圆的综合证明解题技巧,教你圆综拿满分
圆的综合解题策略

圆的综合专题讲解历年来几何题作为压轴题是目前的一大趋势,其中主要有三种情况的框架,圆,正方形,菱形。
这三种图形较为特殊,其中各块内容综合性较好的融合进去;今天我们主要来学习圆的综合问题的解法,希望有所体会,得到较好的感悟。
对于复杂几何问题,我们的解决思路是运用方程思想标图,另外通过题目条件找等量关系,列出方程,后面解方程,得解。
【例1】(2019杭州中考-23)如图,已知锐角三角形ABC 内接于圆☉O ,BC OD ⊥于点D ,连接OA .(1)若∠BAC=60°,①求证:OA OD 21=②当1=OA 时,求△ABC 面积的最大值.(2)点E 在线段OA 上,OD OE =.连接DE ,设m ABC = ∠OED ∠,n ACB = ∠OED ∠(m ,n 是正数).若ACB ABC ∠ ∠<,求证:m -02=+n .【变式1-1】(2019宁波中考-26)如图1,O 经过等边△ABC 的顶点A ,C (圆心O 在△ABC 内),分别与AB ,CB 的延长线交于点D ,E ,连结DE ,BF ⊥EC 交AE 于点F.(1)求证:BD=BE.(2)当AF :EF=3:2,AC=6时,求AE 的长。
(3)设EFAF =x ,tan ∠DAE=y.①求y 关于x 的函数表达式;②如图2,连结OF,OB ,若△AEC 的面积是△OFB 面积的10倍,求y 的值.【例2】在圆O中,AC为直径,AB=3BC,D为弧AC上的一点,连接AD,DC,BD。
在△ABD中分别过B,D作DE⊥AB于点E,作BG⊥AD于点G,DE交AC于点F,DE,BG相交于点H,连接OH,∠OHD=82o,四边形DHBC为平行四边形。
求∠BDE的度数。
【例3】如图,在OABC,以O为图心,OA为半径的圆与C相切于点B,与OC相交于点D.(1)求弧BD的度数。
(2)如图,点E在⊙O上,连结CE与⊙O交于点F。
若EF=AB,求∠OCE的度数.【例4】如图,AB是半圆O的直径,AC是弦,∠CAB=60°,若AB=6cm.(1)求弦AC的长;(2)点P从点A开始,以1cm/s的速度沿AB向点B运动,到点B停止,过点P作PQ∥AC,交半圆O于点Q,设运动时间为t(s).①当t=1时,求PQ的长;②若△OPQ为等腰三角形,直接写出t(t>0)的值.【例5】如图,⊙O的半径为2,弦BC=2,点A是优弧BC上一动点(不包括端点),△ABC的高BD、CE相交于点F,连结ED.下列四个结论:①∠A始终为60°;②当∠ABC=45°时,AE=EF;③当△ABC为锐角三角形时,ED=;④线段ED的垂直平分线必平分弦BC.其中正确的结论是.(把你认为正确结论的序号都填上)【变式5-1】如图,在△ABC中,∠BAC=90°,点E在BC边上,且CA=CE,过A,C,E三点的⊙O 交AB于另一点F,作直径AD,连结DE并延长交AB于点G,连结CD,CF.(1)求证:四边形DCFG是平行四边形.(2)当BE=4,CD=AB时,求⊙O的直径长.【变式5-2】如图,AB 是⊙O 的直径,BC ⊥AB ,垂足为点B ,连接CO 并延长交⊙O 于点D 、E ,连接AD 并延长交BC 于点F .则下列结论正确的有()①∠CBD=∠CEB ;②BC CD BE BD =;③点F 是BC 的中点;④若23=AB BC ,tanE=3110-.A .①②B .③④C .①②④D .①②③变式5-2【变式5-3】如图,AB 是⊙O 的直径,AC 是弦,∠BAC 的平分线AD 交⊙O 于点D ,DE ⊥AC 交AC 的延长线于点E ,OE 交AD 于点F .(1)求证:DE 是⊙O 的切线;(2)若54=AB AC ,求DFAF 的值;(3)在(2)的条件下,若⊙O 直径为10,求△EFD 的面积.【例6】(2019年一模-15)如图,直角三角形ABC 中,90ACB ∠= ,以边AC 为直径的⊙O 交边AB 于点D ,过点D 作O 的切线,与边BC 交于点E ,若3tan 4B =,AC=4,则DE 的长为.【例7】(2019年二模-16)如图,在△ABC 中,AB=BC ,以AB 为直径的圆O 交AC 于点D ,交BC 于点E ,连接AE,DE.若AC AB 2=,则ABE CDE S S ∆∆:的值为.【例8】如图,C 、D 是以AB 为直径的圆O 上的两个动点(点C 、D 不与A 、B 重合),在运动过程中弦CD 始终保持不变,M 是弦CD 的中点,过点C 作CP ⊥AB 于点P .若CD=3,AB=5,PM=x ,则x 的最大值是()A .5B .3 C.2.5 D.32【变式8-1】如图,在平面直角坐标系中,C (0,4),A (3,0),⊙A 半径为2,P 为⊙A 上任意一点,E 是PC 的中点,则OE 的最小值是()A .1B .23C .2D .2作业:1、如图,△ABC中,CA=CB,AB=6,CD=4,E是高线CD的中点,以CE为半径⊙C.G是⊙C上一动点,P是AG中点,则DP的最大值为()A.B.C.2D.2、如图,AB是⊙O的直径,C是弧AB的中点,⊙O的切线AD交BC的延长线于点D,H是OA的中点,CH的延长线交切线AD于点F,BF交⊙O于点E,连接AE,若OB=2,则AE的长为()A.558B.554C.3D.334第2题3、如图,在△ABC中,以AB为直径的⊙O分别与BC,AC相交于点D,E,BD=CD,过点D作⊙O的切线交边AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为2,CF=1,求弧BD的长(结果保留π).4、如图,在Rt △ABC 中,点O 在斜边B 上,以O 为圆心,OB 为半径作圆,分别与BC ,AB 相交于点D ,E ,连接AD ,已知∠CAD =∠B.(1)求证:AD 是⊙O 的切线;(2)若BC =8,21tan B ,求⊙O 的半径.5、如图,直线y=2x+2与x 轴,y 轴分别交于A、B 两点,点C 是在第一象限内此直线上的一个动点,以BC 为直角边作如图所示的等腰直角三角形BCD,点E 在过A、C、D 三点的圆上,且DE⊥BD,连结CE、AD.(1)找出图中一对相似三角形(不再标记字母),并说明理由;(2)在C 的运动过程中,DE 的长度是否改变?若不变,请求出DE 的长;若变化,请说明理由.。
