上海市华育中学八年级第二学期期末数学成功班
上海初二数学期末试卷

上海初二数学期末试卷--------------------------------------------------------------------------作者: _____________--------------------------------------------------------------------------日期: _____________第二学期期末质量抽查初二数学试一、填空题(本大题共15题,每题2分,满分30分) 1.直线y =2x -1平行于直线y = k x -3,则k =_________.2.若一次函数y =(1-m )x +2,函数值y 随x 的增大而减小,则m 的取值范围 是 .3.在直角坐标系内,直线y=-x+2在x 轴上方的点的横坐标的取值范围是 . 4.方程x 3-x = 0的解为 . 5.方程x x =+32的解为 .6.“太阳每天从东方升起”,这是一个 事件(填“确定”或“随机”). 7.右图是一个被等分成6个扇形可自由转动的转盘,转动转盘, 当转盘停止后,指针指向红色区域的概率是 .8.从1,2,3,4四个数中任意取出2个数做加法,其和为偶数的概率是_________.9.甲乙两人加工同一种玩具,甲加工90个玩具所用的时间与乙加工120个玩具所用的时间相等.已知甲乙两人每天共加工35个玩具.若设甲每天加工x 个玩具,则根据题意列出方程为: .10.五边形的内角和是 _ _度.11.在□ABCD 中,若110A =o ∠,则∠B = 度. 12.在矩形ABCD 中,12AB BC ==,,则_______AC =.13.若一梯形的中位线和高的长均为6cm ,则该梯形的面积为__________cm 2.14.已知菱形的边长和一条对角线的长均为2cm ,则菱形的面积为__________ cm 2.15.要使平行四边形ABCD 为正方形,须再添加一定的条件,添加的条件可以是 .(填上一组符合题目要求的条件即可)二、选择题(本大题共4题,每题2分,满分8分)16.下列直线中,经过第一、二、三象限的是 ……………………………………( )(第7题)(A) 直线y = x -1 ; (B) 直线y = -x +1; (C) 直线y =x +1; (D) 直线y =-x -1 .17.气象台预报“本市明天降水概率是80%”.对此信息,下面的几种说法正确的是………………………………………………………………………………………( ) (A ) 本市明天将有80%的地区降水; (B )本市明天将有80%的时间降水;(C ) 明天肯定下雨; (D )明天降水的可能性比较大.18.在□ABCD 中,对角线AC BD ,交于点O ,下列式子中一定成立的是 …( )(A )AC BD ⊥; (B )OA OC =; (C )AC BD =; (D )AO OD =19.正方形、矩形、菱形都具有的特征是 ………………………………………( )(A )对角线互相平分; (B )对角线相等;(C )对角线互相垂直; (D )对角线平分一组对角. 三、(本大题共6题,每题7分,满分42分) 20.解方程:213221x xx x --=-. 解:21.解方程组: ⎩⎨⎧=-+=-052122y x y x22.已知□ABCD ,点E 是 BC 边的中点,请回答下列问题: (1)在图中求作..AD 与DC 的和向量:AD+DC = ; (2)在图中求作..AD 与DC -DC = ; (3)如果把图中线段都画成有向线段.......,那么在这些有向线段所表示的向量中,所有与BE 互为相反向量的向量是 ; (4) AB+BE+EA = 。
2020-2021下海华育中学初二数学下期末试题带答案

2020-2021下海华育中学初二数学下期末试题带答案一、选择题1.若2(5)x -=x ﹣5,则x 的取值范围是( ) A .x <5B .x ≤5C .x ≥5D .x >52.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m ,先到终点 的人原地休息.已知甲先出发2s .在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系如图所示,给出以下结论:①a =8;②b =92;③c =123.其中正确的是( )A .①②③B .仅有①②C .仅有①③D .仅有②③3.下列各命题的逆命题成立的是( ) A .全等三角形的对应角相等 B .如果两个数相等,那么它们的绝对值相等 C .两直线平行,同位角相等D .如果两个角都是45°,那么这两个角相等4.一次函数y kx b =+的图象如图所示,点()3,4P 在函数的图象上.则关于x 的不等式4kx b +≤的解集是( )A .3x ≤B .3x ≥C .4x ≤D .4x ≥5.如图,矩形OABC 的顶点O 与平面直角坐标系的原点重合,点A ,C 分别在x 轴,y 轴上,点B 的坐标为(-5,4),点D 为边BC 上一点,连接OD ,若线段OD 绕点D 顺时针旋转90°后,点O 恰好落在AB 边上的点E 处,则点E 的坐标为( )A .(-5,3)B .(-5,4)C .(-5,52) D .(-5,2)6.已知函数y =11x x +-,则自变量x 的取值范围是( ) A .﹣1<x <1 B .x ≥﹣1且x ≠1C .x ≥﹣1D .x ≠17.下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形 ③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有( )个. A .4B .3C .2D .1 8.若点P 在一次函数的图像上,则点P 一定不在( )A .第一象限B .第二象限C .第三象限D .第四象限9.下列计算正确的是( ) A .2(4)-=2 B .52=3-C .52=10⨯D .62=3÷10.函数的自变量取值范围是( ) A .x ≠0B .x >﹣3C .x ≥﹣3且x ≠0D .x >﹣3且x ≠011.如图,长方形纸片ABCD 中,AB =4,BC =6,点E 在AB 边上,将纸片沿CE 折叠,点B 落在点F 处,EF ,CF 分别交AD 于点G ,H ,且EG =GH ,则AE 的长为( )A .23B .1C .32D .212.如图,在正方形ABCD 中,点E 、F 分别在BC 、CD 上,△AEF 是等边三角形,连接AC 交EF 于点G ,下列结论:①15BAE DAF ∠=∠=;②AG=3GC ;③BE +DF =EF ;④2CEF ABE S S ∆∆=.其中正确的是( )A.①②③B.①③④C.①②④D.①②③④二、填空题13.函数y=21xx中,自变量x的取值范围是_____.14.如图,直线l1:y=x+n–2与直线l2:y=mx+n相交于点P(1,2).则不等式mx+n<x+n–2的解集为______.15.一艘轮船在小岛A的北偏东60°方向距小岛80海里的B处,沿正西方向航行3小时后到达小岛的北偏西45°的C处,则该船行驶的速度为____________海里/时.16.一个三角形的三边长分别为15cm、20cm、25cm,则这个三角形最长边上的高是_____ cm.17.某公司欲招聘一名公关人员,对甲、乙两位候选人进行了面试和笔试,他们的成绩如表:候选人甲乙测试成绩(百分制)面试8692笔试9083如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权。
上海市徐汇区民办华育中学2020-2021学年八年级下学期期中数学试题

上海市徐汇区民办华育中学2020-2021学年八年级下学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、填空题1.已知直线32y x b =-+经过点A (1m ,-2),B (2m ,-1)两点,则1m ______2m 【答案】>【解析】【分析】根据一次函数增减性可得,k <0,y 随x 的增大而减小, k >0,y 随x 的增大而增大即可判断得出答案.【详解】解:∵直线的解析式为32y x b =-+ ∵k <0∵y 随x 的增大而减小∵直线32y x b =-+经过点A (1m ,-2),B (2m ,-1)两点,21-<- ∵12m m >故答案为:>.【点睛】本题主要考查了一次函数图像的增减性与系数k 的关系,解题的关键在于熟练掌握,当k <0,y 随x 的增大而减小, k >0,y 随x 的增大而增大.2.已知一次函数y kx b =+的图象经过点(1,-2),且不经过第三象限,那么关于x 的不等式2kx b +>-的解集是_______【答案】1x <【解析】【分析】先根据一次函数图象的特点可得0k <,再根据一次函数的性质(增减性)即可得.【详解】 解;一次函数y kx b =+的图象经过点(1,2)-,且不经过第三象限,0k ∴<,y ∴随x 的增大而减小,故答案为:1x <.【点睛】本题考查了一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题关键.3.方程(0x +=的解是___________________.【答案】x=2【解析】【详解】试题解析:(10,x +=10x ∴+=0.解得:1x =-或 2.x =当1x =-.故答案为 2.x =4.用换元法解分式方程23202x x x x ---=-时,如果设2x y x-=,则原方程可化为关于y 的整式方程是__________.【答案】2230y y --=;【解析】【分析】 如果设2x y x-=,那么12x x y =- ,原方程变为:y -3y -2=0,方程两边乘最简公分母y ,可以把分式方程转化为整式方程.【详解】 解:设2x y x-=, 原方程变为y-3y -2=0, 方程两边都乘y 得2230y y --=.故原方程可化为关于y 的整式方程是2230y y --=.故答案为2230y y --=.【点睛】本题考查用换元法使分式方程简便.换元后再在方程两边乘最简公分母可以把分式方5.用20cm 长的绳子围成一个等腰三角形,设它的底长为y cm ,腰长为x cm ,则y 与x 之间的函数关系式为__________(写出自变量x 的取值范围)【答案】y =20-2x (5<x <10)【解析】【分析】根据三角形的周长写成y与x的函数关系式,根据三角形两边之和大于第三边即可确定x的取值范围.【详解】解:∵三角形的周长为20∵y +2x =20,∵y =20-2x ,即x <10∵三角形两边之和大于第三边∵x >5∵5<x <10.故填y =20-2x (5<x <10).【点睛】本题主要考查了根据实际问题列一次函数关系式、等腰三角形的性质及三角形三边关系等知识点;根据三角形三边关系求得x 的取值范围是解答本题的关键.6.已知一个把多边形的内角和与外角和相加,所得的和是2160度,那么这个多边形是___边形【答案】十二【解析】【分析】设这个多边形是x 边形,根据多边形的内角和与外角和公式建立方程,解方程即可得.【详解】解:设这个多边形是x 边形,由题意得:180(2)3602160x ︒-+︒=︒,解得12x =,即这个多边形是十二边形,故答案为:十二.本题考查了多边形的内角和与外角和、一元一次方程的应用,熟练掌握多边形的内角和与外角和问题是解题关键.7.若某个菱形的两条对角线的长度分别为3和4,则该菱形的周长为________.【答案】10【解析】【分析】首先根据题意画出图形,由菱形ABCD中,AC=4,BD=3,即可求得其边长,继而求得答案.【详解】解:如图,∵菱形ABCD中,AC=4,BD=3,∵OA=12AC=2,OB=12BD=32,AC∵BD,∵52 AB==,∵它的周长为:52×4=10.故答案为:10.【点睛】此题考查了菱形的性质以及勾股定理.注意根据勾股定理求得其边长是解此题的关键.8.正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上的一动点,DN+MN的最小值为________.【答案】10【解析】要使DN +MN 最小,首先应分析点N 的位置,根据正方形的性质:正方形的对角线互相垂直平分,知点D 的对称点是点B ,连接MB 交AC 于点N ,此时DN +MN 最小值及时BM 的长.【详解】根据题意,连接BD ,BM ,则BM 就是DN +MN 的最小值,在Rt∵BCM 中,BC=8,CM=6,根据勾股定理得:BM =,即DN +MN 的最小值是10,故答案为:10.【点睛】本题主要考查了正方形性质的应用,结合勾股定理判断最小路径是解题的关键. 9.如图,在矩形ABCD 中,AE 平分∠BAD ,∠EAO =15︒,则∠BOE 的度数是_____【答案】75︒【解析】【分析】先根据矩形的性质可得90,BAD ABC OA OB ∠=∠=︒=,再根据等腰直角三角形的判定与性质可得AB BE =,然后根据等边三角形的判定与性质可得,60AB OB ABO =∠=︒,从而可得,30OB BE OBE ==∠︒,最后根据等腰三角形的性质、三角形的内角和定理即可得.解:四边形ABCD 是矩形,90,BAD ABC OA OB ∴∠=∠=︒=,AE ∵平分BAD ∠,1452BAE BAD ∴∠=∠=︒, Rt ABE ∴是等腰直角三角形,且AB BE =,15EAO =︒∠,60BAE EA BAO O ∴∠=∠+∠=︒,AOB ∴是等边三角形,,60AB OB ABO ∴=∠=︒,,30OB BE OBE ABC ABO ∴=∠=∠=-∠︒,1(1802)75BOE OB BEO E ∴∠=∠=∠=︒-︒, 故答案为:75︒.【点睛】本题考查了矩形的性质、等边三角形的判定与性质、等腰三角形的判定与性质等知识点,熟练掌握等边三角形的判定与性质是解题关键.10.在平行四边形ABCD 中,ABC ∠的平分线将CD 分成4cm 和2cm 两部分,则平行四边形ABCD 的周长为__________【答案】16cm 或20cm【解析】【分析】设ABC ∠的平分线交CD 于点E ,先画出图形(见解析),分2cm,4cm DE CE ==和4cm,2cm DE CE ==两种情况,再根据平行四边形的性质、等腰三角形的判定可得BC CE =,然后根据平行四边形的周长公式即可得.【详解】解:设ABC ∠的平分线交CD 于点E ,由题意,分以下两种情况:(1)如图,当2cm,4cm DE CE ==时,则6cm CD CE DE =+=,//AB CD ∴,BEC ABE ∴∠=∠, BE 平分ABC ∠,CBE ABE ∴∠=∠,BEC CBE ∴∠=∠,4cm BC CE ∴==,则平行四边形ABCD 的周长为2()2(46)20(cm)BC CD +=⨯+=;(2)如图,当4cm,2cm DE CE ==时,则6cm CD CE DE =+=,同理可得:2cm BC CE ==,则平行四边形ABCD 的周长为2()2(26)16(cm)BC CD +=⨯+=;综上,平行四边形ABCD 的周长为16cm 或20cm ,故答案为:16cm 或20cm .【点睛】本题考查了平行四边形的性质、等腰三角形的判定等知识点,熟练掌握平行四边形的性质,并分两种情况讨论是解题关键.11.一次函数334y x =-+的图像分别于x 轴,y 轴交于A 、B ,将线段AB 绕点A 顺时针旋转90度得到线段AC ,则B 、C 两点的直线解析式为__________ 【答案】137y x =+ 【解析】【分析】先分别求出点,A B 的坐标,再根据旋转的性质、三角形全等的判定定理与性质求出点C 的坐标,然后利用待定系数法即可得.