晶体材料加工与芯片制备技术

芯片设计和生产流程

芯片设计和生产流程 大家都是电子行业的人,对芯片,对各种封装都了解不少,但是你 知道一个芯片是怎样设计出来的么?你又知道设计出来的芯片是 怎么生产出来的么?看完这篇文章你就有大概的了解。 复杂繁琐的芯片设计流程 芯片制造的过程就如同用乐高盖房子一样,先有晶圆作为地基,再层层往上叠的芯片制造流程后,就可产出必要的IC芯片(这些会在后面介绍)。然而,没有设计图,拥有再强制造能力都没有用,因此,建筑师的角色相当重要。但是IC设计中的建筑师究竟是谁呢?本文接下来要针对IC设计做介绍。 在IC生产流程中,IC多由专业IC设计公司进行规划、设计,像是联发科、高通、Intel等知名大厂,都自行设计各自的IC芯片,提供不同规格、效能的芯片给下游厂商选择。因为IC是由各厂自行设计,所以IC设计十分仰赖工程师的技术,工程师的素质影响着一间企业的价值。然而,工程师们在设计一颗IC芯片时,究竟有那些步骤?设计流程可以简单分成如下。

设计第一步,订定目标 在IC设计中,最重要的步骤就是规格制定。这个步骤就像是在设计建筑前,先决定要几间房间、浴室,有什么建筑法规需要遵守,在确定好所有的功能之后在进行设计,这样才不用再花额外的时间进行后续修改。IC设计也需要经过类似的步骤,才能确保设计出来的芯片不会有任何差错。 规格制定的第一步便是确定IC的目的、效能为何,对大方向做设定。接着是察看有哪些协定要符合,像无线网卡的芯片就需要符合IEEE802.11等规範, 不然,这芯片将无法和市面上的产品相容,使它无法和其他设备连线。最后则是

确立这颗IC的实作方法,将不同功能分配成不同的单元,并确立不同单元间连结的方法,如此便完成规格的制定。 设计完规格后,接着就是设计芯片的细节了。这个步骤就像初步记下建筑的规画,将整体轮廓描绘出来,方便后续制图。在IC芯片中,便是使用硬体描述语言(HDL)将电路描写出来。常使用的HDL有Verilog、VHDL等,藉由程式码便可轻易地将一颗IC地功能表达出来。接着就是检查程式功能的正确性并持续修改,直到它满足期望的功能为止。 ▲32bits加法器的Verilog范例。 有了电脑,事情都变得容易 有了完整规画后,接下来便是画出平面的设计蓝图。在IC设计中,逻辑合成这个步骤便是将确定无误的HDL code,放入电子设计自动化工具(EDA tool),让电脑将HDL code转换成逻辑电路,产生如下的电路图。之后,反

芯片的制造工艺流程

芯片的制造 半导体产业最上游是IC设计公司与硅晶圆制造公司,IC 设公司计依客户的需求设计出电路图,硅晶圆制造公司则以多晶硅为原料制造出硅晶圆。中游的IC制造公司主要的任务就是把IC设计公司设计好的电路图移植到硅晶圆制造公司制造好的晶圆上。完成后的晶圆再送往下游的IC封测厂实施封装与测试,即大功告成! (1)硅晶圆制造 半导体产业的最上游是硅晶圆制造。事实上,上游的硅晶圆产业又是由三个子产业形成的,依序为硅的初步纯化→多晶硅的制造→硅晶圆制造。 a硅的初步纯化 将石英砂(SiO2)转化成冶金级硅(硅纯度98%以上)。 b多晶硅的制造 将冶金级硅制成多晶硅。这里的多晶硅可分成两种:高纯度(99.999999999%,11N)与低纯度(99.99999%,7N)两种。高纯度是用来制做IC等精密电路IC,俗称半导体等级多晶硅;低纯度则是用来制做太阳能电池的,俗称太阳能等级多晶硅。 c硅晶圆制造 将多晶硅制成硅晶圆。硅晶圆又可分成单晶硅晶圆与多晶硅晶圆两种。一般来说,IC制造用的硅晶圆都是单晶硅晶

圆,而太阳能电池制造用的硅晶圆则是单晶硅晶圆与多晶硅晶圆皆有。一般来说,单晶硅的效率会较多晶硅高,当然成本也较高。 (2)IC设计 前面提到硅晶圆制造,投入的是石英砂,产出的是硅晶圆。IC设计完成后,产出则是电路图,最后制成光罩送往IC 制造公司,设计就告一段落了! 不过,要让理工科以外的人了解IC设计并不是件容易的事(就像要让念理工的人了解复杂的衍生性金融商品一样),作者必需要经过多次外出取材才有办法办到。这里先大概是一下观念,请大家发挥一下你们强大的想像力! 简单来讲,IC设计可分成几个步骤,依序为:规格制定→逻辑设计→电路布局→布局后模拟→光罩制作。 a规格制定 品牌厂或白牌厂(没有品牌的品牌厂)的工程师和IC设计工程师接触,并开出他们需要的IC的规格给IC设计工程师。讨论好规格后,工程师们就开始工作了! b逻辑设计 所谓的“逻辑”设计图,就是指它是由简单的逻辑元件构成,而不是由半导体种类电路元件(如二极体、电晶体等)所构成。什么是逻辑元件呢?像是AND Gate(故名思意,两个输入都是1的话,输出才是1,否则输出就是0),OR Gate(两