2024中考备考数学重难点05 圆的综合压轴题(6大题型+满分技巧+限时分层检测

重难点05 圆的综合压轴题中考数学中《圆的综合压轴题》部分主要考向分为六类:一、圆中弧长和面积的综合题二、圆与全等三角形的综合题三、圆的综合证明问题四、圆与等腰三角形的综合题五、圆的阅读理解与新定义问题六、圆与特殊四边形的综合题圆的综合问题是中考数学中的压轴题中的一类,也是难度较大的一类,所以,对应的训练很有必要。
考向一:圆中弧长与面积的综合题1.(2023•河北)装有水的水槽放置在水平台面上,其横截面是以AB为直径的半圆O,AB=50cm,如图1和图2所示,MN为水面截线,GH为台面截线,MN∥GH.计算:在图1中,已知MN=48cm,作OC⊥MN于点C.(1)求OC的长.操作:将图1中的水槽沿GH向右作无滑动的滚动,使水流出一部分,当∠ANM=30°时停止滚动.如图2.其中,半圆的中点为Q,GH与半圆的切点为E,连接OE交MN于点D.探究:在图2中.(2)操作后水面高度下降了多少?(3)连接OQ并延长交GH于点F,求线段EF与的长度,并比较大小.2.(2023•乐山)在学习完《图形的旋转》后,刘老师带领学生开展了一次数学探究活动.【问题情境】刘老师先引导学生回顾了华东师大版教材七年级下册第121页“探索”部分内容:如图1,将一个三角形纸板△ABC绕点A逆时针旋转θ到达的位置△AB′C′的位置,那么可以得到:AB=AB′,AC=AC′,BC=B′C′;∠BAC=∠B′AC′,∠ABC=∠AB′C′,∠ACB=∠AC′B′.(_____)刘老师进一步谈到:图形的旋转蕴含于自然界的运动变化规律中,即“变”中蕴含着“不变”,这是我们解决图形旋转的关键.故数学就是一门哲学.【问题解决】(1)上述问题情境中“(_____)”处应填理由:;(2)如图2,小王将一个半径为4cm,圆心角为60°的扇形纸板ABC绕点O逆时针旋转90°到达扇形纸板A′B′C′的位置.①请在图中作出点O;②如果BB′=6cm,则在旋转过程中,点B经过的路径长为;【问题拓展】小李突发奇想,将与(2)中完全相同的两个扇形纸板重叠,一个固定在墙上,使得一边位于水平位置.另一个在弧的中点处固定,然后放开纸板,使其摆动到竖直位置时静止.此时,两个纸板重叠部分的面积是多少呢?如图3所示,请你帮助小李解决这个问题.考向二:圆与全等三角形综合题1.(2023•济宁)如图,已知AB是⊙O的直径,CD=CB,BE切⊙O于点B,过点C作CF⊥OE交BE于点F,EF=2BF.(1)如图1,连接BD,求证:△ADB≌△OBE;(2)如图2,N是AD上一点,在AB上取一点M,使∠MCN=60°,连接MN.请问:三条线段MN,BM,DN有怎样的数量关系?并证明你的结论.2.(2023•哈尔滨)已知△ABC内接于⊙O,AB为⊙O的直径,N为的中点,连接ON交AC于点H.(1)如图①,求证:BC=2OH;(2)如图②,点D在⊙O上,连接DB,DO,DC,DC交OH于点E,若DB=DC,求证OD∥AC;(3)如图③,在(2)的条件下,点F在BD上,过点F作FG⊥DO,交DO于点G,DG=CH,过点F 作FR⊥DE,垂足为R,连接EF,EA,EF:DF=3:2,点T在BC的延长线上,连接AT,过点T作TM ⊥DC,交DC的延长线于点M,若FR=CM,AT=4,求AB的长.3.(2023•长春)【感知】如图①,点A、B、P均在⊙O上,∠AOB=90°,则锐角∠APB的大小为45度.【探究】小明遇到这样一个问题:如图②,⊙O是等边三角形ABC的外接圆,点P在弧AC上(点P不与点A、C重合),连接PA、PB、PC.求证:PB=PA+PC.小明发现,延长PA至点E,使AE=PC,连接BE,通过证明△PBC≌△EBA.可推得△PBE是等边三角形,进而得证.下面是小明的部分证明过程:证明:延长PA至点E,使AE=PC,连接BE.∵四边形ABCP是⊙O的内接四边形,∴∠BAP+∠BCP=180°,∵∠BAP+∠BAE=180°,∴∠BCP=∠BAE,∵△ABC是等边三角形,∴BA=BC,∴△PBC≌△EBA(SAS).请你补全余下的证明过程.【应用】如图③,⊙O是△ABC的外接圆,∠ABC=90°,AB=BC,点P在⊙O上,且点P与点B在AC的两侧,连接PA、PB、PC,若,则的值为.考向三:圆的综合证明问题1.(2023•黄石)如图,AB为⊙O的直径,DA和⊙O相交于点F,AC平分∠DAB,点C在⊙O上,且CD ⊥DA,AC交BF于点P.(1)求证:CD是⊙O的切线;(2)求证:AC•PC=BC2;(3)已知BC2=3FP•DC,求的值.2.如图,在⊙O中,直径AB垂直弦CD于点E,连接AC,AD,BC,作CF⊥AD于点F,交线段OB于点G(不与点O,B重合),连接OF.(1)若BE=1,求GE的长.(2)求证:BC2=BG•BO.(3)若FO=FG,猜想∠CAD的度数,并证明你的结论.3.(2023•永州)如图,以AB为直径的⊙O是△ABC的外接圆,延长BC到点D.使得∠BAC=∠BDA,点E在DA的延长线上,点M在线段AC上,CE交BM于N,CE交AB于G.(1)求证:ED是⊙O的切线;(2)若,BD=5,AC>CD,求BC的长;(3)若DE•AM=AC•AD,求证:BM⊥CE.4.(2023•广东)综合探究如图1,在矩形ABCD中(AB>AD),对角线AC,BD相交于点O,点A关于BD的对称点为A′.