【详解】解:由题意,画图如下:对于一次函数334y x =-+, 当0y =时,3304x -+=,解得4x =,即(4,0),4A OA =, 当0x =时,3y =,即(0,3),3B OB =,过点C 作CD x ⊥轴于点D ,由旋转的性质得:90,BAC AB AC ∠=︒=,90OAB CAD ∴∠+∠=︒, x 轴y ⊥轴,90OAB ABO ∴∠+∠=︒,CAD ABO ∴∠=∠,在ACD △和BAO 中,90CDA AOB CAD ABO AC BA ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,()ACD BAO AAS ∴≅,3,4AD OB CD OA ∴====,7OD OA AD ∴=+=,(7,4)C ∴,设直线BC 的解析式为y kx b =+,将点(0,3),(7,4)B C 代入得:374b k b =⎧⎨+=⎩,解得173k b ⎧=⎪⎨⎪=⎩, 则直线BC 的解析式为137y x =+, 故答案为:137y x =+. 【点睛】转的性质是解题关键.12.如图,将矩形纸片ABCD折叠,B C、两点恰好重合落在AD边上点P处,已知90MPN∠=︒,PM=3,4PN=,那么矩形纸片ABCD的面积为________.【答案】28.8【解析】【分析】由折叠的性质可知BC=PM+MN+PN,且AB与Rt△PMN中边MN上的高相等,在Rt△PMN中可求得MN及MN边上的高,则可求得答案【详解】∵∵MPN=90°,且PM=3,PN=4∵MN=5,边MN上的高=3412=55⨯又由折叠的性质可知BC=PM+MN+PN=3+5+4=12AB=12 5∵S ABCD矩形=12×125=28.8【点睛】此题考查翻折变换(折叠问题)和矩形的性质,解题关键在于利用折叠的性质可知BC=PM+MN+PN二、解答题13.如图,将正方形ABCD折叠,使点C与点D重合于正方形内点P处,折痕分别为AF、BE,如果正方形ABCD的边长是2,那么∵EPF的面积是_____.【解析】【分析】过P 作PH ∵DC 于H ,交AB 于G ,由正方形的性质得到AD =AB =BC =DC =2;∵D =∵C =90°;再根据折叠的性质有P A =PB =2,∵FP A =∵EPB =90°,可判断∵P AB 为等边三角形,利用等边三角形的性质得到∵APB =60°,PG AB ==∵EPF=120°,PH =HG ﹣PG =2∵HEP =30°,然后根据含30°的直角三角形三边可求出HE ,得到EF ,最后利用三角形的面积公式计算即可.【详解】解:过P 作PH ∵DC 于H ,交AB 于G ,如图,则PG ∵AB ,∵四边形ABCD 为正方形,∵AD =AB =BC =DC =2;∵D =∵C =90°,又∵将正方形ABCD 折叠,使点C 与点D 重合于形内点P 处,∵P A =PB =2,∵FP A =∵EPB =90°,∵∵P AB 为等边三角形,∵∵APB =60°,PG∵∵EPF =120°,PH =HG ﹣PG =2∵∵HEP =30°,∵HE 23,∵EF =2HE =6,∵∵EPF 的面积=12FE •PH =12(2(6)=12.故答案为12.本题考查了折叠的性质:折叠前后的两图形全等,即对应角相等,对应线段相等.也考查了正方形和等边三角形的性质以及含30°的直角三角形三边的关系.14.解方程:2116122312x x x x --=---- 【答案】122,33x x ==-. 【解析】【分析】先方程两边同乘以3(2)(2)x x +-化成整式方程,再解一元二次方程,然后将所求的解代入原方程进行检验即可得.【详解】 解:2116122312x x x x --=----, 方程两边同乘以3(2)(2)x x +-,得3(2)(3(2)3(2)(6)2)x x x x x +--+-=+--, 去括号,得231236366x x x x ---=+-++,移项、合并同类项,得23760x x +-=,因式分解,得()()3230x x -+=, 解得122,33x x ==-, 经检验,122,33x x ==-是原分式方程的解, 故方程的解为122,33x x ==-. 【点睛】本题考查了可化为一元二次方程的分式方程,熟练掌握方程的解法是解题关键.151 【答案】121,3x x ==.【解析】【分析】A ,先解方程求出A 程,解一元二次方程即可得.【详解】11=A =,则61A A +=,且0A ≥, 260A A +-=,()()320A A +-=,12A =,230A =-<(舍去),经检验,12A =是方程61A A+=的解,2=,即234x x +=, 2430x x -+=,()()130x x --=,121,3x x ==,经检验,121,3x x ==都是原方程的解,故原方程的解为121,3x x ==.【点睛】本题考查了解无理方程、解分式方程、解一元二次方程,熟练掌握各方程的解法是解题关键.16.解方程组:223163x y x xy y +=⎧⎨+-=⎩【答案】11525x y ⎧=⎪⎪⎨⎪=-⎪⎩. 【解析】【分析】利用代入消元法解方程组即可得.【详解】解:223163x y x xy y +=⎧⎨+-=⎩①②, 由∵得:13x y =-,将13x y =-代入∵得:22(13)(13)63y y y y -+--=,整理得:222169363y y y y y -++--=,即163y y -+=, 解得25y =-, 将25y =-代入∵得:615x -=, 解得115x =, 则方程组的解为11525x y ⎧=⎪⎪⎨⎪=-⎪⎩. 【点睛】本题考查了利用代入消元法解方程组,熟练掌握代入消元法是解题关键.17.一个水槽有进水管和出水管各一个,进水管每分钟进水a 升,出水管每分钟出水b 升.水槽在开始5分钟内只进水不出水,随后15分钟内既进水又出水,得到时间x(分)与水槽内的水量y(升)之间的函数关系(如图所示).(1)求a 、b 的值;(2)如果在20分钟之后只出水不进水,求这段时间内y 关于x 的函数解析式及定义域.【答案】(1)a=3,b=2;(2)y=-2x+75(20≤x≤37.5).【解析】【分析】(1)根据图象上点的坐标,可以得出水槽内水量与时间的关系,进而得出a ,b 的值;(2)根据在20分钟之后只出水不进水,得出图象上点的坐标,进而利用待定系数法求出即可.【详解】解:(1)由图象得知:水槽原有水5升,前5分钟只进水不出水,第5分钟时水槽实际存水20升.水槽每分钟进水a 升,于是可得方程:5a+5=20.解得a=3.按照每分钟进水3升的速度,15分钟应该进水45升,加上第20分钟时水槽内原有的20升水,水槽内应该存水65升.实际上,由图象给出的信息可以得知:第20分钟时,水槽内的实际存水只有35升, 因此15分钟的时间内实际出水量为:65-35=30(升).依据题意,得方程:15b=30.解得b=2.(2)按照每分钟出水2升的速度,将水槽内存有的35升水完全排出,需要17.5分钟. 因此,在第37.5分钟时,水槽内的水可以完全排除.设第20分钟后(只出水不进水),y 关于x 的函数解析式为y=kx+b .将(20,35)、(37.5,0)代入y=kx+b ,得:{203537.50k b k b +=+=,解得:{275k b =-=,则y 关于x 的函数解析式为:y=-2x+75(20≤x≤37.5).【点睛】本题主要考查了一次函数的应用以及待定系数法求一次函数解析式,正确根据图象得出正确信息是解题关键.18.某工程若甲单独做,恰好能在规定时间内完成,若乙单独做,则比规定的时间多3天才能完成,若甲和乙一起做2天后甲离开,乙单独做下去,正好在规定的时间内完成,求规定的时间【答案】规定的时间为6天.【解析】【分析】设规定的时间为x 天,将工程量看作“1”,分别求出甲、乙每天完成的工程量,再根据“若甲和乙一起做2天后甲离开,乙单独做下去,正好在规定的时间内完成”建立方程,解方程即可得.【详解】解:设规定的时间为x 天,将工程量看作“1”,则甲每天完成的工程量为1x ,乙每天完成的工程量为13x +,由题意得:11213xx x⋅+⋅=+,解得6x=,经检验,6x=是所列分式方程的解,且符合题意,答:规定的时间为6天.【点睛】本题考查了分式方程的应用,正确找出等量关系是解题关键.19.已知,如图,EF是矩形ABCD的对角线AC的垂直平分线,EF与对角线AC及边AD、BC分别交于点O,E,F(1)求证:四边形AFCE是菱形(2)如果FE=2ED,求AE:ED的值【答案】(1)见解析;(2)2:1【解析】【分析】(1)要证明四边形AFEC是菱形,只需要通过菱形的判定条件进行证明即可得到答案;(2)根据平行四边形的对角线互相平分知,FE=2EO ,则可以得到EO=ED,则可以证明∵OEC∵∵DEC,得到∵3=∵4,再由四边形AFEC是菱形得到∵2=∵3=∵4=1 3∵BCD=30°,即可得到2AE CE DE==.【详解】解:(1)证明:∵四边形ABCD是矩形∵AD∵BC∵∵1=∵2∵EF垂直平分AC∵AO=CO,∵AOE=∵COF=90∘∵∵AOE∵△COF(ASA)∵OE=OF∵四边形AFEC是平行四边形.又EF∵AC∵四边形AFEC是菱形(2)由(1)知:FE=2EO又∵FE=2ED∵EO=ED又EO∵AC,ED∵DC∵∵OEC∵∵DEC∵∵3=∵4,由(1)知,四边形AFEC是菱形,∵AE=EC,∵2=∵3,∵∵2=∵3=∵4=13∵BCD=30°又∵∵D=90°∵EC=2ED∵AE=2ED,即AE:ED=2:1=2【点睛】本题主要考查了全等三角形的性质与判定,菱形的判定,矩形的性质,含30°直角三角形的性质,矩形的性质等等,解题的关键在于能够熟练掌握相关知识进行求解. 20.如图,点O是ABC中AC边上的一个动点,过点O作直线MN//BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F(1)求证:EO=FO(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论(3)若AC边上存在点O,使四边形AECF是正方形,且∠B=60︒,问:AEBC的值为多少?(直接写出结果)【答案】(1)见解析;(2)当点O运动到AC中点时,四边形AECF为矩形,见解析;(3)AE BC =【解析】【分析】 (1)根据MN ∵BC ,CE 平分∵ACB ,CF 平分∵ACD 及等角对等边即可证得OE =OF ; (2)根据矩形的性质可知:对角线且互相平分,即AO =CO ,OE =OF ,故当点O 运动到AC 的中点时,四边形AECF 是矩形;(3)当四边形AECF 是正方形时,可得:AO ∵EF ,又BC ∵EF ,则AC ∵BC ,在正方形AECF 中,AC ,根据∵B =60°,tan B =AC BC =AE BC = 【详解】证明:(1)∵ CE 平分∵ACB∵ ∵BCE =∵OCE (角平分线将这个角分为两个相等的角)∵ MN ∵BC∵ ∵BCE =∵OEC (两直线平行,内错角相等)∵ ∵BCE =∵OCE ,∵BCE =∵OEC∵ ∵OCE =∵OEC∵ OE =OC (等角对等边)同理可证 OC =OF∵ EO =FO(2)当点O 运动到AC 中点时,四边形AECF 为矩形.理由如下:∵ CE 平分∵ACB ,CF 平分∵ACD ,∵ACB +∵ACD =180°∵ ∵ECF =90°∵ EO =FO ,OC =OA∵ 四边形AECF 为平行四边形 (两条对角线互相平分的四边形是平行四边形) ∵ ∵ECF =90° ,四边形AECF 为平行四边形∵ 四边形AECF 为矩形 (有一个内角是直角的平行四边形叫做矩形)(3)当四边形AECF 是正方形时,AO ∵EF ,AC ,∵BC ∵EF ,∵AC ∵BC .∵∵B =60°,∵∵BAC =30°2ACBC AB=∵BC,∵AEBC=【点睛】本题主要考查了等边三角形的判定,矩形的判定定理,正方形的性质定理,角平分线和平行线的性质等知识点,解题的关键是熟练掌握矩形的判定和正方形的性质.21.已知:在矩形ABCD中,AB=8,BC=12,四边形EFGH的三个顶点E、F、H分别在矩形ABCD的边AB、BC、DA上,AE=2(1)如图1,当四边形EFGH 为正方形时,求GFC的面积(2)如图2,当四边形EFGH为菱形时,设BF=x ,GFC的面积为s,求s关于x的函数关系式,并写出函数的定义域【答案】(1)10;(2)S=12−x(0⩽x⩽【解析】【分析】(1)过点G作GM∵BC于M,可以证明∵MFG∵∵BEF,就可以求出GM的长,进而就可以求出FC,求出面积;(2)证明∵AHE∵∵MFG,得到GM的长,根据三角形的面积公式就可以求出面积【详解】解:(1)如图1,过点G作GM∵BC于M在正方形EFGH中,∵HEF=90°,EH=EF∵∵AEH+∵BEF=90°∵∵AEH+∵AHE=90°∵∵AHE=∵B EF又∵∵A=∵B=90°∵∵AHE ∵∵BEF (SAS )同理可证: ∵MFG ∵∵BEF∵GM =BF =AE =2∵FC =BC -BF =10则 1=102GFC S FC GM =△(2)如图2,过点G 作GM ∵BC 于M ,连接HF∵AD ∵BC∵∵AHF =∵MFH∵EH ∵FG∵∵EHF =∵GFH∵∵AHE =∵MFG又∵∵A =∵GMF =90°,EH =GF∵∵AHE ∵∵MFG∵GM =AE =2∵BF x =∵12FC BC BF x =-=- ∵1=122GFC S FC GM x =-△即12s x =-∵222EH AH AE =+,222EF BE BF =+,EF EH =∵2222AH AE BE BF +=+∵222226232AH x x =+-=+∵H 在AD 上∵AH AD ≤ ∵223212=144x +≤ 解得x -≤∵F 在BC 上∵0BF ≥即0x ≥ ∵0x ≤≤【点睛】此题考查全等三角形的判定与性质、菱形的性质、正方形的性质,解题关键在于做辅助线和利用全等三角形的性质.三、单选题22.下列方程不是二项方程的是( )A .20x x +=B .31903x +=C .51x =D .423x -=【答案】A【解析】【分析】根据二项方程的定义:如果一元n (n 为正整数)次方程的一边只有含未知数的一项和非零的常数项,另一边是零,那么这样的方程就叫做二项方程逐项判断即可得.【详解】A 、20x x +=不是二项方程,则此项符合题意;B 、31903x +=是二项方程,则此项不符题意;C 、51x =可化为510x -=,是二项方程,则此项不符题意;D 、423x -=可化为410x --=,是二项方程,则此项不符题意;故选:A .【点睛】本题考查了二项方程,熟记定义是解题关键.23.方程组2x y 22x y k -=⎧-=⎨⎩有实数解,则k 的取值范围是( ) A .k 3≥B .k 3=C .k 3<D .k 3≤. 【答案】D【解析】【分析】使用代入法,易得x 2-(2x-k)=2,再根据题意可得4-4(k-2)≥0,解即可.【详解】解:由2x y k -=得,y=2x-k ,将其代入22x y -=,得x 2-(2x-k)=2,∵∵=4-4(k-2)≥0,解得k≤3,故选D .【点睛】本题考查了根的判别式,解题的关键是掌握∵≥0时,方程有实数根.24.下列命题中,假命题是( )A .两条对角线互相平分的四边形是平行四边形B .两条对角线互相垂直的平行四边形是菱形C .两条对角线相等的平行四边形是矩形D .