全等三角形的判定教学设计 (3)
八年级数学上册《全等三角形的判定SAS》教案、教学设计

(四)课堂练习
1.教师出示几道具有代表性的习题,要求学生独立完成。
a.判断以下两个三角形是否全等,并说明理由。
b.运用SAS判定方法,证明以下两个三角形全等。
c.运用全等三角形的性质和判定方法解决实际问题。
2.教师对学生的解答进行点评,针对错误进行讲解,帮助学生掌握正确的方法。
3.采用小组合作、讨论交流等形式,培养学生合作解决问题的能力,提高学生的数学表达和逻辑推理能力。
4.通过解决实际问题,让学生体会数学与生活的紧密联系,培养学生的数学应用意识。
(三)情感态度与价值观
在本章节的学习中,学生将形成以下情感态度与价值观:
1.培养学生对数学学科的兴趣,激发学生主动探索、积极思考的学习热情。
因此,在教学过程中,教师应关注学生的个体差异,针对不同学生的需求进行分层教学,注重培养学生的几何直观和逻辑思维能力,提高学生对全等三角形判定方法的掌握和应用。
三、教学重难点和教学设想
(一)教学重点
1.全等三角形的定义及判定方法SAS的理解与应用。
2.对应边和对应角的识别,以及如何运用SAS判定等三角形。
(五)总结归纳
1.教师引导学生回顾本节课所学内容,总结全等三角形的判定方法SAS及其应用。
2.学生分享自己在学习本节课过程中的收获和感悟,以及遇到的困难和问题。
3.教师针对学生的总结,进行补充和强调,确保学生对本节课的知识点有全面、深入的理解。
4.教师布置课后作业,要求学生完成相关的练习题,巩固所学知识。
八年级数学上册《全等三角形的判定SAS》教案、教学设计
一、教学目标
(一)知识与技能
1.理解全等三角形的定义,掌握全等三角形的判定方法SAS(边角边)。
探索三角形全等的条件(SAS)教学设计

《探索三角形全等的条件(3)》教学设计一、教学目标1、知识与技能:经历探索三角形全等条件的过程,掌握判定三角形全等的又一个重要方法,即“边角边”,并学会初步运用.2、过程与方法:在探索三角形全等条件的过程中,感受数学来源于现实生活的事实,逐步培养学生合作交流和有条理地分析、思考、表达、解决问题的能力,进一步发展学生严密的逻辑推理意识,渗透类比、分类讨论、由特殊到一般的数学思想.3、情感与态度:营造轻松、平等的学习氛围,让学生经历探索三角形全等条件的过程,培养学生大胆质疑、敢于创新、合作交流的精神,增强学习数学的信心.二、教学重点在探索三角形全等条件的过程中,引导学生充分探索用“边角边”方法判定两个三角形全等的合理性;引导学生初步学会运用“边角边”等多种方法判定三角形全等.三、教学难点在探索三角形全等条件的过程中,引导学生充分认识用“边角边”方法判定两个三角形全等的合理性;同时了解两边及一边的对角对应相等的两个三角形不一定全等;分类讨论、由特殊到一般的数学思想的渗透.探究一剪一剪:把你画的三角形剪下来,比一比:小组内把所得的三角形比较,你发现了什么?●活动2:要验证一个合理的结论,一次实验不能说明问题,不具有普遍性.改变这两边的长度和夹角的度数,情况又是什么样呢?下面,请每个学习小组内自己规定两边的长度和夹角的度数,再画一画,用同样的方式进行比较,看看结果怎样?(动手操作)画一画剪一剪比一比在动手操作、总结结论的活动过程中,深刻体会到实践可以为科学合理地判断决策问题提供有力依据.经历探索三角形全等的过程,渗透由特殊到一般的数学思想总结规律我们把这个事实作为判定两个三角形全等的一种方法.总结:两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或简记为“SAS”学一学:老师板书,规范书写.∵在△ABC和△DEF中,AC = DF∠A=∠DAB = DE∴△ABC≌△DEF(SAS)学生总结通过学生自主探究发现规律、验证规律,提高学生的学习能力.4cm3cm40°ABCMN对比理解三种语言的对比:学生观察学生对文字语言、图形语言、符号语言的对比理解识图活动●活动3:学生观察 思考 回答学生初步运用“SAS ”探究二 ●活动4:如果“两边及一角”条件中的角是其中一边的对角,比如两条边分别为4cm ,6cm ,长度为4cm 的边所对的角 为40°,情况会怎样呢?