆明卷16题6分·源于人教八上P45第12题)如图,点D是AB上一点,DF交
AC于点E,DE=FE,FC∥AB.
求证:AE=CE.
证明:解法一:∵FC∥AB,
∴∠A=∠ACF,(1分)
在△ADE和△CFE中, ∠A=∠ACF
∠AED=∠CEF ,(3分)
DE=FE ∴△ADE≌△CFE(AAS),(5分) ∴AE=CE.(6分)
∴BC=DF.
第5题图
返回目录
第三节 全等三角形
返回目录
6. (2018曲靖卷17题7分)如图,在 ABCD的边AB,CD上截取线段AF,CE,使
AF=CE,连接EF,点M,N是线段EF上的两点,且EM=FN,连接AN,CM.
(1)求证:△AFN≌△CEM;
(1)证明:∵四边形ABCD是平行四边形, ∴AB∥CD, ∴∠AFN=∠CEM.(1分) 在△AFN和△CEM中,

中考数学第一轮复习 三角形

中考数学第一轮复习 三角形
正整数,则这样的三角形个数为( B ) A.2 B.3 C.5 D.13
类型之二 三角形的重要线段的应用 命题角度: 1.三角形的中线、角平分线、高 2.三角形的中位线
[2011·成都] 如图 19-1,在△ABC 中,D、E 分别是边 AC、 BC 的中点,若 DE=4,则 AB=___8_____.
1.三条边对应相等的两个三角形全等(简记为________)S.SS 2.两个角和它们的夹边对应相等的两个三角形全等(简记为________). ASA3.两个角和其中一个角的对边对应相等的两个三角形全等(简记为
________).
4.两条边和它们的夹角对应相等的两个三角形全等(简记为________).
命题角度: 1.等腰三角形的性质 2.等腰三角形“三线合一”的性质 3.等腰三角形两腰上的高(中线)、两底角的平分线的性质
[2011·株洲] 如图 21-1,△ABC 中,AB=AC,∠A=36°, AC 的垂直平分线交 AB 于 E,D 为垂足,连接 EC.
__5_0_°____.
图 19-2
全等三角形
考点1 全等图形及全等三角形
1.能够完全_____重__合_的两个图形称为全等形,全等图形的形状和 ______大__小都相同.
2.能够完全______重_合_的两个三角形叫全等三角形. [注意] 完全重合有两层含义:(1)图形的形状相同;(2)图形的大小相等
大于
[总结] 任意三角形中,最多有三个锐角,最少有两个锐角,最多有一个钝
角,最多有一个直角.
互余
类型之一 三角形三边的关系
命题角度: 1.利用三角形三边的关系判断三条线段能否组成三角形 2.利用三角形三边的关系求字母的取值范围 3.三角形的稳定性

初三中考第一轮复习全等三角形(一对一教案)

初三中考第一轮复习全等三角形(一对一教案)

初三中考第⼀轮复习全等三⾓形(⼀对⼀教案)学科教师辅导讲义学员编号:年级:课时数:学员姓名:辅导科⽬:学科教师:授课类型T全等三⾓形判定 C 全等三⾓形的判定特点T 中考题型分析授课⽇期及时段教学内容⼀、同步知识梳理1.判定和性质⼀般三⾓形直⾓三⾓形判定边⾓边(SAS)、⾓边⾓(ASA)⾓⾓边(AAS)、边边边(SSS)具备⼀般三⾓形的判定⽅法斜边和⼀条直⾓边对应相等(HL)性质对应边相等,对应⾓相等对应中线相等,对应⾼相等,对应⾓平分线相等注:①判定两个三⾓形全等必须有⼀组边对应相等;②全等三⾓形⾯积相等.2.证题的思路:)找任意⼀边()找两⾓的夹边(已知两⾓)找夹已知边的另⼀⾓()找已知边的对⾓(找已知⾓的另⼀边(边为⾓的邻边)任意⾓(若边为⾓的对边,则找已知⼀边⼀⾓)找第三边()找直⾓()找夹⾓(已知两边AASASAASAAASSASAASSSSHLSAS⼆、同步题型分析题型1:边边边(SSS)的证明(.★.)例..1.:.已知:如图1,AD=BC.AC=BD.试证明:∠CAD=∠DBC.图1提⽰:证明△ABD≌△BAC,得到∠BAD=∠ABC,∠DBA=∠CAB,通过∠BAD—∠CAB=∠ABC—∠DBA,证明∠CAD=∠DBC。