两条对角线互相垂直且相等的四边形是正方形【答案】D【解析】【分析】利用平行四边形及特殊的平行四边形的性质分别判断后即可确定正确的选项.【详解】解:A 、对角线互相平分的四边形是平行四边形,正确,是真命题,不符合题意; B 、对角线互相垂直的平行四边形是菱形,正确,是真命题,不符合题意; C 、对角线相等的平行四边形是矩形,正确,是真命题,不符合题意;D 、对角线互相垂直平分且相等的四边形是正方形,不正确,是假命题,符合题意, 故选D .【点睛】考查了命题与定理的知识,解题的关键是了解平行四边形及特殊的平行四边形的性质,难度不大.25.一次函数y=x+1的图象交x 轴于点A ,交y 轴于点B .点C 在x 轴上,且使得△ABC 是等腰三角形,符合题意的点C 有( )个.A .2B .3C .4D .5.【答案】C【解析】【分析】 首先根据一次函数关系式求出与坐标轴的两个交点,再画出图象,可分三种情况:∵以A 为圆心,AB 长为半径画弧,∵以B 为圆心,AB 长为半径画弧,∵作AB 的垂直平分线,解答出即可.【详解】解:一次函数y=x+1的图象与x 轴的交点A(-1,0),与y 轴交点B(0,1), 如图所示:∵以A 为圆心,AB 长为半径画弧,交x 轴于C 1,C 3两点,∵以B 为圆心,AB 长为半径画弧,交x 轴于C 4点,∵作AB 的垂直平分线,与x 轴交于一点C 2,符合题意的点C 有4个,故选C .【点睛】本题考查了等腰三角形的判定来解决实际问题,其关键是根据题意,画出符合实际条件的图形,26.平行四边形ABCD 中,对角线AC 、BD 交于点O ,AC =10cm ,BD =8cm ,则AD 的取值范围是( )A .AD >1cmB .AD <9cmC .1cm<AD <9cm D .AD >9cm 【答案】C【解析】【分析】先根据题意画出图形,再根据平行四边形的性质可得5cm,4cm OA OB ==,然后根据三角形的三边关系定理即可得.【详解】解:由题意,画出图形如下所示:四边形ABCD 是平行四边形,且10cm,8cm AC BD ==,115cm,4cm 22OA AC OB BD ====∴, 在AOD △中,由三角形的三边关系定理得:5cm 4cm 5cm 4cm AD -<<+, 即1cm 9cm AD <<,故选:C .【点睛】本题考查了平行四边形的性质、三角形的三边关系定理,熟练掌握平行四边形的性质是解题关键.27.如图,平行四边形ABCD 中,P 是形内任意一点,∵ABP,∵BCP,∵CDP,∵ADP 的面积分别为S 1,S 2,S 3,S 4,则一定成立的是( )A .S 1+S 2>S 3+S 4B .S 1+S 2=S 3+S 4C .S 1+S 2<S 3+S 4D .S 1+S 3=S 2+S 4【答案】D【解析】【分析】 由平行四边形的性质得出S 1+S 3=12平行四边形ABCD 的面积,S 2+S 4=12平行四边形ABCD 的面积,即可得出结论.【详解】∵四边形ABCD 是平行四边形,∵AB=CD ,AD=BC ,∵S 1+S 3=12平行四边形ABCD 的面积,S 2+S 4=12平行四边形ABCD 的面积,∵S 1+S 3=S 2+S 4,故选D.【点睛】此题考查了平行四边形的性质以及三角形的面积问题.此题难度适中,注意掌握数形结合思想的应用.。
上海华育中学初中数学八年级下期末经典复习题(课后培优)

一、选择题1.(0分)[ID :10225]如图,矩形ABCD 的对角线AC 与数轴重合(点C 在正半轴上),5AB =,12BC =,若点A 在数轴上表示的数是-1,则对角线AC BD 、的交点在数轴上表示的数为( )A .5.5B .5C .6D .6.52.(0分)[ID :10224]直角三角形两直角边长为a ,b ,斜边上高为h ,则下列各式总能成立的是( ) A .ab=h 2B .a 2+b 2=2h 2C .111a b h+= D .222111a b h += 3.(0分)[ID :10217]已知M 、N 是线段AB 上的两点,AM =MN =2,NB =1,以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C ,连接AC ,BC ,则△ABC 一定是( ) A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形4.(0分)[ID :10211]一次函数111y k x b =+的图象1l 如图所示,将直线1l 向下平移若干个单位后得直线2l ,2l 的函数表达式为222y k x b =+.下列说法中错误的是( )A .12k k =B .12b b <C .12b b >D .当5x =时,12y y >5.(0分)[ID :10204]如图,在平行四边形ABCD 中,ABC ∠和BCD ∠的平分线交于AD 边上一点E ,且4BE =,3CE =,则AB 的长是( )A .3B .4C .5D .2.56.(0分)[ID :10196]已知正比例函数y kx =(k ≠0)的图象如图所示,则在下列选项中k 值可能是( )A.1B.2C.3D.47.(0分)[ID:10136]已知一次函数y=-0.5x+2,当1≤x≤4时,y的最大值是()A.1.5B.2C.2.5D.-68.(0分)[ID:10179]若正比例函数的图象经过点(−1,2),则这个图象必经过点().A.(1,2)B.(−1,−2)C.(2,−1)D.(1,−2)9.(0分)[ID:10177]明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t (单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.300m2B.150m2C.330m2D.450m210.(0分)[ID:10172]如图,以数轴的单位长度线段为边作一个正方形,以表示数1的点为圆心,正方形对角线长为半径画弧,交数轴于点A,则点A表示的数是()A.-2B.﹣1+2C.﹣1-2D.1-211.(0分)[ID:10166]如图,点P是矩形ABCD的边上一动点,矩形两边长AB、BC长分别为15和20,那么P到矩形两条对角线AC和BD的距离之和是()A.6B.12C.24D.不能确定12.(0分)[ID:10164]某商场对上周某品牌运动服的销售情况进行了统计,如下表所示:颜色黄色绿色白色紫色红色数量(件)12015023075430经理决定本周进货时多进一些红色的,可用来解释这一现象的统计知识的( ) A .平均数B .中位数C .众数D .平均数与众数13.(0分)[ID :10162]一列火车由甲市驶往相距600km 的乙市,火车的速度是200km/时,火车离乙市的距离s(单位:km)随行驶时间t(单位:小时)变化的关系用图象表示正确的是( )A .B .C .D .14.(0分)[ID :10157]如图,一个工人拿一个2.5米长的梯子,底端A 放在距离墙根C 点0.7米处,另一头B 点靠墙,如果梯子的顶部下滑0.4米,梯子的底部向外滑( )米A .0.4B .0.6C .0.7D .0.815.(0分)[ID :10148]如图,四边形ABCD 是菱形,∠ABC =120°,BD =4,则BC 的长是( )A .4B .5C .6D .3二、填空题16.(0分)[ID :10331]如图,在ABC 中,AC BC =,点D E ,分别是边AB AC ,的中点,延长DE 到点F ,使DE EF =,得四边形ADCF .若使四边形ADCF 是正方形,则应在ABC 中再添加一个条件为__________.17.(0分)[ID :10324]若x=2-1, 则x 2+2x+1=__________. 18.(0分)[ID :10309]若ab <0,则代数式2a b 可化简为_____. 19.(0分)[ID :10298]函数11y x =-的自变量x 的取值范围是 . 20.(0分)[ID :10294]如图,矩形ABCD 的对角线AC 、BD 相交于点O ,∠AOB=120°,CE//BD ,DE//AC ,若AD=5,则四边形CODE 的周长______.21.(0分)[ID :10289]在平面直角坐标系中,已知一次函数21y x =-+的图象经过()()111222P x y P x y ,,,两点.若12x x <,则1y ______2y (填“>”“<”或“=”).22.(0分)[ID :10286]一次函数y 1=kx+b 与y 2=x+a 的图象如图,则下列结论:①k <0;②a >0;③关于x 的方程kx ﹣x=a ﹣b 的解是x=3;④当x >3时,y 1<y 2中.则正确的序号有____________.23.(0分)[ID :10281]如图,在平行四边形ABCD 中,AB =3,BC =5,∠B 的平分线BE 交AD 于点E ,则DE 的长为____________.24.(0分)[ID :10246]一组数据:1、2、5、3、3、4、2、4,它们的平均数为_______,中位数为_______,方差是_______.25.(0分)[ID :10238]如图:长方形ABCD 中,AD=10,AB=4,点Q 是BC 的中点,点P在AD边上运动,当△BPQ是等腰三角形时,AP的长为___.三、解答题26.(0分)[ID:10406]如图,ABCD的对角线相交于点O,直线EF过点O分别交BC,AD于点E、F,G、H分别为OB、OD的中点,求证:四边形GEHF是平行四边形.27.(0分)[ID:10393]为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.()1求每套队服和每个足球的价格是多少?()2若城区四校联合购买100套队服和a(a10)>个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;()3在()2的条件下,若a60=,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?28.(0分)[ID:10377]甲、乙两名射击选示在10次射击训练中的成绩统计图(部分)如图所示:根据以上信息,请解答下面的问题;选手A平均数中位数众数方差甲a88c乙7.5b6和9 2.65(1)补全甲选手10次成绩频数分布图.(2)a=,b=,c=.(3)教练根据两名选手手的10次成绩,决定选甲选手参加射击比赛,教练的理由是什么?(至少从两个不同角度说明理由).29.(0分)[ID:10368]在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点H(A、H、B在一条直线上),并新修一条路CH,测得CB=3千米,CH=2.4千米,HB=1.8千米.(1)问CH是否为从村庄C到河边的最近路?(即问:CH与AB是否垂直?)请通过计算加以说明;(2)求原来的路线AC的长.30.(0分)[ID:10425]某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:kg),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图①中m的值为;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计这2500只鸡中,质量为2.0kg的约有多少只?【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.A2.D3.B4.B5.D6.B7.A8.D9.B10.D11.B12.C13.A14.D15.A二、填空题16.答案不唯一如∠ACB=90°或∠BAC=45°或∠B=45°【解析】【分析】先证明四边形ADCF是平行四边形再证明AC=DF即可再利用∠ACB=90°得出答案即可【详解】∠ACB=90°时四边形AD17.2【解析】【分析】先利用完全平方公式对所求式子进行变形然后代入x的值进行计算即可【详解】∵x=-1∴x2+2x+1=(x+1)2=(-1+1)2=2故答案为:2【点睛】本题考查了代数式求值涉及了因式18.【解析】【分析】二次根式有意义就隐含条件b>0由ab<0先判断出ab的符号再进行化简即可【详解】若ab<0且代数式有意义;故有b>0a<0;则代数式=|a|=-a故答案为:-a【点睛】本题主要考查二19.x>1【解析】【分析】【详解】解:依题意可得解得所以函数的自变量的取值范围是20.20【解析】【分析】通过矩形的性质可得再根据∠AOB=120°可证△AOD是等边三角形即可求出OD的长度再通过证明四边形CODE是菱形即可求解四边形CODE的周长【详解】∵四边形ABCD是矩形∴∵∠21.大于【解析】【分析】根据一次函数的性质当k<0时y随x的增大而减小【详解】∵一次函数y=−2x+1中k=−2<0∴y随x的增大而减小∵x1<x2∴y1>y2故答案为>【点睛】此题主要考查了一次函数的22.①③④【解析】【分析】根据y1=kx+b和y2=x+a的图象可知:k<0a<0所以当x>3时相应的x的值y1图象均低于y2的图象【详解】根据图示及数据可知:①k<0正确;②a<0原来的说法错误;③方23.2【解析】【分析】根据平行四边形的性质可得出AD∥BC则∠AEB=∠CBE再由∠ABE =∠CBE则∠AEB=∠ABE则AE=AB从而求出DE【详解】解:∵四边形ABCD是平行四边形∴AD∥BC∴∠A24.33【解析】【分析】根据平均数的公式即可求出答案将数据按照由小到大的顺序重新排列中间两个数的平均数即是中位数根据方差的公式计算即可得到这组数据的方差【详解】平均数=将数据重新排列是:1223344525.2或25或3或8【解析】【分析】【详解】解:∵AD=10点Q是BC的中点∴BQ=BC=×10=5如图1PQ=BQ=5时过点P作PE⊥BC于E根据勾股定理QE=∴BE=BQ﹣QE=5﹣3=2∴AP=B三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.A解析:A【解析】【分析】连接BD交AC于E,由矩形的性质得出∠B=90°,AE=12AC,由勾股定理求出AC,得出OE,即可得出结果.【详解】连接BD交AC于E,如图所示:∵四边形ABCD是矩形,∴∠B=90°,AE=12 AC,∴222251213AB BC+=+=,∴AE=6.5,∵点A表示的数是-1,∴OA=1,∴OE=AE-OA=5.5,∴点E表示的数是5.5,即对角线AC、BD的交点表示的数是5.5;故选A.【点睛】本题考查了矩形的性质、勾股定理、实数与数轴;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.2.D解析:D【解析】 【分析】 【详解】解:根据直角三角形的面积可以导出:斜边c=ab h. 再结合勾股定理:a 2+b 2=c 2.进行等量代换,得a 2+b 2=222a b h,两边同除以a 2b 2, 得222111a b h+=. 故选D .3.B解析:B 【解析】 【分析】依据作图即可得到AC =AN =4,BC =BM =3,AB =2+2+1=5,进而得到AC 2+BC 2=AB 2,即可得出△ABC 是直角三角形. 【详解】如图所示,AC =AN =4,BC =BM =3,AB =2+2+1=5, ∴AC 2+BC 2=AB 2,∴△ABC 是直角三角形,且∠ACB =90°, 故选B .