请大家画一画. 4cm6cm学生甲:我画的三角形和同伴画的三角形全等.学生乙:我画的三角形和同伴画的三角形不全等.由此可见,两边及其中一边的对角对应相等,两个三角形不一定全等.(电脑动画展示)学生动 手操作 画一画 剪一剪 比一比通过学生自主探究发现:两边及其中一边的对角对应相等的两个三角形不一定全等.例题教学例:如图△DCE 和△ACB 都是等腰直角三角形,点D 在BC 上,学生思考并让学生通过对40°40°40°40°40°在下列图中找出全等三角形,把它们用线连接连接BE、AD.(1)请问有没有全等三角形?若有,请找出并说明理由.(2)思考:请进一步探究AD和BE有什么关系?解题老师引导并规范书写问题的探究,发现证明三角形全等的思路、正确书写格式的规范.自主演练如图,①AB=AC;②AD=AE;③BD=CE;④∠B=∠C.请从以上四个条件中选出尽可能少的条件,说明△ABD ≌△ACE学生思考并解题培养学生对知识的运用课堂小结●活动5:总结反思:1、三角形全等的判定方法:SSS、ASA、AAS、SAS注意:两边及其中一边的对角对应相等的两个三角形不一定全等.2、探究过程:画图→剪图→对比→总结.3、数学思想:类比、分类讨论、由特殊到一般.学生归纳学生发言培养学生反思总结习惯思维拓展如图,若AB=AC,请添加一个条件,使OE=OD.学生思考并解题培养学生知识迁移能力课后作业1、教材“习题”第1、2题2、认真完成今天的“数学总结”3、预习教材第五章第五节的内容独立完成合作交流进一步巩固学生的学习五、教学反思:B CDEAOACDEFB。
八年级数学下册《直角三角形全等的判定》教案、教学设计

(一)导入新课
1.利用多媒体展示生活中常见的直角三角形应用,如楼梯、桥梁等,引导学生观察和思考直角三角形的特征及其在全等判定中的应用。
2.提问:“同学们,我们已经学过全等三角形的判定方法,那么直角三角形有哪些特殊的地方呢?如何判断两个直角三角形全等?”通过问题引导学生回顾旧知,为新课的学习做好铺垫。
3.引入本节课的教学目标,让学生明确学习直角三角形全等判定的意义和作用。
(二)讲授新知
1.通过具体的直角三角形例子,讲解SAS、ASA、AAS和HL四种判定方法,让学生理解并掌握这四种方法的含义和应用。
- SAS:已知两个直角三角形的两边和夹角相等,可以判定这两个三角形全等。
- ASA:已知两个直角三角形的夹角和两边相等,可以判定这两个三角形全等。
三、教学重难点和教学设想
(一)教学重难点
1.重点:直角三角形全等的判定方法(SAS、ASA、AAS和HL)的掌握和应用。
2.难点:
-理解并灵活运用不同的全等判定方法解决实际问题。
-在复杂几何图形中识别直角三角形全等的条件,并运用全等性质进行推理。
-将全等三角形的判定与几何图形的性质相结合,解决综合性的几何问题。
- AAS:已知两个直角三角形的两个角和一边相等,可以判定这两个三角形全等。
- HL:已知两个直角三角形的斜边和直角边相等,可以判定这两个三角形全等。
2.结合具体例题,逐一演示这四种判定方法的应用,让学生在实际操作中理解和掌握。
3.强调直角三角形全等判定中的关键步骤和注意事项,如正确识别对应边、对应角等。
4.小组合作题:布置一道需要小组合作完成的题目,要求学生在小组内部分工合作,共同探究解决问题的策略,提高学生的团队协作能力。
12.2三角形全等的判定(教案)

1.理论介绍:首先,我们要了解三角形全等的基本概念。全等三角形指的是在大小和形状上完全相同的两个三角形。它在几何学中具有重要的地位,可以帮助我们解决许多实际问题。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何利用SSS、SAS、ASA判定方法判断两个三角形是否全等,并应用于解决实际问题。
4.理解并掌握全等三角形的判定与证明过程,提高逻辑推理能力。
二、核心素养目标
《12.2三角形全等的判定》
1.培养学生的空间想象能力和几何直观,通过对全等三角形的学习,使其能够形成对几何图形的深入认识和理解;
2用严谨的逻辑推理解决问题;