题型2:边⾓边(SAS)的证明(.★.)例..1.:.已知:如图2,AB=AC,BE=CD.求证:∠B=∠C.图2提⽰:由....AB=AC,BE=CD,得到AD=AE,证明△ABD≌△ACE,得到∠B=∠C(.★.)例..2.:.已知:如图3,AB=AD,AC=AE,∠1=∠2.求证:BC=DE.图3提⽰:由....∠1=∠2,得到∠BAC=∠DAE,证明△BAC≌△DAE,得到BC=DE(.★★..3.:.如图4,将两个⼀⼤、⼀⼩的等腰直⾓三⾓尺拼接(A、B、D三点共线,AB=CB,EB=DB,..)例∠ABC=∠EBD=90°),连接AE、CD,试确定AE与CD的位置与数量关系,并证明你的结论.图4提⽰:延长..AB=CB,EB=DB,∠ABE=∠CBD=90°,证明△ABE≌△CBD,得到..F.,由.....AE..交.CD..于点AE=CD,∠EAB=∠DCB,再由∠CDB+∠DCB=90o,得到∠CEF+∠ECF=90°,证明AE⊥CD 题型3:⾓边⾓(ASA)、⾓⾓边(AAS)的证明(.★.)例..1.:.已知:如图5,AB ⊥AE ,AD ⊥AC ,∠E =∠B ,DE =CB .求证:AD =AC .图5提⽰:由....AB ⊥AE ,AD ⊥AC ,得到∠CAB =∠DAE ,根据∠E =∠B ,DE =CB ,证明△C AB≌△DAE ,得到AD =AC(.★★..)例..2.:.已知:如图6,在△MPN 中,H 是⾼MQ 和NR 的交点,且MQ =NQ .求证:HN =PM .图6提⽰:由....MQ 和NR 是△MPN 的⾼,得到∠MQP =∠NRP =90°,继⽽得到∠PMQ =∠PNR ,结合MQ =NQ ,证明△PMQ ≌△HNQ ,得到HN =PM(.★★..)例..3.:.阅读下题及⼀位同学的解答过程:如图7,AB 和CD 相交于点O ,且OA =OB ,∠A =∠C .那么△AOD 与△COB 全等吗?若全等,试写出证明过程;若不全等,请说明理由.答:△AOD ≌△COB .证明:在△AOD 和△COB 中,∠=∠=∠=∠),(),(),(对顶⾓相等已知已知COB AOD OB OA C A∴△AOD ≌△COB (ASA ).图7问:这位同学的回答及证明过程正确吗?为什么?提⽰:⼀定要找准对应边和对应⾓题型4、斜边和⼀条直⾓边对应相等(HL )(.★★..).已知:如图7,AC =BD ,AD ⊥AC ,BC ⊥BD .求证:AD =BC ;图7提.⽰:连接....DC ..,即可证明.....△ADC ≌△BCD三、课堂达标检测(★)检测题1:如图(1),点P 是AB 上任意⼀点,ABC ABD ∠=∠,还应补充⼀个条件,才能推出APC APD △≌△.从下列条件中补充⼀个条件,不⼀定能....推出APC APD △≌△的是()A .BC BD =B .AC AD = C .ACB ADB ∠=∠D .CAB DAB ∠=∠答案:B(★)检测题2:如图2,已知AD AB =,DAC BAE ∠=∠,要使 ABC △≌ADE △,可补充的条件是(写出⼀个即可).答案:AE=AC(★★)检测题3:如图,在△ABE 中,AB =AE,AD =AC,∠BAD =∠EAC, BC 、DE 交于点O.求证:(1) △ABC ≌△AED ; (2) OB =OE .图(3)CADP B图(1)A CEBD(2)BDA⼀、专题精讲(★★)题型⼀:全等三⾓形证明等量例1:2010四川宜宾,13(3),5分)如图,分别过点C、B作△ABC的BC边上的中线AD及其延长线的垂线,垂⾜分别为E、F.求证:BF=CE.提⽰:证明△CED≌△BFD题型⼆:全等三⾓形证明位置关系(★★)例2:如图所⽰,已知,AD为△ABC的⾼,E为AC上⼀点,BE交AD于F ,且有BF=AC,FD=CD.求证:BE⊥AC提⽰:证明△BDF≌△ADC题型三、构造全等证明结论(★★)例3:如图,已知E是正⽅形ABCD的边CD 的中点,点F在BC上,且∠DAE=∠FAE.