连接AA′交BD于点E,连接CA′.(1)求证:AA'⊥CA';(2)以点O为圆心,OE为半径作圆.①如图2,⊙O与CD相切,求证:;②如图3,⊙O与CA′相切,AD=1,求⊙O的面积.考向四:圆与等腰三角形的综合1.(2023•宁波)如图,在Rt△ABC中,∠C=90°,E为AB边上一点,以AE为直径的半圆O与BC相切于点D,连结AD,BE=3,BD=3.P是AB边上的动点,当△ADP为等腰三角形时,AP的长为.2.(2023•上海)如图(1)所示,已知在△ABC中,AB=AC,O在边AB上,点F是边OB中点,以O 为圆心,BO为半径的圆分别交CB,AC于点D,E,连接EF交OD于点G.(1)如果OG=DG,求证:四边形CEGD为平行四边形;(2)如图(2)所示,连接OE,如果∠BAC=90°,∠OFE=∠DOE,AO=4,求边OB的长;(3)连接BG,如果△OBG是以OB为腰的等腰三角形,且AO=OF,求的值.3.(2023•泰州)已知:A、B为圆上两定点,点C在该圆上,∠C为所对的圆周角.知识回顾(1)如图①,⊙O中,B、C位于直线AO异侧,∠AOB+∠C=135°.①求∠C的度数;②若⊙O的半径为5,AC=8,求BC的长;逆向思考(2)如图②,若P为圆内一点,且∠APB<120°,PA=PB,∠APB=2∠C.求证:P为该圆的圆心;拓展应用(3)如图③,在(2)的条件下,若∠APB=90°,点C在⊙P位于直线AP上方部分的圆弧上运动.点D在⊙P上,满足CD=CB﹣CA的所有点D中,必有一个点的位置始终不变.请证明.考向五:圆的阅读理解与新定义问题1.(2023•青海)综合与实践车轮设计成圆形的数学道理小青发现路上行驶的各种车辆,车轮都是圆形的.为什么车轮要做成圆形的呢?这里面有什么数学道理吗?带着这样的疑问,小青做了如下的探究活动:将车轮设计成不同的正多边形,在水平地面上模拟行驶.(1)探究一:将车轮设计成等边三角形,转动过程如图1,设其中心到顶点的距离是2,以车轮转动一次(以一个顶点为支点旋转)为例,中心的轨迹是,BA=CA=DA=2,圆心角∠BAD=120°.此时中心轨迹最高点是C(即的中点),转动一次前后中心的连线是BD(水平线),请在图2中计算C 到BD的距离d1.(2)探究二:将车轮设计成正方形,转动过程如图3,设其中心到顶点的距离是2,以车轮转动一次(以一个顶点为支点旋转)为例,中心的轨迹是,BA=CA=DA=2,圆心角∠BAD=90°.此时中心轨迹最高点是C(即的中点),转动一次前后中心的连线是BD(水平线),请在图4中计算C到BD的距离d2(结果保留根号).(3)探究三:将车轮设计成正六边形,转动过程如图5,设其中心到顶点的距离是2,以车轮转动一次(以一个顶点为支点旋转)为例,中心的轨迹是,圆心角∠BAD=.此时中心轨迹最高点是C(即的中点),转动一次前后中心的连线是BD(水平线),在图6中计算C 到BD的距离d3=(结果保留根号).(4)归纳推理:比较d1,d2,d3大小:,按此规律推理,车轮设计成的正多边形边数越多,其中心轨迹最高点与转动一次前后中心连线(水平线)的距离(填“越大”或“越小”).(5)得出结论:将车轮设计成圆形,转动过程如图7,其中心(即圆心)的轨迹与水平地面平行,此时中心轨迹最高点与转动前后中心连线(水平线)的距离d=.这样车辆行驶平稳、没有颠簸感.所以,将车轮设计成圆形.2.(2023•陕西)(1)如图①,∠AOB=120°,点P在∠AOB的平分线上,OP=4.点E,F分别在边OA,OB上,且∠EPF=60°,连接EF.求线段EF的最小值;(2)如图②,是一个圆弧型拱桥的截面示意图.点P是拱桥的中点,桥下水面的宽度AB=24m,点P到水面AB的距离PH=8m.点P1,P2均在上,=,且P1P2=10m,在点P1,P2处各装有一个照明灯,图中△P1CD和△P2EF分别是这两个灯的光照范围.两灯可以分别绕点P1,P2左右转动,且光束始终照在水面AB上.即∠CP1D,∠EP2F可分别绕点P1,P2按顺(逆)时针方向旋转(照明灯的大小忽略不计),线段CD,EF在AB上,此时,线段ED是这两灯照在水面AB上的重叠部分的水面宽度.已知∠CP1D=∠EP2F=90°,在这两个灯的照射下,当整个水面AB都被灯光照到时,求这两个灯照在水面AB上的重叠部分的水面宽度.(可利用备用图解答)3.(2023•北京)在平面直角坐标系xOy中,⊙O的半径为1.对于⊙O的弦AB和⊙O外一点C给出如下定义:若直线CA,CB中一条经过点O,另一条是⊙O的切线,则称点C是弦AB的“关联点”.(1)如图,点A(﹣1,0),B1(,),B2(,).①在点C1(﹣1,1),C2(,0),C3(0,)中,弦AB1的“关联点”是;②若点C是弦AB2的“关联点”,直接写出OC的长;(2)已知点M(0,3),N(,0),对于线段MN上一点S,存在⊙O的弦PQ,使得点S是弦PQ的“关联点”.记PQ的长为t,当点S在线段MN上运动时,直接写出t的取值范围.4.在探究“四点共圆的条件”的数学活动课上,小霞小组通过探究得出:在平面内,一组对角互补的四边形的四个顶点共圆.请应用此结论,解决以下问题:如图1,△ABC中,AB=AC,∠BAC=α(60°<α<180°).点D是BC边上的一动点(点D不与B,C重合),将线段AD绕点A顺时针旋转α到线段AE,连接BE.(1)求证:A,E,B,D四点共圆;(2)如图2,当AD=CD时,⊙O是四边形AEBD的外接圆,求证:AC是⊙O的切线;(3)已知α=120°,BC=6,点M是边BC的中点,此时⊙P是四边形AEBD的外接圆,直接写出圆心P与点M距离的最小值.考向六:圆与特殊四边形综合1.(2023•威海)已知:射线OP平分∠MON,A为OP上一点,⊙A交射线OM于点B,C,交射线ON 于点D,E,连接AB,AC,AD.