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“三角形全等在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
同时,我也注意到,在小组讨论环节,有些学生较为内向,不太愿意表达自己的观点。为了鼓励他们,我在课堂上多次强调了每个人都有自己的独特见解,都值得被倾听。在今后的教学中,我需要更加关注这部分学生,创造更多机会让他们参与到课堂讨论中来。
此外,通过对学生作业的批改,我发现有些同学在应用全等三角形的判定方法时,仍然会出现混淆的情况,尤其是在区分SAS和ASA时。这让我意识到,在课堂上,我应该更加针对性地进行对比讲解,并设计更多具有针对性的练习题,帮助他们更好地理解和掌握这些判定方法。
12.2三角形全等的判定(教案)
一、教学内容
《全等三角形的判定(SSS)》教学设计

《全等三角形的判定(SSS)》教学设计
一、教学目标
1.理解“边边边”(SSS)判定全等三角形的方法。
2.掌握运用SSS判定方法进行三角形全等的证明。
3.培养学生的逻辑推理能力和观察分析能力。
二、教学重难点
1.重点:SSS判定方法的理解和应用。
2.难点:三角形全等证明过程的书写规范。
三、教学方法
讲授法、演示法、讨论法。
四、教学过程
1.导入
展示两个形状相同但大小不同的三角形和两个形状大小完全相同的三角形,引导学生观察并思考如何判断两个三角形全等。
2.讲解SSS判定方法
(1)通过具体实例,让学生观察当两个三角形的三条边分别相等时,这两个三角形能够完全重合,从而引出SSS判定方法。
(2)用图形和符号语言表述SSS判定方法。
3.例题讲解
(1)已知三角形的三条边的长度,证明两个三角形全等。
(2)在实际问题中,运用SSS判定方法解决问题。
4.课堂练习
让学生进行三角形全等的证明练习,巩固SSS判定方法。
5.小组讨论
讨论在证明过程中遇到的问题和解决方法。
6.总结归纳
总结SSS判定方法的要点和证明过程的注意事项。
7.作业布置
布置课后作业,要求学生运用SSS判定方法证明三角形全等。
三角形全等的判定方法三(ASA)教学设计

课题:三角形全等的判定三(ASA)教学设计 教学任务分析
教 知识与技能 1.三角形全等的“角边角”的条件. 2.掌握三角形全等的“ASA”判定定理,能运用“ASA”证明简单的 学 思想与方法 目 情感态度 标 和价值观 三角形全等问题 1.先学后教,以学论教 2.通过探究过程,提高分析、归纳、表达、逻辑推理等能力 1.培养学生反思的习惯,培养理性思维 2.通过探究学习,提高发现问题、解决问题的能力,养成良好的合 作交流的习惯。
A F
B
C D
E
五:总结、归纳、布置作业 (1) 小结:这节课你的收获是什么? (2) 使用”ASA”要注意哪些事项? 布置作业: P15 5 教科书习题
学生梳理知识, 学 生 口 头 小 加深对所学知识 结 的理解;学生课
老 师 给 予 适 后作业情况反馈 当补充 有利于老师有针
课 后 完 成 作 对性地帮学生查 业 漏补缺
B
B
教师巡视并
证明 :在△ADC 和△AEB 中 ∠A=∠A(公共角) AC=AB(已知) ∠C=∠B(已知)∴△ACD≌△ABE(ASA)
C
加以指导 学生演板
∴AD=AE(全等三角形的对应边相等) 1.你还能得到什么结论? 学生利用知 2.如果把已知中的 AB=AC 改成 AD=AE,那么 BD 和 CE 还 相等吗? 识的迁移能 四.练习 力及丰富的
1. 如图,已知∠1=∠2, ∠ 3= ∠ 4 , EC=AD , 求 证 : AB=BE,BC=DB。
D E A
1 2 3 4
C
B
练习的设置 既是对已学定理 想 象 力 解 决 的应用,同时也 可为下一种判定 相关问题 方法的学习埋下 伏笔。起到承上 学生分析 启下的作用。 教师及时引
全等三角形教学设计优秀4篇
全等三角形教学设计优秀4篇全等三角形教案篇一一、教学内容分析本节课选自北师大版《七年级数学下册》第五章第四节探索三角形全等的条件第一课时,本节课探索第一种判定方法—边边边,为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验,为以后的证明打下基础。