求证:AF=AD+CFABDCEF提⽰:证明△DBA ≌△ECA(★★★)检测题2:△DAC, △EBC 均是等边三⾓形,AE,BD 分别与CD,CE 交于点M,N,求证:(1)AE=BD (2)CM=CN (3) △CMN 为等边三⾓形(4)MN ∥BC提⽰:(1)证明△ACE ≌△DCB (2)△ACM ≌△DCN 或△EMC ≌△BNC(★★★)检测题3:如图甲,在△ABC 中,∠ACB 为锐⾓.点D 为射线BC 上⼀动点,连接AD ,以AD 为⼀边且在AD 的右侧作正⽅形ADEF .解答下列问题:(1)如果AB=AC ,∠BAC=90o.①当点D 在线段BC 上时(与点B 不重合),如图⼄,线段CF 、BD 之间的位置关系为,数量关系为.②当点D 在线段BC 的延长线上时,如图丙,①中的结论是否仍然成⽴,为什么?D AMEAFFEAFA(2)如果AB≠AC,∠BAC≠90o,点D在线段BC上运动.试探究:当△ABC满⾜⼀个什么条件时,CF⊥BC(点C、F重合除外)?画出相应图形,并说明理由.(画图不写作法)提⽰:证明△ABD≌△ACF即可三、学法提炼1、专题特点:主要是了解全等三⾓形的运⽤特点,全等三⾓形的构造⽅法2、解题⽅法:主要是从全等三⾓形的四⼤条件⼊⼿(公共边、公共⾓、重合边、重合⾓),运⽤已知条件,达到全等证明3、注意事项:在条件运⽤中,⼀定要清楚条件所适⽤的判定,不能张冠李戴。

【数学中考一轮复习】 全等三角形常考模型 (含答案)

【数学中考一轮复习】 全等三角形常考模型 (含答案)

专项训练全等三角形常考模型模型一平移型图示方法点拨有一组边共线,另两组边分别平行,常在移动方向上加(减)公共线段,构造线段相等,并利用平行线性质找到对应角相等。

1.如图所示,点A,D,C,F在同一条直线上,AD=CF, AB=DE, BC=EF.(1)求证:△ABC≌△DEF;(2)若∠A=60°,∠B=80°,求∠F的度数.2.已知:如图所示,点B,E,C,F四点在一条直线上,且AB∥DE,AB=DE,BE=CF. (1)试说明:△ABC≌△DEF;(2)判断线段AC与DF的关系,并说明理由.3.已知:如图所示,点A,B,C,D在一条直线上,EA∥FB,EA=FB,AB=CD.(1)求证:∠E=∠F;模型二对称型图示方法点拨所给图形可沿某一直线折叠,直线两旁的部分能完全重合,重合的顶点就是全等三角形的对应顶点,解题时要注意其隐含条件,即公共边或公共角相等.4.如图所示,已知AD=BC,BD=AC.求证:∠ADB=∠BCA.5.如图所示,AB=AD,∠BAC=∠DAC=25°,∠D=80°.求∠BCA的度数.6.已知:AB=AC,AF=AG,AE⊥BG交BG的延长线于E,AD⊥CF交CF的延长线于D.求证:AD=AE.模型三旋转型类型一不共顶点型旋转图示方法点拨所给图形是一个中心对称图形,一个三角形绕对称中心旋转180°,则可得到另一个三角形,两三角形有一组边共线,构造线段相等,并利用平行线性质找到对应角相等.7.如图所示,已知:在△AFD和△CEB,点A,E,F,C在同一直线上,在给出的下列条件中,①AE=CF,②∠D=∠B,③AD=CB,④DF∥BE,选出三个条件可以证明△AFD≌△CEB 的有_______组.()A.4B.3C.2D.18.如图所示,AB=CD,AF=CE,∠A=∠C,那么BE=DF吗?请说明理由.9.如图所示,已知AB∥CD,AB=CD,BE= CF. 求证:(1)△ABF≌△DCE;(2)AF∥DE.类型二共顶点型旋转(含手拉手型)图示1(无重叠)图示2(有重叠)方法点拨此模型可看成是由三角形绕着公共顶点旋转一定角度所构成的,在旋转过程中,两个三角形无重叠或有重叠,找等角或运用角的和差得到等角.注:遇到共顶点、等线段,考虑用旋转.10.如图所示,在△ABC中,点D是边BC的中点,连接AD并延长到点E,使DE=AD,连接CE.(1)求证:△ABD≌△ECD;(2)若△ABD的面积为5,求△ACE的面积.11.如图所示,∠ACB=∠1+∠B,AC=BC,∠E+∠ADE=180°.(1)求证:△ACD≌∠CBE;(2)若BE=5,DE=6,求AD的长.