(1)如图1,若AD∥OM,试判断四边形OBAD的形状,并说明理由;(2)如图2,过点C作CF⊥OM,交OP于点F;过点D作DG⊥ON,交OP于点G.求证:AG=AF.2.(2023•益阳)如图,线段AB与⊙O相切于点B,AO交⊙O于点M,其延长线交⊙O于点C,连接BC,∠ABC=120°,D为⊙O上一点且的中点为M,连接AD,CD.(1)求∠ACB的度数;(2)四边形ABCD是否是菱形?如果是,请证明;如果不是,请说明理由;(3)若AC=6,求的长.(建议用时:80分钟)1.(2023•宜昌)如图1,已知AB是⊙O的直径,PB是⊙O的切线,PA交⊙O于点C,AB=4,PB=3.(1)填空:∠PBA的度数是,PA的长为;(2)求△ABC的面积;(3)如图2,CD⊥AB,垂足为D.E是上一点,AE=5EC.延长AE,与DC,BP的延长线分别交于点F,G,求的值.2.(2023•台州)我们可以通过中心投影的方法建立圆上的点与直线上点的对应关系,用直线上点的位置刻画圆上点的位置.如图,AB是⊙O的直径,直线l是⊙O的切线,B为切点.P,Q是圆上两点(不与点A重合,且在直径AB的同侧),分别作射线AP,AQ交直线l于点C,点D.(1)如图1,当AB=6,弧BP长为π时,求BC的长;(2)如图2,当,时,求的值;(3)如图3,当,BC=CD时,连接BP,PQ,直接写出的值.3.(2023•遂宁)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,AD=CD,过点D的直线l交BA的延长线于点M.交BC的延长线于点N且∠ADM=∠DAC.(1)求证:MN是⊙O的切线;(2)求证:AD2=AB•CN;(3)当AB=6,sin∠DCA=时,求AM的长.4.(2023•丽水)如图,在⊙O中,AB是一条不过圆心O的弦,点C,D是的三等分点,直径CE交AB于点F,连结AD交CF于点G,连结AC,过点C的切线交BA的延长线于点H.(1)求证:AD∥HC;(2)若=2,求tan∠FAG的值;(3)连结BC交AD于点N,若⊙O的半径为5.下面三个问题,依次按照易、中、难排列.请根据自己的认知水平,选择其中一道问题进行解答.①若OF=,求BC的长;②若AH=,求△ANB的周长;③若HF•AB=88,求△BHC的面积.5.(2023•长沙)如图,点A,B,C在⊙O上运动,满足AB2=BC2+AC2,延长AC至点D,使得∠DBC =∠CAB,点E是弦AC上一动点(不与点A,C重合),过点E作弦AB的垂线,交AB于点F,交BC 的延长线于点N,交⊙O于点M(点M在劣弧上).(1)BD是⊙O的切线吗?请作出你的判断并给出证明;(2)记△BDC,△ABC,△ADB的面积分别为S1,S2,S,若S1•S=(S2)2,求(tan D)2的值;(3)若⊙O的半径为1,设FM=x,FE•FN•=y,试求y关于x的函数解析式,并写出自变量x的取值范围.6.(2023•宁波)如图1,锐角△ABC内接于⊙O,D为BC的中点,连结AD并延长交⊙O于点E,连结BE,CE,过C作AC的垂线交AE于点F,点G在AD上,连结BG,CG,若BC平分∠EBG且∠BCG =∠AFC.(1)求∠BGC的度数.(2)①求证:AF=BC.②若AG=DF,求tan∠GBC的值.(3)如图2,当点O恰好在BG上且OG=1时,求AC的长.(建议用时:80分钟)1.(2023•东营区校级一模)如图,PA、PB是⊙O的切线,切点分别为A、B,BC是⊙O的直径,PO交⊙O于E点,连接AB交PO于F,连接CE交AB于D点.下列结论:①PA=PB;②OP⊥AB;③CE 平分∠ACB;④;⑤E是△PAB的内心;⑥△CDA≌△EDF.其中一定成立的有()个.A.5B.4C.3D.22.(2023•鹿城区校级三模)如图1,在△ABC中,∠ACB=90°,BC=2AC=2,过BC上一点D作DE ⊥BC,交AB于点E,以点D为圆心,DE的长为半径作半圆,交AC,AB于点F,G,交直线BC于点H,I(点I在H左侧).当点D与点C重合时(如图2),GH=;当EF=GH时,CD=.3.(2023•湖北模拟)如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为D,直线DC与AB的延长线交于点P,弦CE平分∠ACB,交AB于点F,连接BE,BE=7,下列四个结论:①AC平分∠DAB;②PF2=PB•PA;③若BC=OP,则阴影部分的面积为;④若PC=24,则tan∠PCB=;其中,所有正确结论的序号是.4.(2024•鄞州区校级一模)如图1,AB,CD是⊙O的两条互相垂直的弦,垂足为E,连结BC,BD,OC.(1)求证:∠BCO=∠ABD.(2)如图2,过点A作AF⊥BD,交CD于G,求证:CE=EG.(3)如图3,在(2)的条件上,连结BG,若BG恰好经过圆心O,若⊙O的半径为5,,求AB的长.5.(2024•常州模拟)对于⊙C和⊙C上的一点A,若平面内的点P满足:射线AP与⊙C交于点Q(点Q 可以与点P重合,且,则点P称为点A关于⊙C的“阳光点”.已知点O为坐标原点,⊙O 的半径为1,点A(﹣1,0).(1)若点P是点A关于⊙O的“阳光点”,且点P在x轴上,请写出一个符合条件的点P的坐标;(2)若点B是点A关于⊙O的“阳光点”,且,求点B的横坐标t的取值范围;(3)直线与x轴交于点M,且与y轴交于点N,若线段MN上存在点A关于⊙O的“阳光点”,请直接写出b的取值范围是或.6.(2024•广东一模)如图1,在⊙O中,AB为⊙O的直径,点C为⊙O上一点,点D在劣弧BC上,CE ⊥CD交AD于E,连接BD.(1)求证:△ACE~△BCD;(2)若cos∠ABC=m,求;(用含m的代数式表示)(3)如图2,DE的中点为G,连接GO,若BD=a,cos∠ABC=,求OG的长.7.(2024•镇海区校级模拟)在矩形ABCD中,M、N分别在边BC、CD上,且AM⊥MN,以MN为直径作⊙O,连结AN交⊙O于点H,连结CH交MN于点P,AB=8,AD=12.