二、学生学习情况分析学生的知识技能基础:学生在前几节中,已经了解了三角形的有关概念(内角、外角、中线、高、角平分线),以及三角形三边之间的关系、图形的全等,对本节课要学习的三角形全等条件中的“边边边”和三角形的稳定性来说已经具备了一定的知识技能基础。
学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些探索图形全等的活动,通过拼图、折纸等方式解决了一些简单的现实问题,获得了一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
三、设计思想我们所在的学校处于市区,教学设备齐全,学生学习基础较好,在这之前他们已了解了图形全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。
另外,学生也基本具备了利用已知条件拼出三角形的能力,具备探索的热情和愿望,这使学生能主动参与本节课的操作、探究。
遵循启发式教学原则,采用引探式教学方法。
用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法。
四、教学目标1.知识与技能目标:掌握三角形全等的“边边边”条件,了解三角形的稳定性。
2.过程与方法目标:在探索三角形全等的条件及其运用的过程中,体会利用操作、归纳获得数学结论的过程,初步形成解决问题的基本策略。
三角形全等的判定教案教学设计
《三角形全等的判定》教学设计课型新授课教学内容分析边边边定理是“浙教版八年级数学(上)”第一章第五节第一课时的内容。
本节课的主要内容是让学生通过动手操作探索并掌握判定两个三角形全等的基本事实——三边对应相等的两个三角形全等(SSS),通过生活实例了解三角形的稳定性及其应用,要求学生会运用“SSS”判定两个三角形全等,能够掌握角平分线的尺规作图.边边边定理是平面几何中的重要定理之一,有利于证明几何题中角相等和线段相等的问题,在教材中有着非常重要的地位和作用.学习者分析八年级的学生具备了一定的独立思考、实践操作、合作探究、归纳概括的能力,能够进行简单的推理论证.教师可以通过动手操作,分类讨论引导学生探究判定三角形全等的条件.同时学生具有一定的生活经验,教师可以借助生活实例来帮助学生理解三角形的稳定性.教师在教学过程中要注意指导学生完成边边边定理几何语言格式的书写,且教师的教学要面向全体学生,发挥学生的主体作用,让学生积极参与进来.教学目标 1.探索并掌握判定两个三角形全等的基本事实:三边对应相等的两个三角形全等(SSS).2.了解三角形的稳定性及其应用.3.会运用“SSS”判定两个三角形全等.4.掌握角平分线的尺规作图.教学重点判定两个三角形全等的基本事实:三边对应相等的两个三角形全等.教学难点探究三角形全等的条件学习活动设计教师活动学生活动环节一:情境导入,复习回顾教师活动1:学生活动1:教师讲授:钱塘江大桥由著名桥梁工程师茅以升设计,建成于1937年,是我国第一座铁路、公路两用双层桥.桥上有许多全等的三角形结构.学生认真听讲教师提问:全等三角形的性质是什么?教师带领回顾:全等三角形的对应边相等,对应角相等.学生回顾旧知,举手回答问题学生跟随教师回顾旧知活动意图说明:复习导入有利于衔接新旧知识,提高学习效率。
通过图片和生活实例进行切入有利于活跃课堂教学氛围,激发学生学习动机环节二:探究新知,动手操作教师活动2:△ABC和△A'B'C'全等,说出它们的对应边以及对应角答案:对应边:BC和B'C',CA和C'A',AB和A'B'对应角:∠A和∠A',∠B和∠B',∠C和∠C'思考:从六个条件中至少选出几个条件可以使得两个三角形全等?教师讲授:一个条件:有一个角相等或一条边相等动手操作:画出一个角为50°的三角形和一条边为3cm的三角形,与同桌互相比较所画的三角形,它们能重合吗?教师讲授:有一个角相等或一条边相等的两个三角形不一学生活动2:学生回顾旧知,举手回答问题学生认真听讲学生认真思考,相互交流学生动手操作,合作交流学生认真听讲定全等教师讲授:两个条件:有两个角对应相等、有两条边对应相等、或一条边,一个角对应相等动手操作:画出一个角为60°和一个角为45°的三角形,与同桌互相比较所画的三角形,它们能重合吗?