【点睛】本题主要考查了勾股定理的逆定理,如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.4.B解析:B 【解析】 【分析】根据两函数图象平行k 相同,以及平移规律“左加右减,上加下减”即可判断 【详解】∵将直线1l 向下平移若干个单位后得直线2l ,∴直线1l ∥直线2l ,∴12k k =,∵直线1l 向下平移若干个单位后得直线2l ,∴12b b >,∴当x 5=时,12y y >故选B .【点睛】本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.5.D解析:D【解析】【分析】由▱ABCD 中,∠ABC 和∠BCD 的平分线交于AD 边上一点E ,易证得△ABE ,△CDE 是等腰三角形,△BEC 是直角三角形,则可求得BC 的长,继而求得答案.【详解】∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB=CD ,AD=BC ,∴∠AEB=∠CBE ,∠DEC=∠BCE ,∠ABC+∠DCB=90°,∵BE ,CE 分别是∠ABC 和∠BCD 的平分线,∴∠ABE=∠CBE=12∠ABC ,∠DCE=∠BCE=12∠DCB , ∴∠ABE=∠AEB ,∠DCE=∠DEC ,∠EBC+∠ECB=90°,∴AB=AE ,CD=DE ,∴AD=BC=2AB ,∵BE=4,CE=3,∴5==,∴AB=12BC=2.5. 故选D .【点睛】 此题考查了平行四边形的性质、等腰三角形的判定与性质以及直角三角形的性质.注意证得△ABE ,△CDE 是等腰三角形,△BEC 是直角三角形是关键.6.B解析:B 【解析】由图象可得2535kk<⎧⎨>⎩,解得5532k<<,故符合的只有2;故选B.7.A解析:A【解析】【分析】根据一次函数的系数k=-0.5<0,可得出y随x值的增大而减小,将x=1代入一次函数解析式中求出y值即可.【详解】在一次函数y=-0.5x+2中k=-0.5<0,∴y随x值的增大而减小,∴当x=1时,y取最大值,最大值为-0.5×1+2=1.5,故选A.【点睛】本题考查了一次函数的性质,牢记“k<0,y随x的增大而减小”是解题的关键.8.D解析:D【解析】设正比例函数的解析式为y=kx(k≠0),因为正比例函数y=kx的图象经过点(-1,2),所以2=-k,解得:k=-2,所以y=-2x,把这四个选项中的点的坐标分别代入y=-2x中,等号成立的点就在正比例函数y=-2x的图象上,所以这个图象必经过点(1,-2).故选D.9.B解析:B【解析】【分析】【详解】解:如图,设直线AB的解析式为y=kx+b,则4+=1200 {5k+b=1650k b,解得450 {600 kb==-故直线AB的解析式为y=450x﹣600,当x=2时,y=450×2﹣600=300,300÷2=150(m2)故选B.【点睛】本题考查一次函数的应用.10.D解析:D【解析】【分析】【详解】∵边长为122112+=∴2-1∵A在数轴上原点的左侧,∴点A表示的数为负数,即12故选D11.B解析:B【解析】【分析】由矩形ABCD可得:S△AOD=14S矩形ABCD,又由AB=15,BC=20,可求得AC的长,则可求得OA与OD的长,又由S△AOD=S△APO+S△DPO=12OA•PE+12OD•PF,代入数值即可求得结果.【详解】连接OP,如图所示:∵四边形ABCD 是矩形,∴AC =BD ,OA =OC =12AC ,OB =OD =12BD ,∠ABC =90°, S △AOD =14S 矩形ABCD , ∴OA =OD =12AC , ∵AB =15,BC =20, ∴AC 22AB BC +221520+25,S △AOD =14S 矩形ABCD =14×15×20=75, ∴OA =OD =252, ∴S △AOD =S △APO +S △DPO =12OA •PE +12OD •PF =12OA •(PE +PF )=12×252(PE +PF )=75,∴PE +PF =12. ∴点P 到矩形的两条对角线AC 和BD 的距离之和是12.故选B .【点睛】本题考查了矩形的性质、勾股定理、三角形面积.熟练掌握矩形的性质和勾股定理是解题的关键.12.C解析:C【解析】试题解析:由于销售最多的颜色为红色,且远远多于其他颜色,所以选择多进红色运动装的主要根据众数.故选C .考点:统计量的选择.13.A解析:A【解析】【分析】首先写出函数的解析式,根据函数的特点即可确定.【详解】由题意得:s与t的函数关系式为s=600-200t,其中0≤t≤3,所以函数图象是A.故选A.【点睛】本题主要考查函数的图象的知识点,解答时应看清函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.14.D解析:D【解析】【分析】【详解】解:∵AB=2.5米,AC=0.7米,∴BC(米).∵梯子的顶部下滑0.4米,∴BE=0.4米,∴EC=BC﹣0.4=2(米),∴DC(米),∴梯子的底部向外滑出AD=1.5﹣0.7=0.8(米).故选D.【点睛】此题主要考查了勾股定理在实际生活中的应用,关键是掌握直角三角形中,两直角边的平方和等于斜边的平方.15.A解析:A【解析】【分析】根据菱形的性质可知对角线平分对角,从而可知∠ABD=∠CBD=60°,从而可知△BCD是等边三角形,进而可知答案.【详解】∵∠ABC=120°,四边形ABCD是菱形∴∠CBD=60°,BC=CD∴△BCD是等边三角形∵BD=4∴BC=4故答案选A.【点睛】本题考查的是菱形的性质,能够掌握菱形的性质是解题的关键.二、填空题16.答案不唯一如∠ACB=90°或∠BAC=45°或∠B=45°【解析】【分析】先证明四边形ADCF是平行四边形再证明AC=DF即可再利用∠ACB=90°得出答案即可【详解】∠ACB=90°时四边形AD解析:答案不唯一,如∠ACB=90°或∠BAC=45°或∠B=45°【解析】【分析】先证明四边形ADCF是平行四边形,再证明AC=DF即可,再利用∠ACB=90°得出答案即可.【详解】∠ACB=90°时,四边形ADCF是正方形,理由:∵E是AC中点,∴AE=EC,∵DE=EF,∴四边形ADCF是平行四边形,∵AD=DB,AE=EC,∴DE=12 BC,∴DF=BC,∵CA=CB,∴AC=DF,∴四边形ADCF是矩形,点D. E分别是边AB、AC的中点,∴DE//BC,∵∠ACB=90°,∴∠AED=90°,∴矩形ADCF是正方形.故答案为∠ACB=90°.【点睛】此题考查正方形的判定,解题关键在于掌握判定法则17.2【解析】【分析】先利用完全平方公式对所求式子进行变形然后代入x的值进行计算即可【详解】∵x=-1∴x2+2x+1=(x+1)2=(-1+1)2=2故答案为:2【点睛】本题考查了代数式求值涉及了因式解析:2【解析】【分析】先利用完全平方公式对所求式子进行变形,然后代入x的值进行计算即可.【详解】∵,∴x2+2x+1=(x+1)22=2,故答案为:2.【点睛】本题考查了代数式求值,涉及了因式分解,二次根式的性质等,熟练掌握相关知识是解题的关键.18.【解析】【分析】二次根式有意义就隐含条件b>0由ab <0先判断出ab 的符号再进行化简即可【详解】若ab <0且代数式有意义;故有b >0a <0;则代数式=|a|=-a 故答案为:-a 【点睛】本题主要考查二解析:-【解析】【分析】二次根式有意义,就隐含条件b>0,由ab <0,先判断出a 、b 的符号,再进行化简即可.【详解】若ab <0故有b >0,a <0;.故答案为:.【点睛】本题主要考查二次根式的化简方法与运用:当a >0;当a <0;当a=0.19.x >1【解析】【分析】【详解】解:依题意可得解得所以函数的自变量的取值范围是解析:x >1【解析】【分析】【详解】解:依题意可得10x ->,解得1x >,所以函数的自变量x 的取值范围是1x >20.20【解析】【分析】通过矩形的性质可得再根据∠AOB=120°可证△AOD 是等边三角形即可求出OD 的长度再通过证明四边形CODE 是菱形即可求解四边形CODE 的周长【详解】∵四边形ABCD 是矩形∴∵∠解析:20【解析】【分析】通过矩形的性质可得OD OA OB OC ===,再根据∠AOB=120°,可证△AOD 是等边三角形,即可求出OD 的长度,再通过证明四边形CODE 是菱形,即可求解四边形CODE 的周长.【详解】∵四边形ABCD 是矩形∴OD OA OB OC ===∵∠AOB=120°∴18060AOD AOB =︒-=︒∠∠∴△AOD 是等边三角形∵5AD =∴5OD OA ==∴5OD OC ==∵CE//BD ,DE//AC∴四边形CODE 是平行四边形∵5OD OC ==∴四边形CODE 是菱形∴5OD OC DE CE ====∴四边形CODE 的周长20OD OC DE CE =+++=故答案为:20.【点睛】本题考查了四边形的周长问题,掌握矩形的性质、等边三角形的性质、菱形的性质以及判定定理是解题的关键.21.大于【解析】【分析】根据一次函数的性质当k <0时y 随x 的增大而减小【详解】∵一次函数y =−2x +1中k =−2<0∴y 随x 的增大而减小∵x1<x2∴y1>y2故答案为>【点睛】此题主要考查了一次函数的解析:大于【解析】【分析】根据一次函数的性质,当k <0时,y 随x 的增大而减小.【详解】∵一次函数y =−2x +1中k =−2<0,∴y 随x 的增大而减小,∵x 1<x 2,∴y 1>y 2.故答案为>.【点睛】此题主要考查了一次函数的性质,关键是掌握一次函数y =kx +b ,当k >0时,y 随x 的增大而增大,当k <0时,y 随x 的增大而减小.22.①③④【解析】【分析】根据y1=kx+b 和y2=x+a 的图象可知:k <0a <0所以当x >3时相应的x 的值y1图象均低于y2的图象【详解】根据图示及数据可知:①k<0正确;②a<0原来的说法错误;③方解析:①③④【解析】【分析】根据y1=kx+b和y2=x+a的图象可知:k<0,a<0,所以当x>3时,相应的x的值,y1图象均低于y2的图象.【详解】根据图示及数据可知:①k<0正确;②a<0,原来的说法错误;③方程kx+b=x+a的解是x=3,正确;④当x>3时,y1<y2正确.故答案是:①③④.【点睛】考查一次函数的图象,考查学生的分析能力和读图能力,一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.23.2【解析】【分析】根据平行四边形的性质可得出AD∥BC则∠AEB=∠CBE 再由∠ABE=∠CBE则∠AEB=∠ABE则AE=AB从而求出DE【详解】解:∵四边形ABCD是平行四边形∴AD∥BC∴∠A解析:2【解析】【分析】根据平行四边形的性质,可得出AD∥BC,则∠AEB=∠CBE,再由∠ABE=∠CBE,则∠AEB=∠ABE,则AE=AB,从而求出DE.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵∠B的平分线BE交AD于点E,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AE=AB,∵AB=3,BC=5,∴DE=AD-AE=BC-AB=5-3=2.故答案为2.【点睛】本题考查了平行四边形的性质、角平分线的定义,解题的关键是掌握平行四边形的性质:对边相等.24.33【解析】【分析】根据平均数的公式即可求出答案将数据按照由小到大的顺序重新排列中间两个数的平均数即是中位数根据方差的公式计算即可得到这组数据的方差【详解】平均数=将数据重新排列是:12233445解析:3, 3, 32. 【解析】 【分析】根据平均数的公式即可求出答案,将数据按照由小到大的顺序重新排列,中间两个数的平均数即是中位数,根据方差的公式计算即可得到这组数据的方差.【详解】 平均数=1(12533424)38⨯+++++++=,将数据重新排列是:1、2、2、3、3、4、4、5,∴中位数是3332+=, 方差=222221(13)2(23)2(33)2(43)(53)8⎡⎤⨯-+⨯-+⨯-+⨯-+-⎣⎦=32, 故答案为:3,3,32. 【点睛】 此题考查计算能力,计算平均数,中位数,方差,正确掌握各计算的公式是解题的关键. 25.2或25或3或8【解析】【分析】【详解】解:∵AD=10点Q 是BC 的中点∴BQ =BC=×10=5如图1PQ=BQ=5时过点P 作PE ⊥BC 于E 根据勾股定理QE=∴BE=BQ ﹣QE=5﹣3=2∴AP=B解析:2或2.5或3或8.【解析】【分析】【详解】解:∵AD=10,点Q 是BC 的中点,∴BQ=12BC=12×10=5, 如图1,PQ=BQ=5时,过点P 作PE ⊥BC 于E ,根据勾股定理,2222543PQ PE -=-=,∴BE=BQ ﹣QE=5﹣3=2,∴AP=BE=2;②如图2,BP=BQ=5时,过点P 作PE ⊥BC 于E ,根据勾股定理,BE=2222-=-=,∴AP=BE=3;543PB PE③如图3,PQ=BQ=5且△PBQ为钝角三角形时,BE=QE+BQ=3+5=8,AP=BE=8,④若BP=PQ,如图4,过P作PE⊥BQ于E,则BE=QE=2.5,∴AP=BE=2.5.综上所述,AP的长为2或3或8或2.5.故答案为2或3或8或2.5.【点睛】本题考查等腰三角形的判定;勾股定理;矩形的性质;注意分类讨论是本题的解题关键.三、解答题26.见解析.【解析】【分析】通过证明△EOB≌△FOD得出EO=FO,结合G、H分别为OB、OD的中点,可利用对角线互相平分的四边形是平行四边形进行证明.【详解】证明:∵四边形ABCD为平行四边形,∴BO=DO,AD=BC且AD∥BC.∴∠ADO=∠CBO.又∵∠EOB=∠FOD,∴△EOB≌△FOD(ASA).∴EO=FO.又∵G、H分别为OB、OD的中点,∴GO=HO.∴四边形GEHF为平行四边形.【点睛】本题考查了平行四边形的判定与性质,熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.27.(1) 每套队服150元,每个足球100元;(2) 购买的足球数等于50个时,则在两家商场购买一样合算;购买的足球数多于50个时,则到乙商场购买合算;购买的足球数少于50个时,则到甲商场购买合算.【解析】试题分析:(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据两套队服与三个足球的费用相等列出方程,解方程即可;(2)根据甲、乙两商场的优惠方案即可求解;(3)先求出到两家商场购买一样合算时足球的个数,再根据题意即可求解.解:(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据题意得2(x+50)=3x,解得x=100,x+50=150.答:每套队服150元,每个足球100元;(2)到甲商场购买所花的费用为:150×100+100(a﹣)=100a+14000(元),到乙商场购买所花的费用为:150×100+0.8×100•a=80a+15000(元);(3)当在两家商场购买一样合算时,100a+14000=80a+15000,解得a=50.所以购买的足球数等于50个时,则在两家商场购买一样合算;购买的足球数多于50个时,则到乙商场购买合算;购买的足球数少于50个时,则到甲商场购买合算考点:一元一次方程的应用.28.(1)4;(2)8、1.2、7.5;(3)从平均数看,甲成绩优于乙的成绩;从方差看,甲的方差小,说明甲的成绩稳定.