模型四一线三垂直模型图示方法点拨有三个直角,常利用同角(等角)的余角相等证明角相等12.如图所示,已知△ABC中,∠ACB=90°,AC=BC,点D在BC边上,过点C作AD的垂线与过B点垂直BC的直线交于点E.求证:CD=BE.13.如图所示,在△ABC中,∠ACB=90°,AC=BC,点E是∠ACB内部一点,连接CE,作AD⊥CE,BE⊥CE,垂足分别为点D,E.(1)求证:△BCE≌△CAD;(2)若BE=5,AD=12,则ED的长是____________.14.如图所示,在四边形BCED中,∠D=∠E=90°,A是DE上一点,且AB⊥AC,AB=AC,若BD=4cm,C=3cm.(1)说明DE,BD、EC三者之间存在怎样的数量关系?(2)求△ABC的面积.模型五半角模型等边三角形含半角(∠BDC=120°)等腰直角三角形含半角正方形含半角方法点拨当一个角包含着这个角的半角,常将半角两边的三角形通过旋转到一边合并形成新的三角形,从而进行等量代换,然后证明与半角形成的三角形全等15.如图所示,已知正方形ABCD,从顶点A引两条射线分别交BC,CD于点E,F,且∠EAF =45°,求证:BE+DF=EF.16.在正方形ABCD中,∠MAN=45°,该角可以绕点A转动,∠MAN的两边分别交射线CB,DC于点M,N.(1)当点M,N分别在正方形的边CB和DC上时(如图1所示),线段BM,DN,MN之间有怎样的数量关系?你的猜想是:___________________________________,并加以证明. (2)当点M,N分别在正方形的边CB和DC的延长线上时(如图2所示),线段BM,DN,MN之间的数量关系会发生变化吗?证明你的结论.17.思维探索:在正方形ABCD中,AB=4,∠EAF的两边分别交射线CB,DC于点E,F,∠EAF=45°. (1)如图1所示,当点E,F分别在线段BC,CD上时△CEF的周长是;(2)如图2所示,当点E,F分别在CB,DC的延长线上,CF=2时,求△CEF的周长;拓展提升:如图3所示,在Rt△ABC中,∠ACB=90°,CA=CB,过点B作BD⊥BC,连接AD,在BC 的延长线上取一点E,使∠EDA=30°,连接AE,当BD=2,∠EAD=45°时,请直接写出线段CE的长度.参考答案1.解:(1)证明:∵AC =AD +DC ,DF =DC +CF ,且AD =CF ,∴AC =DF.在△ABC 和△DEF 中,⎪⎩⎪⎨⎧,DF =AC ,EF =BC ,DE =AB ∴△ABC ≌△DEF (SSS ).(2)由(1)可知,∠F =∠ACB ,∵∠A =60°,∠B =80°,∴∠ACB =180°(∠A +∠B )=180°(60+80°)=40°, ∴∠F =∠ACB =40°.2.解:(1)∵AB ∥DE ,∴∠B =∠DEF. ∵BE =CF ,∴BC =EF.在△ABC 和△DEF 中,⎪⎩⎪⎨⎧,EF =BC ,DEF =∠B ∠,DE =AB ∴△ABC ≌△DEF (SAS ).(2)AC =DF ,AC//DF. 理由如下: ∵△ABC ≌△DEF ,∴AC =DF ,∠ACB =∠DFE.∴AC// DF. 3.解: (1)证明:∵EA// FB ,∴∠A =∠FBD. ∵AB =CD ,∴AB +BC =CD +BC.即AC =BD.在△EAC 与△FBD 中,⎪⎩⎪⎨⎧,BD =AC ,FBD =∠A ∠,FB =EA ∴△EAC ≌△FBD (SAS ).∴∠E =∠F ;(2)∵△EAC ≌△FBD ,∴∠ECA =∠D =80°. ∵∠A =40°,∴∠E =180°-40°-80°=60°.4,证明;在△ADB 和△BCA 中,⎪⎩⎪⎨⎧,BA =AB ,AC =BD ,BC =AD ∴△ADB ≌△BCA (SSS ).∴∠ADB =∠BCA.5.解:在△ABC 与△ADC 中,⎪⎩⎪⎨⎧,AC =AC ,DAC =∠BAC ∠,AD =AB ∴△ABC ≌△ADC (SAS ),∴∠D =∠B =80°.∴∠BCA =180°-25°-80°=75°.6.