教师讲授:有两个角对应相等的两个三角形不一定全等动手操作:画出一条边为5cm和一条边为7cm的三角形,与同桌互相比较所画的三角形,它们能重合吗?教师讲授:有两条边对应相等的两个三角形不一定全等动手操作:画出一条边为5cm和一个角为40°的三角形,与同桌互相比较所画的三角形,它们能重合吗?教师讲授:有一条边对应相等和一个角对应相等的两个三角形不一定全等教师讲授:学生动手操作,合作交流学生认真听讲学生动手操作,合作交流学生认真听讲学生动手操作,合作交流学生认真听讲动手操作:画出三个角都为60°的三角形,与同桌互相比较所画的三角形,它们能重合吗?教师讲授:有三个角对应相等的两个三角形不一定全等动手操作:按照下面的方法,用刻度尺和圆规在一张透明纸上画△DEF,使其三边长分别为1.3cm,1.9cm和2.5cm.画法:如图1.画线段EF=1.3cm.2.分别以点E,F为圆心,2.5cm,1.9cm长为半径画两条圆弧,交于点D(或D').3.连结DE,DF (或D'E,D'F).△DEF(或△D'EF)即所求作的三角形.把你画的三角形与其他同学所画的三角形进行比较,它们能互相重合吗?教师讲授:一般地,我们有如下基本事实:三边对应相等的两个三角形全等(简写成“边边边”或学生认真听讲学生动手操作,合作交流学生认真听讲学生动手操作,合作交流学生认真听讲“SSS ”).几何语言:在△ABC和△A'B'C'中∵{AB=A'B' BC=B'C' CA=C'A’∴△ABC≌△A'B'C'(SSS)教师讲授:让我们动手做下面的实验:如图,把两根木条的一端用螺栓固定在一起,木条可以自由转动.在转动过程中,连结另两个端点所成的三角形的形状、大小随之改变.如果把另两个端点用螺栓固定在第三根木条上,那么构成的三角形的形状、大小就完全确定.从上述实验可以看出,当三角形的三条边长确定时,三角形的形状、大小完全被确定,这个性质叫做三角形的稳定性,这是三角形特有的性质.三角形的稳定性在生产和日常生活中有广泛的应用.例如,房屋的人字架、大桥的钢梁、起重机的支架等,都采用三角形结构,以起到稳固的作用.学生认真听讲,了解边边边定理的几何语言学生动手操作,合作交流学生认真听讲,了解三角形的稳定性活动意图说明:通过动手操作可以让学生的认知更直观,使学生亲自经历获取知识的过程,能提高对数学结论的认可程度。
人教版初中数学课标版八年级上册第十二章12.2 三角形全等的判定教学设计
人教版初中数学课标版八年级上册第十二章12.2 三角形全等的判定教学设计《三角形全等的判定(三)》教学设计一、教学背景分析1.教材内容分析本节是人教版第十二章《全等三角形》的重要内容,三角形是最基本、常见的几何图形之一,在日常生活中有着广泛的应用。
在知识结构上,等腰三角形,直角三角形,线段的垂直平分线,角的平分线等内容都要通过证明两个三角形全等来加以解决;在能力培养上,无论是逻辑思维能力,推理论证能力,还是分析问题解决问题的能力,都可在全等三角形的教学中得以提高。
知识点本身,证明全等三角形是证明线段相等和角相等的重要手段,本节作为证明两个三角形全等的依据之一,因此成为重中之重。
2.学情分析初一学生处于学习几何推理论证的初步阶段,从这章开始,学生应逐步学会几何证明,几何题的推理表达对学生来说难度较大,同时,以前学生学习几何都是一些简单的图形,从这章开始出现了几个图形的变换或叠加,学生在解题过程中,找全等条件是一个难点。
学生观察、操作、猜想能力较强,但归纳、运用数学结论的思想较弱,思维的广阔性、敏捷性、灵活性比较欠缺。
二、教学目标1.知识与技能(1)掌握尺规作图:用“ASA”做一个三角形全等于已知三角形;(2)探究并掌握两个三角形全等的条件“ASA”“AAS”,并且学会应用ASA,AAS证明两个三角形全等。
2.数学思考通过让学生经历观察演示,动手操作,合作交流,自主探究等过程,培养学生用数学知识解决问题的能力.3.解决问题(1)初步了解利用“ASA”“AAS”条件判定三角形全等在生活中的应用.(2)培养学生的逆向思维能力、转化能力、数学建模能力.4.情感与态度第 2 页第 3 页第 4 页(1).复习巩固:问题1:我们了解到两个三角形的对应条件中,只要满足三个条件满足就可以判定三个三角形是否全等,可以分为哪些维度?三边、两边一角、两角一边、三角追问1:可以出现哪些组合?:SSS SAS SSA ASA AAS AAA追问2:到现在为止学过的三角形全等的判定条件有哪些?除了这两个条件,满足另外一些条件的两个三角形是否可能全等呢?今天我们就来探究三角形全等的条件。