(1)求证:∠MAD=∠MHC;(2)若AM平分∠BAN,求MP的长;(3)若△CMH为等腰三角形,直接写出BM的长.8.(2024•浙江一模)如图,在⊙O中,AB是一条不过圆心O的弦,C,D是的三等分点,直径CE交AB于点F,连结BD交CF于点G,连结AC,DC,过点C的切线交AB的延长线于点H.(1)求证:FG=CG.(2)求证:四边形BDCH是平行四边形.(3)若⊙O的半径为5,OF=3,求△ACH的周长.9.(2024•五华区校级模拟)如图,AB,CD是⊙O的两条直径,且AB⊥CD,点E是上一动点(不与点B,D重合),连接DE并延长交AB的延长线于点F,点P在AF上,且∠PEF=∠DCE,连接AE,CE分别交OD,OB于点M,N,连接AC,设⊙O的半径为r.(1)求证:PE是⊙O的切线;(2)当∠DCE=15°时,求证:AM=2ME;(3)在点E的移动过程中,判断AN•CM是否为定值,若是,求出该定值;若不是,请说明理由.10.(2024•福建模拟)已知:如图,⊙O内两条弦AB、CD,且AB⊥CD于E,OA为⊙O半径,连接AC、BD.(1)求证:∠OAC=∠BCD;(2)作EN⊥BD于N,延长NE交AC于点H.求证:AH=CH;(3)在(2)的条件下,作∠EHF=60°交AB于点F,点P在FE上,连接PC交HN于点L,当EL=HF=,CL=8,BE=2PF时,求⊙O的半径.11.(2024•鹿城区校级一模)如图1,锐角△ABC内接于⊙O,点E是AB的中点,连结EO并延长交BC 于D,点F在AC上,连结AD,DF,∠BAD=∠CDF.(1)求证:DF∥AB.(2)当AB=9,AF=FD=4时,①求tan∠CDF的值;②求BC的长.(3)如图2,延长AD交⊙O于点G,若,求的值.12.(2024•正阳县一模)【材料】自从《义务教育数学课程标准(2022年版)》实施以来,九年级的晏老师通过查阅新课标获悉:切线长定理由“选学”改为“必学”,并新增“会过圆外的一个点作圆的切线”,在学习完《切线的性质与判定》后,她布置一题:“已知:如图所示,⊙O及⊙O外一点P.求作:直线PQ,使PQ与⊙O相切于点Q.李蕾同学经过探索,给出了如下的一种作图方法:(1)连接OP,分别以O、P为圆心,以大于的长为半径作弧,两弧分别交于A、B两点(A、B 分别位于直线OP的上下两侧);(2)作直线AB,AB交OP于点C;(3)以点C为圆心,CO为半径作⊙C,⊙C交⊙O于点Q(点Q位于直线OP的上侧);(4)连接PQ,PQ交AB于点D,则直线PQ即为所求.【问题】(1)请按照步骤完成作图,并准确标注字母(尺规作图,保留作图痕迹);(2)结合图形,说明PQ是⊙O切线的理由;(3)若⊙O半径为2,OP=6.依据作图痕迹求QD的长.13.(2024•泌阳县一模)小贺同学在数学探究课上,用几何画板进行了如下操作:首先画一个正方形ABCD,一条线段OP(OP<AB),再以点A为圆心,OP的长为半径,画⊙A分别交AB于点E.交AD于点G.过点E,G分别作AB,AD的垂线交于点F,易得四边形AEFG也是正方形,连接CF.(1)【探究发现】如图1,BE与DG的大小和位置关系:.(2)【尝试证明】如图2,将正方形AEFG绕圆心A转动,在旋转过程中,上述(1)的关系还存在吗?请说明理由.(3)【思维拓展】如图3,若AB=2OP=4,则:①在旋转过程中,点B,A,G三点共线时,CF的值为;②在旋转过程中,CF的最大值是.14.(2024•秦都区校级一模)问题提出:(1)如图①,⊙O的半径为4,弦AB=4,则点O到AB的距离是.问题探究:(2)如图②,⊙O的半径为5,点A、B、C都在⊙O上,AB=6,求△ABC面积的最大值.问题解决:(3)如图③,是一圆形景观区示意图,⊙O的直径为60m,等边△ABP的边AB是⊙O的弦,顶点P在⊙O内,延长AP交⊙O于点C,延长BP交⊙O于点D,连接CD.现准备在△PAB和△PCD 区域内种植花卉,圆内其余区域为草坪.按照预算,草坪的面积尽可能大,求草坪的最大面积.(提示:花卉种植面积尽可能小,即花卉种植面积S△PAB +S△PCD的最小值)15.(2024•碑林区校级一模)问题探究(1)寒假期间,乐乐同学参观爸爸的工厂,看到半径分别为2和3的两个圆形零件⊙A、⊙B按如图1所示的方式放置,点A到直线m的距离AC=4,点B到直线m的距离BD=6,CD=5,M是⊙A上一点,N是⊙B上一点,在直线m上找一点P,使得PM+PN最小.请你在直线m上画出点P的位置,并直接写出PM+PN的最小值.问题解决(2)如图2,乐乐爸爸的工厂欲规划一块花园,如图所示的矩形ABCD,其中米,BC=30米,点E、F为花园的两个入口,米,DF=10米.若在△BCD区域内设计一个亭子G(亭子大小忽略不计),满足∠BDG=∠GBC,从入口到亭子铺设两条景观路.已知铺设小路EG所用的景观石材每米的造价是400元,铺设小路FG所用的景观石材每米的造价是200元,你能否帮乐乐同学分析一下,是否存在点G,使铺设小路EG和FG的总造价最低?若存在,求出最低总造价,并求出此时亭子G到边AB的距离;若不存在,请说明理由.16.(2024•雁塔区校级一模)问题发现(1)在△ABC中,AB=2,∠C=60°,则△ABC面积的最大值为;(2)如图1,在四边形ABCD中,AB=AD=6,∠BCD=∠BAD=90°,AC=8,求BC+CD的值.问题解决(3)有一个直径为60cm的圆形配件⊙O,如图2所示.现需在该配件上切割出一个四边形孔洞OABC,要求∠O=∠B=60°,OA=OC,并使切割出的四边形孔洞OABC的面积尽可能小.试问,是否存在符合要求的面积最小的四边形OABC?若存在,请求出四边形OABC面积的最小值及此时OA的长;若不存在,请说明理由.17.