【解析】【分析】(1)根据甲的成绩频数分布图及题意列出10﹣(1+2+2+1),计算即可得到答案;(2)根据平均数公式、中位数的求法和方差公式计算得到答案;(3)从平均数和方差进行分析即可得到答案.【详解】解:(1)甲选手命中8环的次数为10﹣(1+2+2+1)=4,补全图形如下:(2)a=67284921010+⨯+⨯+⨯+=8(环),c=110×[(6﹣8)2+2×(7﹣8)2+4×(8﹣8)2+2×(9﹣8)2+(10﹣8)2]=1.2,b=872+=7.5,故答案为:8、1.2、7.5;(3)从平均数看,甲成绩优于乙的成绩;从方差看,甲的方差小,说明甲的成绩稳定.【点睛】本题考查频数分布直方图、平均数、中位数和方差,解题的关键是读懂频数分布直方图,掌握平均数、中位数和方差的求法.29.(1)CH是从村庄C到河边的最近路,理由见解析;(2)原来的路线AC的长为2.5千米.【解析】【分析】(1)根据勾股定理的逆定理解答即可;(2)根据勾股定理解答即可【详解】(1)是,理由是:在△CHB中,∵CH2+BH2=(2.4)2+(1.8)2=9BC2=9∴CH2+BH2=BC2∴CH⊥AB,所以CH是从村庄C到河边的最近路(2)设AC=x在Rt △ACH 中,由已知得AC =x ,AH =x ﹣1.8,CH =2.4由勾股定理得:AC 2=AH 2+CH 2∴x 2=(x ﹣1.8)2+(2.4)2解这个方程,得x =2.5,答:原来的路线AC 的长为2.5千米.【点睛】此题考查勾股定理及其逆定理的应用,熟练掌握基础知识是解题的关键.30.(Ⅰ)28. (Ⅱ)平均数是1.52. 众数为1.8. 中位数为1.5. (Ⅲ)200只.【解析】分析:(Ⅰ)用整体1减去所有已知的百分比即可求出m 的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)用总数乘以样本中2.0kg 的鸡所占的比例即可得解.解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;(Ⅱ)观察条形统计图, ∵ 1.05 1.211 1.514 1.816 2.04 1.5251114164x ⨯+⨯+⨯+⨯+⨯==++++, ∴这组数据的平均数是1.52.∵在这组数据中,1.8出现了16次,出现的次数最多,∴这组数据的众数为1.8. ∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有1.5 1.5 1.52+=, ∴这组数据的中位数为1.5.(Ⅲ)∵在所抽取的样本中,质量为2.0kg 的数量占8%.∴由样本数据,估计这2500只鸡中,质量为2.0kg 的数量约占8%.有25008%200⨯=.∴这2500只鸡中,质量为2.0kg 的约有200只.点睛:此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.。
2020-2021下海民办华育中学八年级数学下期末试题(含答案)

2020-2021下海民办华育中学八年级数学下期末试题(含答案)一、选择题1.直角三角形两直角边长为a,b,斜边上高为h,则下列各式总能成立的是()A.ab=h2B.a2+b2=2h2C.111a b h+=D.222111a b h+=2.计算12(75+313﹣48)的结果是()A.6B.43C.23+6D.12 3.对于函数y=2x+1下列结论不正确是()A.它的图象必过点(1,3)B.它的图象经过一、二、三象限C.当x>12时,y>0D.y值随x值的增大而增大4.如图,菱形中,分别是的中点,连接,则的周长为()A.B.C.D.5.某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是()A.参加本次植树活动共有30人B.每人植树量的众数是4棵C.每人植树量的中位数是5棵D.每人植树量的平均数是5棵6.若一个直角三角形的两边长为12、13,则第三边长为()A.5B.17C.5或17D.5或7.如图,一次函数y=mx+n与y=mnx(m≠0,n≠0)在同一坐标系内的图象可能是()A .B .C .D .8.若正比例函数的图象经过点(,2),则这个图象必经过点( ). A .(1,2)B .(,)C .(2,)D .(1,) 9.直角三角形中,有两条边长分别为3和4,则第三条边长是( )A .1B .5C .7D .5或7 10.将根24cm 的筷子,置于底面直径为15cm ,高8cm 的圆柱形水杯中,设筷子露在杯子外面的长度hcm ,则h 的取值范围是( )A .h 17cm ≤B .h 8cm ≥C .7cm h 16cm ≤≤D .15cm h 16cm ≤≤ 11.下列运算正确的是( )A .235+=B .32﹣2=3C .236⨯=D .632÷= 12.如图,已知△ABC 中,AB=10 ,AC=8 ,BC = 6 ,DE 是AC 的垂直平分线,DE 交AB 于点D ,交AC 于点E ,连接CD ,则CD 的长度为( )A .3B .4C .4.8D .5二、填空题13.如图.过点A 1(1,0)作x 轴的垂线,交直线y=2x 于点B 1;点A 2与点O 关于直线A 1B 1对称,过点A 2作x 轴的垂线,交直线y=2x 于点B 2;点A 3与点O 关于直线A 2B 2对称.过点A 3作x 轴的垂线,交直线y=2x 于点B 3;…按此规律作下去.则点A 3的坐标为_____,点B n 的坐标为_____.14.如图所示,BE AC ⊥于点D ,且AB BC =,BD ED =,若54ABC ∠=,则E ∠=___.15.已知函数y =2x +m -1是正比例函数,则m =___________.16.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为 .17.直角三角形两直角边长分别为23+1,23-1,则它的斜边长为____.18.已知数据:﹣1,4,2,﹣2,x 的众数是2,那么这组数据的平均数为_____.19.一组数据:1、2、5、3、3、4、2、4,它们的平均数为_______,中位数为_______,方差是_______.20.如图,直线1y kx b =+过点A(0,2),且与直线2y mx =交于点P(1,m),则不等式组mx > +kx b > mx -2的解集是_________三、解答题21.已知:如图,在平行四边形ABCD中,E、F是对角线AC上的两点,且AE=CF.求证:∠EBF=∠EDF.22.如图①,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB(1)求证:△BCP≌△DCP;(2)求证:∠DPE=∠ABC;(3)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE=度.23.某商场同时购进甲、乙两种商品共100件,其进价和售价如下表:商品名称甲乙进价(元/件)4090售价(元/件)60120设其中甲种商品购进x件,商场售完这100件商品的总利润为y元.(Ⅰ)写出y关于x的函数关系式;(Ⅱ)该商场计划最多投入8000元用于购买这两种商品,①至少要购进多少件甲商品?②若销售完这些商品,则商场可获得的最大利润是多少元?24.如图,将□ABCD的对角线BD向两个方向延长至点E和点F,使BE=DF,证:四边形AECF是平行四边形.25.在平面直角坐标系中,一次函数y=kx+b (k ,b 都是常数,且k≠0)的图象经过点(1,0)和(0,2).(1)当﹣2<x≤3时,求y 的取值范围;(2)已知点P (m ,n )在该函数的图象上,且m ﹣n=4,求点P 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】【详解】解:根据直角三角形的面积可以导出:斜边c=ab h. 再结合勾股定理:a 2+b 2=c 2. 进行等量代换,得a 2+b 2=222a b h , 两边同除以a 2b 2, 得222111a b h +=. 故选D . 2.D解析:D【解析】【分析】【详解】12===. 故选:D. 3.C解析:C【解析】【分析】利用k 、b 的值依据函数的性质解答即可.【详解】解:当x =1时,y =3,故A 选项正确,∵函数y=2x+1图象经过第一、二、三象限,y随x的增大而增大,∴B、D正确,∵y>0,∴2x+1>0,∴x>﹣12,∴C选项错误,故选:C.【点睛】此题考查一次函数的性质,熟记性质并运用解题是关键.4.D解析:D【解析】【分析】首先根据菱形的性质证明△ABE≌△ADF,然后连接AC可推出△ABC以及△ACD为等边三角形.根据等边三角形三线合一的性质又可推出△AEF是等边三角形.根据勾股定理可求出AE的长,继而求出周长.【详解】解:∵四边形ABCD是菱形,∴AB=AD=BC=CD=2cm,∠B=∠D,∵E、F分别是BC、CD的中点,∴BE=DF,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS),∴AE=AF,∠BAE=∠DAF.连接AC,∵∠B=∠D=60°,∴△ABC与△ACD是等边三角形,∴AE⊥BC,AF⊥CD,∴∠BAE=∠DAF=30°,∴∠EAF=60°,BE=AB=1cm,∴△AEF是等边三角形,AE=,∴周长是.故选:D.【点睛】本题主要考查了菱形的性质、全等三角形的判定和性质、等边三角形的判定和性质以及勾股定理,涉及知识点较多,也考察了学生推理计算的能力.5.D解析:D【解析】试题解析:A、∵4+10+8+6+2=30(人),∴参加本次植树活动共有30人,结论A正确;B、∵10>8>6>4>2,∴每人植树量的众数是4棵,结论B正确;C、∵共有30个数,第15、16个数为5,∴每人植树量的中位数是5棵,结论C正确;D、∵(3×4+4×10+5×8+6×6+7×2)÷30≈4.73(棵),∴每人植树量的平均数约是4.73棵,结论D不正确.故选D.考点:1.条形统计图;2.加权平均数;3.中位数;4.众数.6.D解析:D【解析】【分析】根据告诉的两边长,利用勾股定理求出第三边即可.注意13,12可能是两条直角边也可能是一斜边和一直角边,所以得分两种情况讨论.【详解】当12,13为两条直角边时,第三边==,当13,12分别是斜边和一直角边时,第三边==5.故选D.【点睛】本题考查了勾股定理的知识,题目中渗透着分类讨论的数学思想.7.C解析:C【解析】【分析】根据m、n同正,同负,一正一负时利用一次函数的性质进行判断.【详解】解:①当mn>0时,m、n同号,y=mnx过一三象限;同正时,y=mx+n经过一、二、三象限,同负时,y=mx+n过二、三、四象限;②当mn<0时,m、n异号,y=mnx过二四象限,m>0,n<0时,y=mx+n经过一、三、四象限;m<0,n>0时,y=mx+n过一、二、四象限;故选:C.【点睛】本题考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.8.D解析:D【解析】设正比例函数的解析式为y=kx(k≠0),因为正比例函数y=kx的图象经过点(-1,2),所以2=-k,解得:k=-2,所以y=-2x,把这四个选项中的点的坐标分别代入y=-2x中,等号成立的点就在正比例函数y=-2x的图象上,所以这个图象必经过点(1,-2).故选D.9.D解析:D【解析】【分析】分第三边为直角边或斜边两种情况,根据勾股定理分别求第三边.【详解】当第三边为直角边时,4为斜边,第三边;当第三边为斜边时,3和4为直角边,第三边=5,故选:D.【点睛】本题考查了勾股定理.关键是根据第三边为直角边或斜边,分类讨论,利用勾股定理求解.10.C解析:C【解析】【分析】观察图形,找出图中的直角三角形,利用勾股定理解答即可.【详解】首先根据圆柱的高,知筷子在杯内的最小长度是8cm,则在杯外的最大长度是24-8=16cm;再根据勾股定理求得筷子在杯内的最大长度是(如图)AC=2222158AB BC+=+=17,则在杯外的最小长度是24-17=7cm,所以h的取值范围是7cm≤h≤16cm,故选C.【点睛】本题考查了勾股定理的应用,注意此题要求的是筷子露在杯外的取值范围.主要是根据勾股定理求出筷子在杯内的最大长度.11.C解析:C【解析】【分析】根据二次根式得加减法法则及乘除法法则逐一计算即可得答案.【详解】23B.3222,故该选项计算错误,2323⨯6,故该选项计算正确,6363÷2,故该选项计算错误.故选:C.【点睛】本题考查二次根式得运算,熟练掌握运算法则是解题关键.12.D解析:D【解析】【分析】【详解】已知AB=10,AC=8,BC=8,根据勾股定理的逆定理可判定△ABC为直角三角形,又因DE为AC边的中垂线,可得DE⊥AC,AE=CE=4,所以DE为三角形ABC 的中位线,即可得DE=12BC=3,再根据勾股定理求出CD=5,故答案选D.考点:勾股定理及逆定理;中位线定理;中垂线的性质.二、填空题13.(40)(2n﹣12n)【解析】【分析】先根据题意求出A2点的坐标再根据A 2点的坐标求出B2的坐标以此类推总结规律便可求出点A3Bn的坐标【详解】解:∵点A1坐标为(10)∴OA1=1过点A1作x轴解析:(4,0)(2n﹣1,2n)【解析】【分析】先根据题意求出A2点的坐标,再根据A2点的坐标求出B2的坐标,以此类推总结规律便可求出点A3、B n的坐标.【详解】解:∵点A1坐标为(1,0),∴OA1=1,过点A1作x轴的垂线交直线于点B1,可知B1点的坐标为(1,2),∵点A2与点O关于直线A1B1对称,∴OA1=A1A2=1,∴OA2=1+1=2,∴点A2的坐标为(2,0),B2的坐标为(2,4),∵点A3与点O关于直线A2B2对称.故点A3的坐标为(4,0),B3的坐标为(4,8),此类推便可求出点A n的坐标为(2n﹣1,0),点B n的坐标为(2n﹣1,2n).故答案为(4,0),(2n﹣1,2n).考点:一次函数图象上点的坐标特征.14.27°【解析】【分析】连接AE先证Rt△ABD≌Rt△CBD得出四边形ABCE是菱形根据菱形的性质可推导得到∠E的大小【详解】如下图连接AE∵BE⊥AC∴∠ADB=∠BDC=90°∴△ABD和△CB解析:27°【解析】【分析】连接AE,先证Rt△ABD≌Rt△CBD,得出四边形ABCE是菱形,根据菱形的性质可推导得到∠E的大小.【详解】如下图,连接AE∵BE⊥AC,∴∠ADB=∠BDC=90°∴△ABD 和△CBD 是直角三角形在Rt △ABD 和Rt △CBD 中AB BC BD BD =⎧⎨=⎩∴Rt △ABD ≌Rt △CBD∴AD=DC∵BD=DE∴在四边形ABCE 中,对角线垂直且平分∴四边形ABCE 是菱形∵∠ABC=54°∴∠ABD=∠CED=27°故答案为:27°【点睛】本题考查菱形的证明和性质的运用,解题关键是先连接AE ,然后利用证Rt △ABD ≌Rt △CBD 推导菱形.15.1【解析】分析:依据正比例函数的定义可得m-1=0求解即可详解:∵y =2x +m -1是正比例函数∴m-1=0解得:m=1故答案为:1点睛:本题考查了正比例函数的定义解题的关键是掌握正比例函数的定义解析:1【解析】分析:依据正比例函数的定义可得m-1=0,求解即可,详解:∵y =2x +m -1是正比例函数,∴m-1=0.解得:m=1.故答案为:1.点睛:本题考查了正比例函数的定义,解题的关键是掌握正比例函数的定义.16.