全等三角形教案(精选3篇)
全等三角形教案(精选3篇)全等三角形教案1课题:三角形全等的判定(三)教学目标:1、知识目标:(1)掌握已知三边画三角形的方法;(2)掌握边边边公理,能用边边边公理证明两个三角形全等;(3)会添加较明显的辅助线。
2、能力目标:(1)通过尺规作图使学生得到技能的训练;(2)通过公理的初步应用,初步培养学生的逻辑推理能力。
3、情感目标:(1)在公理的形成过程中渗透:实验、观察、归纳;(2)通过变式训练,培养学生“举一反三”的学习习惯。
教学重点:SSS公理、灵活地应用学过的各种判定方法判定三角形全等。
教学难点:如何根据题目条件和求证的结论,灵活地选择四种判定方法中最适当的方法判定两个三角形全等。
教学用具:直尺,微机教学方法:自学辅导教学过程:1、新课引入投影显示问题:有一块三角形玻璃窗户破碎了,要去配一块新的,你最少要对窗框测量哪几个数据?如果你手头没有测量角度的仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗?这个问题让学生议论后回答,他们的答案或许只是一种感觉。
于是教师要引导学生,抓住问题的本质:三角形的三个元素――三条边。
2、公理的获得问:通过上面问题的分析,满足什么条件的两个三角形全等?让学生粗略地概括出边边边的公理。
然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。
(这里用尺规画图法)公理:有三边对应相等的两个三角形全等。
应用格式:(略)强调说明:(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。
(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边)。
(3)、此公理与前面学过的公理区别与联系。
(4)、三角形的稳定性:演示三角形的稳定性与四边形的不稳定性。
在演示中,其实可以去掉组成三角形的一根小木条,以显示三角形条件不可减少,这也为下面总结“三角形全等需要有3全独立的条件”做好了准备,进行了沟通。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11.2 三角形全等的判定(一)
【课题】:三角形全等的判定(一)(平行班)
【教学时间】:45分钟
【学情分析】:《三角形全等的判定一》是人教版《数学》八年级上册第二章《全等三角形》中的第二节,同时也是教科书把研究三角形全等条件重点放在第一个条件(“边边边”条件)上,使学生以“边边边”条件为例,理解什么是三角形的判定,怎样判定。
在掌握了“边边边”条件的基础上,使学生学会怎样运用“边边边”条件进行推理论证,怎样正确地表达证明过程。
“边边边”条件掌握好了,再学习其他条件就不困难了。
学生在前面学习了一些图形的有关知识,对图形已有一定的认识,也有了一定的研究图形的方式方法,并初步具备了合作交流、敢于探究与实践的良好习惯,敢想他人之所未想,敢说他人之所未说,敢做他人之所未做,学生间互相提问,相互评价,相互补充的互动气氛较浓。
怎样上好第一堂课呢?由于每位教师对数学的理解不同,而且每位教师对学生的把握也存在差异,因此不同的教师对第一堂课的设计就会有不同的观念,因而也就有不同的处理方式。
三角形全等条件不是直接给出的,而是通过我们老师引导,让学生画出与已知三角形某些元素对应相等的三角形,画完后,再剪剪量量,在这个基础上启发学生想一想,判定两个三角形全等需要什么条件。
这样让学生自己动手画图实验,就会对相关结论印象深刻。
将三角形的画法与三角形全等条件的探索相结合,比单独讲三角形的画法效果好,单讲容易单调枯燥。
希望在上节课成功的基础上,这节课继续调动学生的积极性,尤其是基础差的学生。
【教学目标】:
(1)知识与技能目标:了解三角形的稳定性,会应用“边边边”判定两个三角形全等.