证明:在△AFC 与△AGB 中⎪⎩⎪⎨⎧,AC =AB ,GAB =∠FAC ∠,AG =AF ∴△AFC ≌△AGB (SAS ),∴∠AFC =∠AGB.∴∠AFD =∠AGE ,∵AE ⊥BG 交BG 的延长线于E ,AD ⊥CF 交CF 的延长线于D.∴∠ADF =∠AEG =90°.在△ADF 与△AEG 中⎪⎩⎪⎨⎧,AG =AF ,AGE =∠AFD ∠,AEG =∠ADF ∠∴△ADF ≌△AEG (AAS ).∴AD =AE.7.C8.解:BE =DF.理由如下:在△ABF 和△CDE 中,⎪⎩⎪⎨⎧,CE =AF ,C =∠A ∠,CD =AB ∴△ABF ≌△CDE (SAS ),∴BF =DE ,∴BF-EF =DE-EF.∴BE =DF.9.证明:(1)∵AB ∥CD ,∴∠B =∠C. ∵BE =CF ,∴BE-EF =CF-EF.即BF =CE ,在△ABF 和△DCE 中,⎪⎩⎪⎨⎧,CE =BF ,C =∠B ∠,CD =AB ∴△ABF ≌△DCE (SAS );(2)∵△ABF ≌△DCE ,∴∠AFB =∠DEC. ∴∠AFE =∠DEF ∴AF ∥DE.10.解:(1)证明:∵点D 是边BC 的中点,∴BD =CD.在△ABD 与△CED 中⎪⎪⎨⎧,DE =AD ,CDE =∠ADB ∠,CD =BD ∴△ABD ≌△ECD (SAS );(2)在△ABC 中,点D 是边BC 的中点,∴S △ABD =S △ADC , ∵△ABD ≌△ECD ,∴S △ABD =S △ECD .∵S △ABD =5,∴S △ACE =S △ACD +S △BCD =5+5=10. 答:△ACE 的面积为10.11.解:(1)证明:∵∠ACB =∠1+∠B =∠1+∠ACD ,∴∠B =∠ACD , ∵∠E +∠ADE =180°,∠ADE +∠ADC =180°,∴∠E =∠ADC.在△ACD 和△CBE 中,⎪⎩⎪⎨⎧,BC =AC ,ACD =∠B ∠,E =∠ADC ∠∴△ACD ≌△CBE (AAS );(2)∵△ACD ≌△CBE ,∴DE =CD =5,AD =CE , ∵DE =6,∴CE =CD +DE =11,∴AD =CE =11.12.证明:∵BC ⊥BE ,∴∠CBE =90°.∴∠ECB +∠E =90°. ∵∠ECB +∠ADC =90°,∴∠ADC =∠E.∵AC =BC ,∠ACB =∠CBE ,∴△ACD ≌△CBE (AAS ). ∴CD =BE.13.解:(1)证明:∵BE ⊥CE ,AD ⊥CE ,∴∠E =∠ADC =90°. ∴∠EBC +∠BCE =90°.∵∠BCE +∠ACD =90°,∴∠EBC =∠DCA.在△BCE 和△CAD 中,⎪⎩⎪⎨⎧,AC =BC ,ACD =∠EBC ∠,ADC =∠E ∠∴△BCE ≌△CAD (AAS );(2)∵△BCE ≌△CAD ,∴BE =CD =5,AD =CE =12. ∴DE =CE-CD =12-5=7. 故答案为:7.14.解:(1)结论:DE =BD +CE.理由:∵在Rt △ABC 中,∠BAC =90°,∠ADB =∠AEC =90°. ∴∠BAD +∠EAC =90°,∠BAD +∠ABD =90°. ∴∠EAC =∠ABD ∵AB =AC ,∴△ABD ≌△CAE (AAS ). ∴AD =CE ,BD =AE.∴DE =AD +AE =CE +BD ; (2)∵△ABD ≌△ACE ,∴AE =BD =4cm.∵∠E =∠BAC =90°,∴AB =AC =22EC AE +=5cm. 125215.证明:如图所示,延长CD 到G ,使DG = BE ,在正方形ABCD 中,AB =AD ,∠B =∠ADC =90°,∴∠ADG =∠B.在△ABE 和△ADG 中,⎪⎩⎪⎨⎧,BE =DG ,B =∠ADG ∠,AD =AB ∴△ABE ≌△ADG (SAS )∴AG =AE ,∠DAG =∠BAE.