【解析】试题解析:根据题意将周长为8的△ABC 沿边BC 向右平移1个单位得到△DEF 则AD=1BF=BC+CF=BC+1DF=AC 又∵AB+BC+AC=10∴四边形ABFD 的周长=AD+AB+BF+D解析:【解析】试题解析:根据题意,将周长为8的△ABC 沿边BC 向右平移1个单位得到△DEF , 则AD=1,BF=BC+CF=BC+1,DF=AC ,又∵AB+BC+AC=10,∴四边形ABFD 的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.考点:平移的性质.17.【解析】【分析】已知直角三角形的两条直角边由勾股定理直角三角形两条直角边的平方和等于斜边的平方即可求得斜边的长度【详解】由勾股定理得(2 +1)2+(2 −1)2=斜边2斜边=故答案为:【点睛】勾股【解析】【分析】已知直角三角形的两条直角边,由勾股定理直角三角形两条直角边的平方和等于斜边的平方,即可求得斜边的长度.【详解】由勾股定理得( +1)2+( −1)2=斜边2,斜边,【点睛】勾股定理:直角三角形两条直角边的平方和等于斜边的平方,我们应熟练正确的运用这个定理,在以后复杂的题目中这是最为常见也最为基础的定理公式.18.【解析】试题分析:数据:﹣142﹣2x 的众数是2即的2次数最多;即x=2则其平均数为:(﹣1+4+2﹣2+2)÷5=1故答案为1考点:1众数;2算术平均数解析:【解析】试题分析:数据:﹣1,4,2,﹣2,x 的众数是2,即的2次数最多;即x=2.则其平均数为:(﹣1+4+2﹣2+2)÷5=1.故答案为1.考点:1.众数;2.算术平均数.19.33【解析】【分析】根据平均数的公式即可求出答案将数据按照由小到大的顺序重新排列中间两个数的平均数即是中位数根据方差的公式计算即可得到这组数据的方差【详解】平均数=将数据重新排列是:12233445解析:3, 3,32. 【解析】【分析】根据平均数的公式即可求出答案,将数据按照由小到大的顺序重新排列,中间两个数的平均数即是中位数,根据方差的公式计算即可得到这组数据的方差.【详解】平均数=1(12533424)38⨯+++++++=,将数据重新排列是:1、2、2、3、3、4、4、5,∴中位数是3332+=, 方差=222221(13)2(23)2(33)2(43)(53)8⎡⎤⨯-+⨯-+⨯-+⨯-+-⎣⎦=32,故答案为:3,3,32. 【点睛】 此题考查计算能力,计算平均数,中位数,方差,正确掌握各计算的公式是解题的关键.20.【解析】【分析】【详解】解:由于直线过点A (02)P (1m )则解得故所求不等式组可化为:mx >(m-2)x+2>mx-20>-2x+2>-2解得:1<x <2 解析:12x <<【解析】【分析】【详解】解:由于直线过点A (0,2),P (1,m ),则2k b m b +=⎧⎨=⎩,解得22k m b =-⎧⎨=⎩, 1(2)2y m x ∴=-+,故所求不等式组可化为:mx >(m-2)x+2>mx-2,0>-2x+2>-2,解得:1<x <2,三、解答题21.证明见解析.【解析】【分析】先连接BD ,交AC 于O ,由于AB=CD ,AD=CB ,根据两组对边相等的四边形是平行四边形,可知四边形ABBCD 是平行四边形,于是OA=OC ,OB=OD ,而AF=CF ,根据等式性质易得OE=OF ,再根据对角线互相平分的四边形是平行四边形可证四边形DEBF 是平行四边形,于是∠EBF=∠FDE .【详解】解:连结BD ,交AC 于点O .∵四边形ABCD 是平行四边形,∴OB=OD ,OA=OC.∵AE=CF ,∴OE=OF ,∴四边形BFDE 是平行四边形,∴∠EBF=∠EDF .22. (1)详见解析(2)详见解析(3)58【解析】【分析】(1)根据正方形的四条边都相等可得BC=DC ,对角线平分一组对角可得∠BCP=∠DCP ,然后利用“边角边”证明即可.(2)根据全等三角形对应角相等可得∠CBP=∠CDP ,根据等边对等角可得∠CBP=∠E ,然后求出∠DPE=∠DCE ,再根据两直线平行,同位角相等可得∠DCE=∠ABC ,从而得证.(3)根据(2)的结论解答:与(2)同理可得:∠DPE=∠ABC=58°.【详解】解:(1)证明:在正方形ABCD 中,BC=DC ,∠BCP=∠DCP=45°,∵在△BCP 和△DCP 中,BC DC BCP DCP PC PC =⎧⎪∠=∠⎨⎪=⎩,∴△BCP ≌△DCP (SAS ).(2)证明:由(1)知,△BCP ≌△DCP ,∴∠CBP=∠CDP .∵PE=PB ,∴∠CBP=∠E .∴∠CDP=∠E .∵∠1=∠2(对顶角相等),∴180°﹣∠1﹣∠CDP=180°﹣∠2﹣∠E ,即∠DPE=∠DCE .∵AB ∥CD ,∴∠DCE=∠ABC .∴∠DPE=∠ABC .(3)解:在菱形ABCD 中,BC=DC ,∠BCP=∠DCP ,在△BCP 和△DCP 中,BC DC BCP DCP PC PC =⎧⎪∠=∠⎨⎪=⎩∴△BCP ≌△DCP (SAS ),∴∠CBP=∠CDP ,∵PE=PB ,∴∠CBP=∠E ,∴∠DPE=∠DCE ,∵AB ∥CD ,∴∠DCE=∠ABC ,∴∠DPE=∠ABC=58°,故答案为:58.23.(Ⅰ)103000y x =-+;(Ⅱ)①至少要购进20件甲商品;②售完这些商品,则商场可获得的最大利润是2800元.【解析】【分析】(Ⅰ)根据总利润=(甲的售价-甲的进价)×甲的进货数量+(乙的售价-乙的进价)×乙的进货数量列关系式并化简即可得答案;(Ⅱ)①根据总成本最多投入8000元列不等式即可求出x 的范围,即可得答案;②根据一次函数的增减性确定其最大值即可.【详解】(Ⅰ)根据题意得:()()()604012090100103000y x x x =-+--=-+则y 与x 的函数关系式为103000y x =-+.(Ⅱ)()40901008000x x +-≤,解得20x ≥.∴至少要购进20件甲商品.103000y x =-+,∵100-<,∴y 随着x 的增大而减小∴当20x 时,y 有最大值,102030002800y =-⨯+=最大.∴若售完这些商品,则商场可获得的最大利润是2800元.【点睛】本题考查一次函数的实际应用及一元一次不等式的应用,熟练掌握一次函数的性质是解题关键.24.答案见解析【解析】【分析】首先连接AC 交EF 于点O ,由平行四边形ABCD 的性质,可知OA=OC ,OB=OD ,又因为BE=DF ,可得OE=OF ,即可判定AECF 是平行四边形.【详解】证明:连接AC 交EF 于点O ;∵平行四边形ABCD∴OA=OC,OB=OD∵BE=DF,∴OE=OF∴四边形AECF是平行四边形.【点睛】此题主要考查平行四边形的判定定理,关键是找出对角线互相平分,即可解题. 25.(1) ﹣4≤y<6;(2)点P的坐标为(2,﹣2) .【解析】【分析】利用待定系数法求一次函数解析式得出即可;(1)利用一次函数增减性得出即可.(2)根据题意得出n=﹣2m+2,联立方程,解方程即可求得.【详解】设解析式为:y=kx+b,将(1,0),(0,2)代入得:,解得:,∴这个函数的解析式为:y=﹣2x+2;(1)把x=﹣2代入y=﹣2x+2得,y=6,把x=3代入y=﹣2x+2得,y=﹣4,∴y的取值范围是﹣4≤y<6.(2)∵点P(m,n)在该函数的图象上,∴n=﹣2m+2,∵m﹣n=4,∴m﹣(﹣2m+2)=4,解得m=2,n=﹣2,∴点P的坐标为(2,﹣2).考点:1、待定系数法求一次函数的解析式,2、一次函数图象上点的坐标特征,3、一次函数的性质。
2024届上海市嘉定区名校数学八年级第二学期期末经典试题含解析

2024届上海市嘉定区名校数学八年级第二学期期末经典试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每题4分,共48分)1.一次函数y mx n =-+的图象经过第二、三、四象限,则化简22()m n n -+所得的结果是( )A .mB .m -C .2m n -D .2m n - 2.函数y =2x x -的自变量x 的取值范围是( ) A .x ≥0且x ≠2B .x ≥0C .x ≠2D .x >2 3.如图,四边形OABC 和四边形BDEF 都是正方形,反比例函数k y x =在第一象限的图象经过点E ,若两正方形的面积差为12,则k 的值为( )A .12B .6C .12-D .8 4.函数63y x =-的自变量x 的取值范围是( ) A .3x ≠B .3x >C .3x <D .3x = 5.若分式有意义,则x 应满足的条件是( ) A .x ≠0 B .x =2 C .x >2 D .x ≠26.共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三两个月投放单车数量的月平均增长率为x ,则所列方程正确的为( ) A .1000(1+x )2=1000+440B .1000(1+x )2=440C .440(1+x )2=1000D .1000(1+2x )=1000+440 7.如图,直线y mx =与双曲线k y x=交于A 、B 两点,过点A 作AM x ⊥轴,垂足为M ,连接BM ,若2ABM S ∆=,则k的值是()A.2 B.4 C.-2 D.-4 8.用公式解方程﹣3x2+5x﹣1=0,正确的是()A.x=5136-±B.x=5133-±C.x=5136±D.x=5133±9.如图,已知:函数和的图象交于点P(﹣3,﹣4),则根据图象可得不等式>的解集是()A.>﹣4 B.>﹣3C.>﹣2 D.<﹣310.已知P1(﹣3,y1),P2(2,y2)是一次函数y=﹣x﹣1的图象上的两个点,则y1,y2的大小关系是()A.y1=y2B.y1<y2C.y1>y2D.不能确定11.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠DBC的度数是()A.36°B.45°C.54°D.72°12.博物馆作为征集、典藏、陈列和研究代表自然和人类文化遗产实物的场所,其存在的目的是为公众提供知识、教育及欣赏服务.近年来,人们到博物馆学习参观的热情越来越高.年我国博物馆参观人数统计如下:小明研究了这个统计图,得出四个结论:①2012年到2018年,我国博物馆参观人数持续增长;②2019年末我国博物馆参观人数估计将达到10.82亿人次;③2012年到2018年,我国博物馆参观人数年增幅最大的是2017年;④2016年到2018年,我国博物馆参观人数平均年增长率超过10%.其中正确的是()A.①③B.①②③C.①②④D.①②③④二、填空题(每题4分,共24分)13.等腰梯形的上底是10cm,下底是16cm,高是4cm,则等腰梯形的周长为______cm.14.“折竹抵地”问题源自《九章算术》中,即:今有竹高一丈,末折抵地,去本四尺,问折者高几何?意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远,则折断后的竹子高度为_____尺.15.已知一次函数y=ax+b的图象经过点(﹣2,0)和点(0,﹣1),则不等式ax+b>0的解集是_____.16.把我们平时使用的一副三角板,如图叠放在一起,则∠ 的度数是___度.17.如果乘坐出租车所付款金额y(元)与乘坐距离x(千米)之间的函数图像由线段AB、线段BC和射线CD组成(如图所示),那么乘坐该出租车8(千米)需要支付的金额为__________元.18.如图,在矩形中,,是上的一点,将矩形沿折叠后,点落在边的点上,则的长为_________.三、解答题(共78分)19.(8分)如图,正方形ABCD 的边长为2, BC 边在x 轴上, BC 的中点与原点O 重合,过定点(2,0)M -与动点(0,)P t 的直线MP 记作l .(1)若l 的解析式为24y x =+,判断此时点A 是否在直线l 上,并说明理由;(2)当直线l 与AD 边有公共点时,求t 的取值范围.20.(8分)中央电视台举办的“中国诗词大会”节目受到中学生的广泛关注.某中学为了了解学生对观看“中国诗词大会”节目的喜爱程度,对该校部分学生进行了随机抽样调查,并绘制出如图所示的两幅统计图.在条形图中,从左向右依次为A 类(非常喜欢),B 类(较喜欢)C 类(一般),D 类(不喜欢).请结合两幅统计图,回答下列问题: (1)求本次抽样调查的人数;(2)请补全两幅统计图;(3)若该校有3000名学生,请你估计观看“中国诗词大会”节目较喜欢的学生人数.21.(8分)先化简,再求值:(1﹣22-m )22162m m m-÷-,其中m =1. 22.(10分)如图,在平行四边形ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是平行四边形ABCD 的对角线,//AG BD 交CB 的延长线于点G .(1)求证:四边形BEDF 是平行四边形.(2)若AE DE =,求G ∠的度数.23.(10分)已知:如图所示,菱形ABCD 中,E ,F 分别是CB ,CD 上的点,且BE=DF .(1)试说明:AE=AF ;(2)若∠B=60°,点E ,F 分别为BC 和CD 的中点,试说明:△AEF 为等边三角形.24.(10分)A 、B 两城相距900千米,一辆客车从A 城开往B 城,车速为每小时80千米,半小时后一辆出租车从B 城开往A 城,车速为每小时120千米.设客车出发时间为t (小时)(1)若客车、出租车距A 城的距离分别为y 1、y 2,写出y 1、y 2关于t 的函数关系式;(2)若两车相距100千米时,求时间t ;(3)已知客车和出租车在服务站D 处相遇,此时出租车乘客小王突然接到开会通知,需要立即返回,此时小王有两种选择返回B 城的方案,方案一:继续乘坐出租车到C 城,C 城距D 处60千米,加油后立刻返回B 城,出租车加油时间忽略不计;方案二:在D 处换乘客车返回B 城,试通过计算,分析小王选择哪种方式能更快到达B 城?25.(12分)(1)解分式方程:21233x x x-=--- (2)解不等式组3(2)41213x x x x --≥-⎧⎪+⎨-⎪⎩>,并在数轴上表示其解集. 26.某学校八年级开展英语拼写大赛,一班和二班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示:(1)根据图示填写下表班级中位数(分)众数(分)平均数(分)一班85二班100 85(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩比较好?(3)已知一班的复赛成绩的方差是70,请求出二班复试成绩的方差,并说明哪个班成绩比较稳定?参考答案一、选择题(每题4分,共48分)1、D【解题分析】根据题意可得﹣m<0,n<0,再进行化简即可.【题目详解】∵一次函数y=﹣mx+n的图象经过第二、三、四象限,∴﹣m<0,n<0,即m>0,n<0,22-()m n n=|m﹣n|+|n|=m﹣n﹣n=m﹣2n,【题目点拨】本题考查了二次根式的性质与化简以及一次函数的图象与系数的关系,熟练掌握一次函数的图象与性质是解题的关键.2、A【解题分析】由被开方数大于等于0,分母不等于0可得x≥0且x−1≠0,即x≥0且x≠1.故选A.【考点】本题考查函数自变量的取值范围.3、A【解题分析】设正方形OABC、BDEF的边长分别为a和b,则可表示出D(a,a-b),F(a+b,a),根据反比例函数图象上点的坐标特征得到E(a+b,ka b+),由于点E与点D的纵坐标相同,所以ka b+=a-b,则a2-b2=k,然后利用正方形的面积公式易得k=1.【题目详解】解:设正方形OABC、BDEF的边长分别为a和b,则D(a,a-b),F(a+b,a),所以E(a+b,ka b+),所以ka b+=a-b,∴(a+b)(a-b)=k,∴a2-b2=k,∵两正方形的面积差为1,∴k=1.