(2)过程与方法目标:经历探索“边边边”判定全等三角形的过程,解决简单的问题。
(3)情感与态度目标:培养有条理的思考和表达能力,形成良好的合作意识。
【教学重点】:掌握“边边边”判定两个三角形全等的方法
【教学难点】:理解证明的基本过程,学会综合分析法
【教学突破点】:掌握图形特征,寻找适合条件的两个三角形
【教法、学法设计】:合作探究式分层次教学,讲授、练习相结合。
【课前准备】:课件
教学
环节
教学活动设计意图
一、复习旧知识1、请一位同学叙述上一节所学的知识。
2、如图3所示,△AOC≌△BOD,∠A和∠B,•∠C•和∠D•是对应角,
•那么对应边CO=____,AO=_____,
AC=______,对应角∠COA=______.
3、你是如何来识别两个三角形全等的?
通过旧知识
的回顾,让学
生对三角形全
等认识更清
楚。
提出问题,
让学生尝试找
出三角形全等
的方法。
三、巩
固
新知识体验成功
(图1)
1、如图1,AB=DE,BC=EF,AC=DF,证明△ABC≌△DEF
2、如下图,AC=EF,BC=DE,AD=BF,证明△ABC≌△FDE(提示:AD+BD=BF+BD)
先让学生独
立思考,然后
发挥小组长的
优势,让成绩
好的学生帮助
基础弱的学
生,大手拉小
手,共同进步,
教师要适当表
扬负责任的小
组长和个别小
组,当然证明
的格式要强
调。
四、回顾所学知识
师生共同小结
采取师生互动的形式完成。
即:学生谈本节课的收获,教师适当的补充、概括,以本节知识目
标的要求进行把关,确保基础知识的当堂落实。
采取师生互动
的形式完成。
五布置作业1、课本15页第1、2题
2、对自己上课掌握知识情况自我评价
掌握()一般()有进步()听不懂()
1、如图1,在△ABC中,AD=ED,AB=EB,BD是△ABD和△EBD的边,∠A=80°,则(1)依据边边边可判断图中的△ABD≌△EBD;(2)这时,∠BED= 80°。
2、如图2,AB=DB ,BC=BE ,要使△AEB ≌△DCB ,则需增加的条件是( C )。
(A )AB=BC (B )AC=CD (C )AE=DC (D )AE=AC
3、如图3,直角三角形ABC 沿直角边BC 所在直线向右平移得到△DEF ,下列结论中错误的是( D )。
(A )△ABC ≌△DEF (B )∠DEF=90° (C )AC=DF (D )EC=CF
4、如图4,小明做了一个如图所示的风筝,测得DE=DF ,EH=FH ,求证:△DEH ≌△DFH 。
(由DE=DF ,EH=FH ,DH=DH 得△DEH ≌△DFH )
5、如图5,AB=DF ,AC=DE ,BE=CF ,BC 与EF 相等吗?•你能找到一对全等三角形吗?说明你的理由. (△ABC ≌△DFE ,理由是:AB=D ,AC=DE ,BC=FE )
6、如图6,在五边形ABCDE 中,AB=AE ,BC=ED ,AC=AD ,求证:∠B=∠E 。
(由AB=AE ,BC=ED ,AC=AD 得△ABC ≌△AED ,所以∠B=∠E )
6、如图7,已知AB=DC ,AF=DE ,BE=CF ,B 、E 、F 、C 在同一条直线
上,求证:AB ∥CD 。
证明:∵BE=CF ∴BF=CE
又∵AB=DC AF=DE ∴△ABF ≌△DCE ∴∠B=∠C ∴AB ∥CD 7、如图8,已知AD=BC ,AB=CD ,试说明:∠B=∠D 。
证明:连结AC
∵AD=BC AB=CD AC=AC ∴△ABC ≌△CDA ∴∠B=∠D
9、已知:如图,AD=BC ,AB=DC ,求证:∠A=∠C
证明:连结BD
∵AD=BC AB=CD BD=BD ∴△ABD ≌△CDB ∴∠A=∠C
C
B E D A 图1
C B A
D
E 图2
C D F E B A
图3 H F
D
E 图4 图5 D
C E B A 图6 C
D
E
F B
A 图7
C B A
D 图8。