(2024•东莞市校级一模)如图①,点C,D在线段AB上,点C在点D的左侧,若线段AC,CD,DB 满足AC2+BD2=CD2,称C,D是线段AB的勾股点.(1)如图②,C,D是线段AB的勾股点,分别以线段AC,CD,DB为边向AB的同侧作正△ACE,正△CDF,正△DBG,已知正△ACE、正△CDF的面积分别是3,5,则正△DBG的面积是;(2)如图①,AB=12,C,D是线段AB的勾股点,当AC=AB时,求CD的长;(3)如图③,C,D是线段AB的勾股点,以CD为直径画⊙O,P在⊙O上,AC=CP,连接PA,PB,若∠A=2∠B,求∠B的度数.18.(2023•西湖区模拟)如图,已知CE是圆O的直径,点B在圆O上,且BD=BC,过点B作弦CD的平行线与CE的延长线交于点A.(1)若圆O的半径为2,且点D为弧EC的中点时,求线段CD的长度;(2)在(1)的条件下,当DF=a时,求线段BD的长度;(答案用含a的代数式表示)(3)若AB=3AE,且CD=12,求△BCD的面积.19.古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的是圆”.小明决定研究一下圆,如图,AB是⊙O的直径,点C是⊙O上的一点,延长AB至点D,连接AC、BC、CD,且∠CAB=∠BCD,过点C 作CE⊥AD于点E.(1)求证:CD是⊙O的切线;(2)若OB=BD,求证:点E是OB的中点;(3)在(2)的条件下,若点F是⊙O上一点(不与A、B、C重合),求的值.。
中考圆综合解题技巧

教育教学jiao yu jiao xue69中考圆综合解题技巧◎孙旺生摘要:运用圆的五条结论作辅助线是解决初中几何圆中重要的做题思路,其本质是利用三角形的边和角的关系,运用勾股定理和三角形及其性质。
将分散的线段和角集中在一起,从而进行有效的排列组合,解决实际问题。
关键词:圆;辅助线;初中数学一、问题的提出陕西数学中考命题圆综合题型是试卷中重难点题型[1],在陕西中考中占比重较大:陕西中考数学主要依据这类题型来体现区分度来完成中考的目标,当前中考综合题相当于简单知识点的复合应用,对于学生的能力考察、知识考察更加明显,圆综合题是完美的凸显了中考数学中数形结合的思想,对于学生的思维能力,创新能力会有大幅度的提升.本文通过大量的实例来说明陕西省中考圆综合的解答技巧,进而达到提升学生能力的效果。
二、思路及解答探究(一)切线连切点例1、如图1所示,已知⊙o 的半径为4,点B 是圆外一点,连接OB,过点B 作⊙o 的切线BD,切点为D,其中OB=6,过点A 作切线BD 的垂线,延长BO 交⊙o 于点A,垂足为C,求证:AD 平分∠BAC;图1 图2分析:连接OD,由BD 是⊙O 的切线,AC ⊥BD,易证得OD ∥AC,继而可证得AD 平分∠BAC;证明:连接OD,如图2∵BD 是⊙o 的切线,OD ⊥BD,AC ⊥BD,∴OD // AC, ∴∠2=∠3,∵OA=OD,∴∠1=∠3,∴∠1=∠2, 即AD 平分∠BAC 说明:这道题目考查了圆的知识点,圆切线的性质以及相似三角形的判定与性质,在解决此类题目时,一定要注意掌握辅助线的做法,注意掌握数形结合思想的应用[2]。
(二)等边对等角,等角对等边图3 图4例2、如图3,已知AB 是⊙o 的一根弦,作BC ⊥A 交圆于点C,过点C 作⊙o 的切线,交AB 的延长线于点D 且取A E=DE,EF //BC,EF 和DC 相较于F 且连接AF,AF 和BC 相交于点G,证明:FC=FG分析:证出∠DCB=∠G,对顶角相等得出∠GCF=∠G;证明:(1)如图4,EF//BC,AB ⊥BG,EF ⊥AD.又∵E 是AD 的中点,∴ FA=FD,∠FAD=∠D 又∵GB ⊥AB,∠GAB+∠G=∠D+∠1=90°∴∠1=∠G.而∠1=∠2,∴∠2=∠G. ∴FC=FG说明:题目运用了等腰三角形的判定与性质、弦切角定理等知识;熟练掌握圆周角定理和弦切角定理。
圆综合题技巧大全

圆综合题技巧大全圆综合题,是指在几何题中涉及到圆的性质和定理的题目。
掌握圆综合题的解题技巧对于提高几何解题的能力至关重要。
下面是一些解圆综合题的技巧和方法,希望能够对大家有所帮助。
1.学习圆的性质和定理:在解圆综合题之前,首先要掌握圆的基本性质和定理,比如切线定理、割线定理、弧长公式等。
只有了解了这些基本知识,才能够更好地应用到实际题目中去。
3.运用相似性质:在解圆综合题时,经常需要用到相似性质。
要注意观察图形中的相似三角形,利用它们之间的比例关系解题。
有时候可以构造相似三角形,利用已知条件来求解未知量。
4.利用轴对称性:圆具有轴对称的性质,这个特点在解题中是非常有用的。
当题目中涉及到对称图形时,可以利用轴对称性来简化计算过程,缩小解题的范围。
5.利用切线和弦的性质:圆的切线和弦都有一些特殊的性质,掌握了这些性质可以帮助我们更好地解题。
比如圆内切四边形的特点是两对对边互补,圆内接三角形切线长的平方等于切点到圆心的距离乘以切点到切线的距离等。
6.利用角度关系:圆综合题中也经常涉及到角度的计算。
要注意观察图形中的各种角度,利用它们之间的关系来解题。
比如垂径定理可以用来求解圆中的角度,交角平分线定理可以用来证明两条弦相等等。
7.画图辅助:在解题过程中,画图是非常重要的一步。
通过画图可以更好地理解题目中的条件和要求,有助于找到解题的思路。
在画图时要准确地表示出各个线段的长度和各个角度的大小,这样可以更方便地进行计算和推理。
8.多角度思考:解题时要善于从不同的角度思考,尝试不同的方法来解决问题。
有时候,一个问题可以有多种解法,通过多角度思考可以找到最简单和最直观的解法。
以上是解圆综合题的一些技巧和方法,希望能对大家在解题过程中有所帮助。
通过多做练习和总结,相信你会逐渐掌握解圆综合题的技巧,提高几何解题的能力。
数学几何圆题答题技巧

数学几何圆题答题技巧圆题是数学几何中的一部分,主要涉及到圆的性质、定理及应用。