故选:A.【题目点拨】本题考查了反比例函数比例系数k的几何意义:在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.也考查了正方形的性质.4、A【解题分析】根据反比例函数自变量不为0,即可得解.【题目详解】解:∵函数为反比例函数,其自变量不为0,∴3x ≠故答案为A .【题目点拨】此题主要考查反比例函数的性质,熟练掌握,即可解题.5、D【解题分析】本题主要考查分式有意义的条件:分母不能为1.【题目详解】解:由代数式有意义可知:x ﹣2≠1,∴x≠2,故选:D .【题目点拨】本题考查的是分式有意义的条件,当分母不为1时,分式有意义.6、A【解题分析】根据题意可以列出相应的一元二次方程,从而可以解答本题.【题目详解】解:由题意可得,1000(1+x )2=1000+440,故选:A .【题目点拨】此题主要考查一元二次方程的应用,解题的关键是根据题意找到等量关系进行列方程.7、A【解题分析】由题意得:2ABM AOM S S =,又1||2AOM S k =,则k 的值即可求出. 【题目详解】设(,)A x y ,∴直线y mx =与双曲线k y x=交于A 、B 两点,(,)B x y ∴--,1||2BOM Sxy ∴=,1||2AOM S xy = , BOM AOM S S ∴=, 122||12ABM AOM BOM AOM AOM S S S S S k ∴=+====,则2k =±. 又由于反比例函数位于一三象限,0k >,故2k =.故选A.【题目点拨】本题主要考查了反比例函数k y x =中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为||k ,是经常考查的一个知识点.8、C【解题分析】求出b 2-4ac 的值,再代入公式求出即可.【题目详解】解:-3x 2+5x-1=0,b 2-4ac=52-4×(-3)×(-1)=13,x=56± 故选C .【题目点拨】本题考查了解一元二次方程的应用,能正确利用公式解一元二次方程是解此题的关键.9、B【解题分析】根据一次函数的图象和两函数的交点坐标即可得出答案.【题目详解】∵函数y=2x+b 和y=ax-2的图象交于点(-3,-4),则根据图象可得不等式2x+b >ax-2的解集是x >-3,故选B .【题目点拨】此题考查了一次函数与一元一次不等式的应用,主要考查学生的观察能力和理解能力,题型较好,难度不大.10、C【解题分析】根据P1(-3,y1),P1(1,y1)是一次函数y=-x-1的图象上的两个点,由-3<1,结合一次函数y=-x-1在定义域内是单调递减函数,判断出y1,y1的大小关系即可.【题目详解】∵P1(-3,y1),P1(1,y1)是一次函数y=-x-1的图象上的两个点,且-3<1,∴y1>y1.故选C.【题目点拨】此题主要考查了一次函数图象上点的坐标特征,要熟练掌握.11、A【解题分析】由已知条件开始,通过线段相等,得到角相等,再由三角形内角和求出各个角的大小.【题目详解】解:设∠A=x°,∵BD=AD,∴∠A=∠ABD=x°,∠BDC=∠A+∠ABD=2x°,∵BD=BC,∴∠BDC=∠BCD=2x°,∵AB=AC,∴∠ABC=∠BCD=2x°,在△ABC中x+2x+2x=180,解得:x=36,∴∠C=∠BDC=72°,∴∠DBC=36°,故选:A.【题目点拨】此题考查了等腰三角形的性质;熟练掌握等腰三角形的性质,以及三角形内角和定理,得到各角之间的关系式解答本题的关键.12、A【解题分析】根据条形统计图中的信息对4个结论进行判断即可.【题目详解】由条形统计图可知,从2012年到2018年,博物馆参观人数呈现持续增长态势,故①正确;从2012年到2018年增加了10.08-5.64=4.44(亿人次),平均每年增加4.44÷6=0.74(亿人次)则2019年将会达到10.08+0.74=10.82(亿人次),故②正确;2013年增加了6.34-5.64=0.7(亿人次),2014年增加了7.18-6.34=0.84(亿人次),2015年增加了7.81-7.18=0.63(亿人次),2016年增加了8.50-7.81=0.69(亿人次),2017年增加了9.72-8.50=1.22(亿人次),2018年增加了10.08-9.72=0.36(亿人次),则2017年增幅最大,故③正确;设从2016年到2018年年平均增长率为x,则8.50(1+x)2=10.08解得x0.09(负值已舍),即年平均增长约为9%,故④错误;综上可得正确的是①②③.故选:B.【题目点拨】此题考查了条形统计图,弄清题中图形中的数据是解本题的关键.二、填空题(每题4分,共24分)13、1.【解题分析】首先根据题意画出图形,过A,D作下底BC的垂线,从而可求得BE的长,根据勾股定理求得AB的长,这样就可以求得等腰梯形的周长了.【题目详解】解:过A,D作下底BC的垂线,则BE=CF=12(16-10)=3cm,在直角△ABE中根据勾股定理得到:2234,所以等腰梯形的周长=10+16+5×2=1cm.故答案为:1.【题目点拨】本题考查等腰梯形的性质、勾股定理.注意掌握数形结合思想的应用.14、4.1.【解题分析】根据题意结合勾股定理得出折断处离地面的长度即可.【题目详解】解:设折断处离地面的高度OA是x尺,根据题意可得:x1+41=(10﹣x)1,解得:x=4.1,答:折断处离地面的高度OA是4.1尺.故答案为:4.1.【题目点拨】本题主要考查了勾股定理的应用,在本题中理解题意,知道柱子折断后刚好构成一个直角三角形是解题的关键.15、x<﹣2【解题分析】根据点A和点B的坐标得到一次函数图象经过第二、三、四象限,根据函数图象得到当x>-2时,图象在x轴上方,即y>1.【题目详解】解:∵一次函数y=ax+b的图象经过(-2,1)和点(1,-1),∴一次函数图象经过第二、三、四象限,∴当x<-2时,y>1,即ax+b>1,∴关于x的不等式ax+b<1的解集为x<-2.故答案为:x<-2.【题目点拨】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)1的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.16、105【解题分析】根据三角板上的特殊角度,外角与内角的关系解答.【题目详解】根据三角板角度的特殊性可知∠AEB=45°,∠B=60°,∵∠α是△BDE 的外角,∴∠α=∠AEB+∠B=45°+60°=105° 故答案为:105.【题目点拨】此题考查三角形的外角性质,解题关键在于掌握其性质定义和三角板的特殊角.17、1【解题分析】根据图象可知,8(千米)处于图中BC 段,用待定系数法求出线段BC 的解析式,然后令8x =求出相应的y 的值即可.【题目详解】根据图象可知(3,14),(10,30.8)B C 位于线段BC 上,设线段BC 的解析式为(0)y kx b k =+≠将(3,14),(10,30.8)B C 代入解析式中得3141030.8k b k b +=⎧⎨+=⎩ 解得 2.46.8k b =⎧⎨=⎩ ∴线段BC 解析式为 2.4 6.8(310)y x x =+≤≤ ,当8x =时, 2.48 6.826y =⨯+=,∴乘坐该出租车8(千米)需要支付的金额为1元.故答案为:1.【题目点拨】本题主要考查一次函数的实际应用,掌握待定系数法是解题的关键.18、1【解题分析】首先求出DF的长度,进而求出AF的长度;根据勾股定理列出关于线段AE的方程即可解决问题.【题目详解】设AE=x,由题意得:FC=BC=10,BE=EF=8-x;∵四边形ABCD为矩形,∴∠D=90°,DC=AB=8,由勾股定理得:DF2=102-82=16,∴DF=6,AF=10-6=4;由勾股定理得:EF2=AE2+AF2,即(8-x)2= x2+42解得:x=1,即AE=1.故答案为:1.【题目点拨】该命题以正方形为载体,以翻折变换为方法,以考查勾股定理、全等三角形的性质为核心构造而成;解题的关键是灵活运用有关定理来分析、判断或解答.三、解答题(共78分)19、(1)点A在直线l上,见解析;(2)t的取值范围是443t≤≤.【解题分析】(1)把点A代入解析式,进而解答即可;(2)求出直线l经过点D时的解析式,可知此时t的值,再根据(1)中解析式t的值可得取值范围.【题目详解】解:(1)此时点A在直线l上,∵正方形ABCD 的边长为2∴2BC AB ==∵点O 为BC 中点,∴点(1,0)B -,(1,2)A -,把点A 的横坐标1x =-代入解析式24y x =+,得2(1)42y =⨯-+=,等于点A 的纵坐标为2.∴此时点A 在直线l 上.(2)由题意可得,点(1,2)D 及点(2,0)M -,当直线l 经过点D 时,设l 的解析式为y kx t =+(0k ≠)∴202k t k t -+=⎧⎨+=⎩解得2343k t ⎧=⎪⎪⎨⎪=⎪⎩ ∴l 的解析式为2433y x =+. 当0x =时,43y = 又由24y x =+,可得当0x =时,4y =∴当直线l 与AD 边有公共点时,t 的取值范围是443t ≤≤. 【题目点拨】本题考查了一次函数的性质,一次函数图象上点的坐标特征,正方形的性质,掌握判断点是否在直线上的方法以及利用待定系数法求解析式是解题的关键.20、(1)100(人);(2)详见解析;(3)1050人.【解题分析】(1)用A 类的人数除以它所占的百分比,即可得本次抽样调查的人数;(2)分别计算出D 类的人数为:100﹣20﹣35﹣100×19%=26(人),D 类所占的百分比为:26÷100×100%=26%,B 类所占的百分比为:35÷100×100%=35%,即可补全统计图;(3)用3000乘以样本中观看“中国诗词大会”节目较喜欢的学生人数所占的百分比,即可解答.【题目详解】解:(1)本次抽样调查的人数为:20÷20%=100(人);(2)D 类的人数为:100﹣20﹣35﹣100×19%=26(人),D类所占的百分比为:26÷100×100%=26%,B类所占的百分比为:35÷100×100%=35%,如图所示:(3)3000×35%=1050(人).观看“中国诗词大会”节目较喜欢的学生人数为1050人.【题目点拨】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体的思想.21、2019 2023【解题分析】先根据分式的混合运算顺序和运算法则化简原式,再将m的值代入计算可得.【题目详解】原式=(2222mm m----)•24442m m mm m m--=+--()()()•2444m m mm m m-=+-+()()().当m=1时,原式20192019 201942023 ==+.【题目点拨】本题考查了分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.22、(1)证明见解析;(2)90︒【解题分析】(1)根据平行四边形的性质得出AD∥BC,DC∥AB,DC=AB,推出DF=BE,DF∥BE,根据平行四边形的判定推出即可;(2)先证明四边形AGBD是平行四边形,再证出∠ADB=90°,得到四边形AGBD为矩形,即可得出结论.【题目详解】解:(1)证明:∵四边形ABCD是平行四边形,,//AB CD AB CD∴=E F 、分别为边AB CD 、的中点,11,22BE AB DF CD ∴==, BE DF ∴=.∵BE ∥DF ,∴四边形BEDF 是平行四边形.(2)∵四边形ABCD 是平行四边形,∴AD ∥BG ,∵AG ∥BD ,∴四边形AGBD 是平行四边形,∵点E 是AB 的中点,∴AE =BE =12AB , ∵AE =DE ,∴AE =DE =BE ,∴∠DAE =∠ADE ,∠EDB =∠EBD ,∵∠DAE +∠ADE +∠EDB +∠EBD =180°,∴2∠ADE +2∠EDB =180°,∴∠ADE +∠EDB =90°,即∠ADB =90°,∴平行四边形AGBD 是矩形.∴∠G=90°.【题目点拨】本题考查了平行四边形的判定与性质、矩形的判定、等腰三角形的性质;熟练掌握平行四边形的判定与性质是解题的关键.23、(1)见详解;(2)见详解【解题分析】(1)由菱形的性质可得AB =AD ,∠B =∠D ,又知BE =DF ,所以利用SAS 判定△ABE ≌△ADF 从而得到AE =AF ; (2)连接AC ,由已知可知△ABC 为等边三角形,已知E 是BC 的中点,则∠BAE =∠DAF =30°,即∠EAF =60°.因为AE =AF ,所以△AEF 为等边三角形.【题目详解】(1)由菱形ABCD 可知:AB =AD ,∠B =∠D ,∵BE=DF,∴△ABE≌△ADF(SAS),∴AE=AF;(2)连接AC,∵菱形ABCD,∠B=60°,∴△ABC为等边三角形,∠BAD=120°,∵E是BC的中点,∴AE⊥BC(等腰三角形三线合一的性质),∴∠BAE=30°,同理∠DAF=30°,∴∠EAF=60°,由(1)可知AE=AF,∴△AEF为等边三角形.【题目点拨】此题主要考查学生对菱形的性质,全等三角形的判定及等边三角形的判定的理解及运用,灵活运用是关键.24、(1)y1=80t,y2=﹣120t+960;(2)两车相距100千米时,时间为4.3小时或5.3小时;(3)选择方案一能更快到达B城,理由见解析【解题分析】(1)根据路程=速度×时间,即可得出y1、y2关于t的函数关系式;(2)分两种情况讨论:①y2-y1=100;②y1-y2=100,据此列方程解答即可;(3)先算出客车和出租车在服务站D处相遇的时间,再分别求出方案一、方案二所需的时间进行比较即可.【题目详解】(1)由题意得y1=80ty2=900﹣120(t﹣0.5)=﹣120t+960(2)如果两车相距100千米,分两种情况:①y2﹣y1=100,即﹣120t+960﹣80t=100解得t=4.3②y1﹣y2=100,即80t﹣(﹣120t+960)=100解得t=5.3所以,两车相距100千米时,时间为4.3小时或5.3小时.(3)如果两车相遇,即y1=y2,80t=﹣120t+960,解得t=4.8此时AD=80×4.8=384(千米),BD=900﹣384=516(千米)方案一:t1=(2×60+516)÷120=5.3(小时)方案二:t2=516÷80=6.45(小时)∵t2>t1∴方案一更快答:小王选择方案一能更快到达B城.【题目点拨】本题考查了一元一次方程的应用以及一次函数的应用,解题的关键根据数量关系找出方程(或函数关系式).本题属于中档题,难度不大,但较繁琐,解决此类型题目时,根据数量关系列出方程(或函数关系式),再一步步的进行计算即可.25、(1)原方程无解;(2)x≤1,数轴见解析;【解题分析】(1)利用解分式方程的一般步骤求解即可.(2)求出两个不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可.【题目详解】(1)去分母,方程两边同时乘以(x-3),可得:x-2=2(x-3)+1,去括号可得:x-2=2x-6+1,解得x=3,检验:当x=3时,x-3=0,∴x=3是分式方程的增根,原方程无解.(2)解:3(2)41213x xxx--≥-⎧⎪⎨+-⎪⎩①>②,∵解不等式①得:x≤1,解不等式②得:x<4,∴不等式组的解集为:x≤1,在数轴上表示不等式组的解集为:.【题目点拨】此题考查解分式方程,解一元一次不等式组,在数轴上表示不等式组的解集的应用,解此题的关键是能根据不等式的解集找出不等式组的解集.26、(1)85、85 80(2)一班成绩好些.因为两班平均数相等,一班的中位数高,所以一班成绩好些.(回答合理即可)(3)一班成绩较为稳定.【解题分析】(1)观察图分别写出一班和二班5名选手的复赛成绩,然后根据中位数的定义和平均数的求法以及众数的定义求解即可;(2)在平均数相同的情况下,中位数高的成绩较好;(3)根据方差公式计算即可:S 2=()()()222121n x x x x x x n ⎡⎤-+--⎣⎦(可简单记忆为“等于差方的平均数”) 【题目详解】解:(1)由条形统计图可知一班5名选手的复赛成绩为:75、80、85、85、100,二班5名选手的复赛成绩为:70、100、100、75、80,一班的众数为85,一班的平均数为(75+80+85+85+100)÷5=85, 二班的中位数是80; 班级中位数(分) 众数(分) 平均数(分) 一班85 85 85 二班80 100 85 故填: 85、85 80(2)一班成绩好些.因为两班平均数相等,一班的中位数高,所以一班成绩好些.(回答合理即可)(3)S 二班2=()()()()()2222270851008510085758580851605-+-+-+-+-=因为S 一班2=70则S 一班2<S 二班2,因此一班成绩较为稳定.【题目点拨】本题考查了中位数、众数以及平均数的求法,同时也考查了方差公式,解题的关键是牢记定义并能熟练运用公式.。