∵∠EAF =45°,∴∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =∠BAD-∠EAF =90°-45°=45°.∴∠EAF =∠GAF.在△AEF 和△AGF 中,⎪⎩⎪⎨⎧,AF =AF ,GAF =∠EAF ∠,AE =AG ∴△AEF ≌△AGF (SAS ).∴EF =GF.∵GF =DG +DF =BE +DF ,∴BE +DF =EF.16.解:(1)猜想:BM +DN =MN ,证明如下:如图1所示,在MB 的延长线上,截取BE =DN ,连接AE ,在△ABE 和△ADN 中,⎪⎩⎪⎨⎧=∠=∠=,,,DN BE D ABE AD AB ∴△ABE ≌△ADN (SAS )∴AE =AN ,∠EAB =∠NAD.∵∠BAD =90°,∠MAN =45°,∴∠BAM +∠DAN =45°.∴∠EAB +∠BAM =45°,∴∠EAM =∠MAN.在△AEM 和△ANM 中,⎪⎩⎪⎨⎧,AM =AM ,NAM =∠EAM ∠,AN =AE ∴△AEM ≌△ANM (SAS ),∴ME =MN.又ME =BE +BM =BM +DN ,∴BM +DN =MN ;故答案为:BM +DN =MN ;(2)DN-BM =MN.证明如下:如图2所示,在DC 上截取DF =BM ,连接AF ,△ABM 和△ADF 中,⎪⎩⎪⎨⎧,DF =BM ,D =∠ABM ∠,AD =AB ∴△ABM ≌△ADF (SAS ),∴AM =AF ,∠BAM =∠DAF ,∴∠BAM +∠BAF =∠BAF +∠DAF =90°,即MAF =∠BAD =90°.∵∠MAN =45°,∴∠MAN =∠FAN =45°,在△MAN 和△FAN 中⎪⎩⎪⎨⎧,AN =AN ,FAN =∠MAN ∠,AF =AM ∴△MAN ≌△FAN (SAS ),∴MN =NF ,∴MN =DNDF =DN-BM ,∴DN-BM =MN.17.解:思维探索:(1)如图1所示,将△ADF 绕点A 顺时针旋转90°得到△ABG ,∴GB =DF ,AF =AG ,∠BAG =∠DAF.∵四边形ABCD 为正方形,∴∠BAD =90°,∵∠EAF =45°,∴∠BAE +∠DAF =45°. ∴∠BAG +∠BAE =45°=∠EAF.在△AGE 和△AFE 中,⎪⎩⎪⎨⎧,AE =AE ,EAF =∠GAE ∠,AF =AG ∴△AGE ≌△AFE (SAS ).∴GE =EF.∵GE =GB +BE =BE +DF ,∴EF =BE +DF.∴△CEF 的周长=CE +CF +EF = CE +BE +DF +CF =BC +CD =8.故答案为:8;(2)如图2所示,把△ABE 绕点A 逆时针旋转90°到AD ,交CD 于点G ,同(1)可证得△AEF≌△AGF,∴EF=GF,且DG=BE.∴EF=DF-DG=DF-BE.∴△CEF的周长=CE+CF+EF= CE+CF+DF-BE=BC+DF+CF=4+4+2+2=12;拓展提升:如图3所示,过A作AG⊥BD交BD的延长线于G,E.∵BD⊥BC,∠ACB=90°,∴∠ACB=∠CBG=∠G=90°.∴四边形ACBG是矩形. ∵AC=BC,∴矩形ACBG是正方形.∴AC=AG,∠CAG=90°.在BG上截取GF=CE,∴△AEC≌△FGA(SAS).∴AE=AF,∠EAC=∠FAG.∵∠EAD=∠BAC=∠GAB=45°,∴∠DAF=∠EAD=45°.∵AD=AD,∴△ADE≌△ADF(SAS).∴∠ADF=∠EDA=30°,∴∠BDE=60°.∵∠DBE=90°,BD=2,∴DE=DF=4,BE=23.设CE=x,则GF=CE=x,BC=BG=23-x,∴DG=2+23-x.∴DG-FG=DF.即2+23-x-x=4,∴x=3-1.∴CE=3-1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考第一轮复习29全等三角形
课时29 全等三角形
【考点链接】
1.全等三角形:____________、______________的三角形叫全等三角形.