掌握圆题的解题技巧不仅有助于提高数学成绩,也有益于培养解决实际问题的思维能力。
下面,本文将从如何理解圆及圆的基本要素、圆的基本定理与性质以及圆题的解题技巧三个方面进行详细阐述。
一、如何理解圆及圆的基本要素圆是平面上一组点的集合,这些点与一个固定点之间的距离均相等,这个点称为圆心,距离称为半径。
圆有很多种表述方式,其中最常用的是:已知圆心坐标和半径长度的圆方程,以及一般最常见的圆的标准方程(x-a)²+(y-b)²=r²(公式中a,b为圆心坐标,r为半径长度)。
二、圆的基本定理与性质圆的基本定理与性质有很多,其中比较重要的有以下几个:1.圆的对称性。
对于圆上的任意一点,在圆心的垂线中点处作一个垂直于半径的直线,会将圆分成两个对称的部分。
2.圆上的任意三点不共线。
对于圆上的任意三个点A、B、C,它们一定不共线。
反之,若三个点共线,则它们不可能在同一圆上。
3.圆的切线性质。
切线与圆的交点与圆心连线垂直于切线。
4.圆的内外切线。
如果两个圆的圆心连线长度等于它们的半径之和,则这两个圆外切;如果圆心连线长度等于它们的半径之差,则这两个圆内切。
5.相切圆的切点连线。
如果有两个相切的圆A、B,那么它们相切点的连线BC必须垂直于勾股中的直角边AB。
6.正多边形的外接圆和内切圆。
对于正n边形,它的外接圆圆心坐标和半径的公式为(x,y)=(0,0)、r=L/2sin(π/n),其中L为边长;它的内切圆圆心坐标和半径的公式为(x,y)=(0,0)、r=L/2tan(π/n)。
三、圆题的解题技巧圆题的解题技巧涵盖了圆的基本定理与性质的运用及计算技巧,下面将重点介绍一下圆题的解题技巧:1.认真读题,理解问题。
圆题解题最重要的第一步就是认真阅读题目,理解题目所给情境及所求结果。
2.根据已知条件确定几何关系。
根据题目给出的半径、弦、切线、线段等量的长度、相互之间的夹角关系来判断出所求的几何关系。
专题12 圆综合篇(解析版)

专题12 圆综合1. 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
2. 垂径定理的推论:推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
推论2:弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
推论3:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题。
3. 圆心角、弦以及弧之间的关系:①定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
②推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。
说明:同一条弦对应两条弧,其中一条是优弧,一条是劣弧,而在本定理和推论中的“弧”是指同为优弧或劣弧。
4. 圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
5. 圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。
6. 圆的内接四边形:①定义:四个顶点都在圆上的四边形叫做圆的内接四边形。
②性质:I:圆内接四边形的对角互补。
II:圆内接四边形的任意一个外角等于它的内对角。
7. 三角形的外接圆与外心:经过三角形的三个顶点的圆,叫做三角形的外接圆。
圆心是三角形三条边垂直平分线的交点,叫做三角形的外心。
8. 切线的性质:①圆的切线垂直于经过切点的半径。
②经过圆心且垂直于切线的直线必经过切点。
③经过切点且垂直于切线的直线必经过圆心。
运用切线的性质进行计算或证明时,常常作的辅助线是连接圆心和切点,通过构造直角三角形或相似三角形解决问题。
9. 切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线。
在判定一条直线为圆的切线时,当已知条件中未明确指出直线和圆是否有公共点时,常过圆心作该直线的垂线段,证明该线段的长等于半径,可简单的说成“无交点,作垂线段,证半径”;当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线,可简单地说成“有交点,作半径,证垂直”。
初中圆的解题方法

初中圆的解题方法
初中数学中,圆是一个重要的知识点。
掌握圆的解题方法对于提高数学成绩至关重要。
下面是一些常见的初中圆的解题方法:
1. 垂径定理及其推论:垂径定理是圆的一个重要性质,它告诉我们通过圆心并与圆相交的直径将平分其他相交的弦,并且平分弧。
利用这个定理,我们可以解决与弦、弧和直径有关的问题。
2. 圆周角定理:圆周角定理告诉我们与圆相交的角的度数等于其所夹弧所对的圆心角的度数的一半。
这个定理在解决与圆周角有关的问题时非常有用。
3. 切线长定理:切线长定理说明,通过圆外一点引圆的两条切线,它们的切线长相等。
这个定理在解决与切线有关的问题时很有用。
4. 弦长公式:弦长公式是计算弦长的关键公式,它告诉我们如何使用圆心角和半径来计算弦长。
5. 面积和周长公式:圆的面积和周长公式是解决与面积和周长有关问题的关键。
6. 代数方法:在解决与圆有关的综合问题时,我们经常需要使用代数方法。
例如,设未知数、建立方程或不等式,然后解方程或不等式来找到答案。
7. 构造法:构造法是一种常用的解题方法,它通过构造辅助线或图形来解决问题。
例如,在解决与切线有关的问题时,我们经常需要构造半径和切线之间的垂直关系。
总之,掌握这些解题方法对于解决初中圆的题目非常重要。
通过不断练习和总结,你可以更好地掌握这些方法,提高自己的数学成绩。
中考圆的综合题解题技巧

中考圆的综合题解题技巧在中考数学考试中,圆的综合题是一个比较重要的考点。