2020-2021上海民办华育中学八年级数学上期末试题(含答案)

2020-2021上海民办华育中学八年级数学上期末试题(含答案)一、选择题1.下列边长相等的正多边形能完成镶嵌的是( )A .2个正八边形和1个正三角形B .3个正方形和2个正三角形C .1个正五边形和1个正十边形D .2个正六边形和2个正三角形 2.下列运算正确的是( )A .a 2+2a =3a 3B .(﹣2a 3)2=4a 5C .(a+2)(a ﹣1)=a 2+a ﹣2D .(a+b)2=a 2+b 2 3.把多项式x 2+ax+b 分解因式,得(x+1)(x-3),则a 、b 的值分别是( )A .a=2,b=3B .a=-2,b=-3C .a=-2,b=3D .a=2,b=-3 4.如图,AB ∥CD ,BC ∥AD ,AB=CD ,BE=DF ,图中全等的三角形的对数是( )A .3B .4C .5D .65.在平面直角坐标系内,点 O 为坐标原点, (4,0)A -, (0,3)B ,若在该坐标平面内有以 点 P (不与点 A B O 、、重合)为一个顶点的直角三角形与 Rt ABO ∆全等,且这个以点 P 为顶点的直角三角形 Rt ABO ∆有一条公共边,则所有符合的三角形个数为( )。
A .9B .7C .5D .36.若2310a a -+=,则12a a +-的值为( ) A 51 B .1 C .-1 D .-57.下列各式中不能用平方差公式计算的是( )A .()2x y)x 2y -+( B .() 2x y)2x y -+--( C .()x 2y)x 2y ---( D .() 2x y)2x y +-+( 8.下列计算正确的是( )A 235+=B .a a a +=222C .(1)x y x xy +=+D .236()mn mn = 9.如果2x +ax+1 是一个完全平方公式,那么a 的值是()A .2B .-2C .±2D .±1 10.如图,在△ABC 中,AB =AC ,∠A =30°,AB 的垂直平分线l 交AC 于点D ,则∠CBD 的度数为( )A.30°B.45°C.50°D.75°11.如图,在△ABC 中,AB=AC,∠B=50°,P 是边 AB 上的一个动点(不与顶点 A 重合),则∠BPC 的度数可能是A.50°B.80°C.100°D.130°12.已知a是任何实数,若M=(2a﹣3)(3a﹣1),N=2a(a﹣32)﹣1,则M、N的大小关系是()A.M≥NB.M>NC.M<ND.M,N的大小由a的取值范围二、填空题13.腰长为5,高为4的等腰三角形的底边长为_____.14.等腰三角形的一个内角是100︒,则这个三角形的另外两个内角的度数是__________.15.已知2m=a,32n=b,则23m+10n=________.16.分解因式:2a2﹣8=_____.17.已知m n ty z x z x y x y z==+-+-+-,则()()()y z m z x n x y t-+-+-的值为________.18.A、B两种型号的机器加工同一种零件,已知A型机器比B型机器每小时多加工20个零件,A型机器加工400个零件所用时间与B型机器加工300个零件所用时间相同.A型机器每小时加工零件的个数_____.19.因式分解:3a2﹣27b2=_____.20.若分式的值为零,则x的值为________.三、解答题21.如图,∠A=∠B,AE=BE,点D在 AC 边上,∠1=∠2,AE和BD 相交于点O.求证:△AEC≌△BED;22.某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)2014年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?23.化简:(1)﹣12x2y3÷(﹣3xy2)•(﹣13 xy);(2)(2x+y)(2x﹣y)﹣(2x﹣y)2.24.先化简,再求值:211()22aaa a-+÷++,其中21a=+25.某书店老板去图书批发市场购买某种图书,第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书的数量比第一次多10本,当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.(1)第一次购书的进价是多少元?(2)试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其他因素)?若赔钱,赔多少;若赚钱,赚多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】只需要明确几个几何图形在一点进行平铺就是几个图形与这一点相邻的所有内角之和等于360°即可。
上海华育中学八年级数学下册第十九章《一次函数》经典复习题(课后培优)

一、选择题1.已知函数y kx b =+的图象如图所示,则函数y bx k =-的图象大致是( )A .B .C .D . 2.已知A B ,两地相距240千米.早上9点甲车从A 地出发去B 地,20分钟后,乙车从B 地出发去A 地.两车离开各自出发地的路程y (千米)与时间x (小时)的函数关系如图所示,则下列描述不正确的是( )A .甲车的速度是60千米/小时B .乙车的速度是90千米/小时C .甲车与乙车在早上10点相遇D .乙车在12:00到达A 地3.如图1,将正方形ABCD 置于平面直角坐标系中,其中AD 边在x 轴上,其余各边均与坐标轴平行,直线l :y =x -3沿x 轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD 的边所截得的线段长为m ,平移的时间为t (秒),m 与t 的函数图象如图2所示,则图2中b 的值为( )A .52B .2C .32D .54.若直线y =kx+b 经过第一、二、四象限,则函数y =bx -k 的大致图像是( ) A . B . C . D . 5.如图,已知直线1:2l y x =,过点()0,1A 作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点C ,过点C 作y 轴的垂线交直线l 于点D ,则点D 的坐标为( )A .()10,5B .()0,10C .()0,5D .()5,106.如图1,四边形ABCD 是轴对称图形,对角线AC ,BD 所在直线都是其对称轴,且AC ,BD 相交于点E .动点P 从四边形ABCD 的某个顶点出发,沿图1中的线段匀速运动.设点P 运动的时间为x ,线段EP 的长为y ,图2是y 与x 的函数关系的大致图象,则点P 的运动路径可能是( )A .CB A E →→→B .CDE A →→→ C .A E C B →→→ D .A E D C →→→7.如图,在平面直角坐标系中,点()2,A m 在第一象限,若点A 关于x 轴的对称点B 在直线1y x =-+上,则m 的值为( )A .-1B .1C .2D .3 8.已知一次函数2y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A .()2,4-B .()2,4--C .()2,4D .()0,49.已知一次函数(6)1y a x =-+经过第一、二、三象限,且关于x 的不等式组1()0232113a x x x ⎧-->⎪⎪⎨+⎪+≥⎪⎩恰有 4 个整数解,则所有满足条件的整数a 的值的和为( ) A .9 B .11 C .15 D .1810.已知关于x ,y 的二元一次方程组(7)2(31)5y k x y k x =--⎧⎨=-+⎩无解,则一次函数32y kx =-的图象不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 11.如图,点A 的坐标为(0,1),点B 是x 轴正半轴上的一动点,以AB 为边作等腰直角ABC ,使∠BAC=90°,如果点B 的横坐标为x ,点C 的纵坐标为y ,那么表示y 与x 的函数关系的图像大致是( )A .B .C .D .12.下列说法正确的是( )①从开始观察时起,50天后该植物停止长高;②直线AC 的函数表达式为165y x =+ ③第40天,该植物的高度为14厘米;④该植物最高为15厘米A .①②③B .②④C .②③D .①②③④ 13.如图,直线y =kx (k≠0)与y =23x+2在第二象限交于A ,y =23x+2交x 轴,y 轴分别于B 、C 两点.3S △ABO =S △BOC ,则方程组0236kx y x y -=⎧⎨-=-⎩的解为( )A .143x y =-⎧⎪⎨=⎪⎩B .321x y ⎧=-⎪⎨⎪=⎩C .223x y =-⎧⎪⎨=⎪⎩D .3432x y ⎧=-⎪⎪⎨⎪=⎪⎩14.关于函数(3)y k x k =-+,给出下列结论:①当3k ≠时,此函数是一次函数;②无论k 取什么值,函数图象必经过点(1,3)-;③若图象经过二、三、四象限,则k 的取值范围是0k <;④若函数图象与x 轴的交点始终在正半轴,则k 的取值范围是03k <<.其中正确结论的序号是( )A .①②③B .①③④C .②③④D .①②③④ 15.在某大国的技术封锁下,华为公司凭借自身强大的创造力和凝聚力,华为概念指数从年初至今涨幅连连翻倍,比如硕贝德股票涨幅接近200%(如图AB 段),小丽在图片中建立了坐标系,将AB 段看作一次函数y kx b =+图象的一部分,则k ,b 的取值范围是( )A .0k >,0b <B .0k >,0b >C .0k <,0b <D .0k <,0b >二、填空题16.A 、B 两地相距480千米,甲车从A 地匀速前往B 地,乙车同时从B 地沿同一公路匀速前往A 地.甲车出发30分钟时发现自己有物件落在A 地,于是立即掉头以原速返回取件,取件后立即掉头以原速继续匀速前行(掉头和取件时间忽略不计),两车之间相距的路程(km)y 与甲车出发时间(h)t 之间的函数关系如图所示.则当甲车到达B 地时,乙车离A 地的路程为______千米.17.若函数y =kx+b(k≠0)的图像平行于直线y =3x+2,且与直线y =-x -1交x 轴于同一点,则其函数表达式是_____.18.下列函数:①3x y =,②2y x =,③1y x =,④23y x =-,⑤()2221y x x x =--+其中是一次函数的有_____.(填序号)19.如图,已知A(8,0),点P 为y 轴上的一动点,线段PA 绕着点P 按逆时针方向旋转90°至线段PB 位置,连接AB 、OB ,则OB +BA 的最小值是__________.20.如图,在平面直角坐标系中,点A 、C 分别在x 轴、y 轴上,四边形ABCO 是边长为2的正方形,点D 为AB 的中点,点P 为OB 上的一个动点,连接DP 、AP ,当点P 满足DP AP +的值最小时,则点P 的坐标为______.21.如图,正方形ABCD ,CEFG 边在x 轴的正半轴上,顶点A ,E 在直线12y x =上,如果正方形ABCD 边长是1,那么点F 的坐标是______.22.在平面直角坐标系中,直线2y x =+和直线2y x b =-+的交点的横坐标为m .若13m -≤<,则实数b 的取值范围为____.23.如图,已知一次函数y mx n =-的图像,则关于x 的不等式1mx n ->的解集是__________.24.对于函数21y x =-,有下列性质:①它的图像过点()1,0,②y 随x 的增大而减小,③与y 轴交点为()0,1-,④它的图像不经过第二象限,其中正确的序号是______(请填序号).25.如图,正方形ABCD 的边长为4,A 为坐标原点,AB 和AD 分别在x 轴、y 轴上,点E 是BC 边的中点,过点A 的直线y kx =交线段DC 于点F ,连接EF ,若AF 平分DFE ∠,则k 的值为_________.26.新冠疫情爆发以来,某工厂响应号召,积极向疫情比较严重的甲地区捐赠口罩、消毒液等医疗物资,在工厂装运完物资准备前往甲地的A 车与在甲地卸完货准备返回工厂的B 车同时出发,分别以各自的速度匀速驶向目的地,出发6小时时A 车接到工厂的电话,需要掉头到乙处带上部分检验文件(工厂、甲地、乙在同一直线上且乙在工厂与甲地之间),于是,A 车掉头以原速前往乙处,拿到文件后,A 车加快速度迅速往甲地驶去,此时,A 车速度比B 车快32千米/小时,A 车掉头和拿文件的时间忽略不计,如图是两车之间的距离y (千米)与B 车出发的时间x (小时)之间的函数图象,则当A 车到达甲地时,B 车离工厂还有_____千米.三、解答题27.如图,在平面直角坐标系中,已知(,0)A a ,(,0)B b ,其中a ,b 满足|1|30a b ++-=.(1)填空:a =______,b =______.(2)如果在第三象限内有一点(2,)M m -,请用含m 的式子表示ABM 的面积. (3)在(2)条件下,当52m =-时,在y 轴上有一点P ,使得BMP 的面积与ABM的面积相等,请求出点P 的坐标.28.如图,矩形OABC 中,8AB =,4OA =.以O 点为坐标原点,OC 、OA 所在的直线分别为x 轴、y 轴,建立直角坐标系,把矩形OABC 折叠,使点B 与点O 重合,点C 移到点F 位置,折痕为DE .(1)求OD 的长.(2)求F 点坐标.(3)求直线DE 的函数表达式,并判断点B 关于x 轴对称的点B '是否在直线DE 上? 29.如图,已知直线123y x =-+和21y mx =-分别交y 轴于点A ,B ,两直线交于点()1,C n .(1)求m ,n 的值;(2)求ABC 的面积.30.慧慧和甜甜上山游玩,慧慧乘坐缆车,甜甜步行,两人相约在山顶的缆车终点会合,已知甜甜行走到缆车终点的路程是缆车到山顶的线路长的2倍,慧慧在甜甜出发后50分才乘上缆车,缆车的平均速度为180米/分.设甜甜出发x 分后行走的路程为y 米.图中的折线表示甜甜在整个行走过程中y 随x 的变化关系.(1)甜甜行走的总路程是______米,她途中休息了______分.(2)分别求出甜甜在休息前和休息后所走的路程段上的步行速度.(3)当慧慧到达缆车终点时,甜甜离缆车终点的路程是多少.。