2. 三角形全等的判定方法有:_______、______、
_______、______.直角三角形全等的判定除以上的方法还有________.
3. 全等三角形的性质:全等三角形_____ ______,____________.
4. 全等三角形的面积_______、周长_____、对应高、______、_______相等.
【典例精析】
例1 已知:在梯形ABCD中,AB//CD,E是BC的中点,直线AE与DC的延长线交于点F. 求证:
AB=CF.
例2 (06重庆)如图所示,A、D、F、B在同一直线上,AD=BF,AE=BC,
且AE∥BC.求证:(1)△AEF≌△BCD;(2)EF∥CD.
3
3
【巩固练习】
1.如图1所示,若△OAD ≌△OBC ,且∠O=65°,∠C=20°,则∠OAD=____.
(第1题) (第2题) (第3题)
2.如图2,某同学把一块三角形的玻璃打碎成了三块,
现在要到玻璃店去配一块完全一样的玻璃,那么
最省事的办法是( )
A.带①去
B.带②去
C.带③
去 D.带①和②去
3.如图,已知AE ∥BF, ∠E=∠F,要使△ADE ≌△BCF,可添加的条件是________.
4. 在⊿ABC 和⊿A /B /C /中,AB=A /B /,∠A=∠A /,
若证⊿ABC ≌⊿A /B /C /还要从下列条件中补选一
个,错误的选法是( ) B A E F C D
3
A. ∠B=∠B /
B. ∠C=∠C /
C. BC=B /C /,
D. AC=A /C /,
【中考演练】
1.(08遵义)如图,OA OB =,OC OD =,50O ∠=,35D ∠=,
则AEC ∠等于( )
A .60
B .50
C .45
D .30
2. ( 08双柏) 如图,点P 在AOB ∠的平分线上,
AOP BOP △≌△,则需添加的一个条件是 (只写一个即可,不添加辅助线):
(第1题) (第2题) (第3题)
3. ( 08郴州) 如图,D 是AB 边上的中点,将ABC ∆沿
过D 的直线折叠,使点A 落在BC 上F 处,若
50B ∠=︒,则BDF ∠= __________度. A B P O
C
B A O E A B D C
3 4. (08荆州)如图,矩形ABCD 中,
点E 是BC 上一点,AE =AD ,DF ⊥AE 于F ,连结DE ,求证:
DF =DC .
5. 如图,AB=AD ,BC=DC ,AC 与BD 交于点E ,
由这些条件你能推出哪些结论?
(不再添加辅助线,不再标注其它字母,不写推理过程,只要求写出四个你认为正确的结论即可)
﹡6. (08东莞) 如图,点O 是线段AD 的中点,分
别以AO 和DO 为边在线段AD 的同侧作等边三C B E C
A
B C D E
角形OAB和等边三角形OCD,连结AC和BD,相交于点E,连结BC.求∠AEB的大小.
答案仅供参考,如有错误,敬请见谅!
参考答案:
典例精析:
例1、
例2、
例3、
例4、
例5、
巩固练习:
1、
2、
3、
4、
5、
6、
7、
8、
3
中考演练:
1、
2、
3、
4、
5、
6、
7、
8、
9、
10、
11、
12、
13、
14、
15、
16、
17、
18、
19、
20、
3。

相关文档
最新文档