掌握圆的综合题技巧可以提高解题效率,得到更高的分数。
以下是一些圆的综合题解题技巧的总结。
1. 图形的分类在解决圆的综合题时,首先需要把图形进行分类,确定它们的性质。
根据图形的特征,可以将其分为以下几类:(1)相切:两个圆或圆与直线相切。
(2)内含:一个圆完全包含在另一个圆内部。
(3)重合:两个圆的圆心和半径相同。
(4)相离:两个圆没有交点。
2. 运用正弦定理和余弦定理在解决圆的综合题时,有时需要利用正弦定理和余弦定理来求解角度和边长。
例如,在已知一个圆内接四边形的对角线和一个角的情况下,可以利用正弦定理或余弦定理求出其余角的大小,从而求出四边形的面积。
3. 利用圆心角和弧长的关系当需要求解圆弧的长度时,可以利用圆心角和弧长的关系来计算。
在圆心角为 $x$ 度的情况下,对应的圆弧的长度为 $frac{x}{360} times 2pi r$ (其中 $r$ 为圆的半径)。
例如,在已知一个圆的半径和圆心角的情况下,就可以求出圆弧的长度。
4. 利用相似三角形在解决圆的综合题时,有时需要利用相似三角形的性质来求解。
例如,在已知一个圆和一个外接正方形的情况下,可以利用相似三角形的性质求出正方形的对角线长度。
5. 利用勾股定理在解决圆的综合题时,有时需要利用勾股定理来求解边长。
例如,在已知一个圆和一个正三角形的情况下,可以利用勾股定理求出正三角形边长的大小。
6. 利用角平分线的性质在解决圆的综合题时,有时需要利用角平分线的性质来求解。
例如,在已知一个圆内接四边形的情况下,可以利用角平分线的性质求出四边形的对角线长度。
在中考数学考试中,圆的综合题涉及的内容较多,需要考生认真掌握并灵活应用。
以上是圆的综合题解题技巧的总结,希望对广大考生有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆的综合是中考数学必考题,一般在第24或25题,分值5分
圆综一般有两小题
Ⅰ.第一小题占2分,一般需要证明切线或角的关系和线段关系
一般需要导角证明,求证相切的关系其实是导90°角,求证平行关系其实也是通过导角的关系来判定平行,这类问题通常都要用到圆的常见辅助线来解决;
Ⅱ.第二小题占3分,一般考查求线段的长度
主要应用圆的基本性质,同时结合相似、勾股定理以及锐角三角函数等知识。
这一问是考生容易丢分的,是此题的难点,需要掌握核心方法和技巧。
解决圆综问题常用到的定理:
(1)弧、弦、圆心角定理
弧、弦、圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.
推论1:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等.
推论2:在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.(2)圆周角定理
圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.
推论1:同弧或等弧所对的圆周角相等;
推论2:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.
(3)垂径定理
垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.
推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
(4)切线定理
切线的判定定理:经过半径的外端,且垂直于这条半径的直线是圆的切线。
切线的性质定理:圆的切线垂直于过切点的半径。
(5)切线长定理
切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。
(6)圆的内接四边形:
圆内接四边形性质:圆内接四边形对角互补.
推论:圆的内接四边形的一个外角等于它的内对角。
要想熟练解决几何问题,一定要形成一种做辅助线和解题的条件反射,看到题中的某个条件、某个图形或是某种问法脑海中就会即刻呈现出可能的辅助线。
所以必须要对所学过的公理及推论熟练掌握,熟练到什么程度呢?看到这些已知信息,便能以点带面把与他相关的所有隐含条件都挖掘出来。
(1)见到条件给出圆周角或者圆心角的度数或等量关系→找同弧或等弧所对的其他圆周角或者圆心角。
(2)见到直径→找直径所对的圆周角
(3)见到切线尤其是要证明相切关系→连过切点的半径,证明垂直
(4)若题目中有“弦的中点”和“弧的中点”条件时,一般连接中点和圆心,利用垂径定理的推论得出结果。
(5)圆心是直径的中点,考虑中位线
(6)同圆的半径相同,连接两条半径,考虑等腰三角形的性质,圆内的等腰三角形,计算线段长,考虑垂径定理
(7)角平分线,平行,等腰→知二得一
还有很多要形成条件反射的内容,例如出现平行线要怎么办等等,平时要多注意积累
像这些需要形成条件反射的辅助线,我们称之为必连线,即使题中可能用不到,在做题过程中也要先连起来。
圆综的解题步骤:
第一问一般需要证明切线或角的关系和线段关系
它们有一个共同的特点:通过导角来证明。
证切线→导直角;证角的关系等→导角;证线段相等→一般导等腰(有时需要全等);证线段平行→导角。
第二问一般需要求边,一种是求边的比例,另一种是求边的长度
※求边的比例大多数情况会用相似三角形来解决
※求边的长度则分3个步骤:
(1)把所求的边放到直角三角形中,利用勾股定理或者三角函数解决
(2)把所求的边放到合适的三角形中,利用相似三角形来解决
利用勾股定理,相似三角形或者锐角三角函数时,通常需要设未知数,然后列方程求解(3)若发现(1)和(2)行不通,则可以考虑等量代换或者求线段的和差,再回到(1)或(2)解决
圆中有非常多的直角三角形,所以相似一般是直角三角形的相似,包括:平行相似,错位相似,射影相似,共角相似,八字相似等。