微细加工技术概述及其应用

2011 年春季学期研究生课程考核 (读书报告、研究报告) 考核科目:微细超精密机械加工技术原理及系统设计学生所在院(系):机电工程学院 学生所在学科:机械设计及理论 学生姓名:杨嘉 学号:10S008214 学生类别:学术型 考核结果阅卷人

微细加工技术概述及其应用 摘要 微细加工原指加工尺度约在微米级范围的加工方法,现代微细加工技术已经不仅仅局限于纯机械加工方面,电、磁、声等多种手段已经被广泛应用于微细加工,从微细加工的发展来看,美国和德国在世界处于领先的地位,日本发展最快,中国有很大差距。本文从用电火花加工方法加工微凹坑和用微铣削方法加工微小零件两方面描述了微细加工技术的实际应用。 关键词:微细加工;电火花;微铣削 1微细加工技术简介及国内外研究成果 1.1微细加工技术的概念 微细加工原指加工尺度约在微米级范围的加工方法。在微机械研究领域中,从尺寸角度,微机械可分为1mm~10mm的微小机械,1μm~1mm的微机械,1nm~1μm的纳米机械,微细加工则是微米级精细加工、亚微米级微细加工、纳米级微细加工的通称。广义上的微细加工,其方式十分丰富,几乎涉及现代特种加工、微型精密切削加工等多种方式,微机械制造过程又往往是多种加工方法的组合。从基本加工类型看,微细加工可大致分为四类:分离加工——将材料的某一部分分离出去的加工方式,如分解、蒸发、溅射、切削、破碎等;接合加工——同种或不同材料的附和加工或相互结合加工方式,如蒸镀、淀积、生长等;变形加工——使材料形状发生改变的加工方式,如塑性变形加工、流体变形加工等;材料处理或改性和热处理或表面改性等。微细加工技术曾广泛用于大规模集成电路的加工制作,正是借助于微细加工技术才使得众多的微电子器件及相关技术和产业蓬勃兴起。目前,微细加工技术已逐渐被赋予更广泛的内容和更高的要求,已在特种新型器件、电子零件和电子装置、机械零件和装置、表面分析、材料改性等方面发挥日益重要的作用,特别是微机械研究和制作方面,微细加工技术已成为必不可少的基本环节。 现代微细加工技术已经不仅仅局限于纯机械加工方面,电、磁、声等多种手段已经被广泛应用于微细加工,微细超精密加工的主要方法如下: 微细电火花加工技术的研究起步于20世纪60年代末,是在绝缘的工作液中通过工具电极和工件间脉冲火花放电产生的瞬时、局部高温来熔化和汽化蚀除金属的一种加工技术。由于其在微细轴孔加工及微三维结构制作方面存在的巨大潜力和应用背景,得到了

【半导体研磨 精】半导体晶圆的生产工艺流程介绍

?从大的方面来讲,晶圆生产包括晶棒制造和晶片制造两大步骤,它又可细分为以下几道主要工序(其中晶棒制造只包括下面的第一道工序,其余的全部属晶片制造,所以有时又统称它们为晶柱切片后处理工序): 晶棒成长--> 晶棒裁切与检测--> 外径研磨--> 切片--> 圆边--> 表层研磨--> 蚀刻--> 去疵--> 抛光--> 清洗--> 检验--> 包装 1 晶棒成长工序:它又可细分为: 1)融化(Melt Down) 将块状的高纯度复晶硅置于石英坩锅内,加热到其熔点1420°C以上,使其完全融化。 2)颈部成长(Neck Growth) 待硅融浆的温度稳定之后,将〈1.0.0〉方向的晶种慢慢插入其中,接着将晶种慢慢往上提升,使其直径缩小到一定尺寸(一般约6mm左右),维持此直径并拉长 100-200mm,以消除晶种内的晶粒排列取向差异。 3)晶冠成长(Crown Growth) 颈部成长完成后,慢慢降低提升速度和温度,使颈部直径逐渐加大到所需尺寸(如 5、6、8、12吋等)。 4)晶体成长(Body Growth) 不断调整提升速度和融炼温度,维持固定的晶棒直径,只到晶棒长度达到预定值。 5)尾部成长(Tail Growth) 1

当晶棒长度达到预定值后再逐渐加快提升速度并提高融炼温度,使晶棒直径逐渐变小,以避免因热应力造成排差和滑移等现象产生,最终使晶棒与液面完全分离。到此即得到一根完整的晶棒。 2 晶棒裁切与检测(Cutting & Inspection) 将长成的晶棒去掉直径偏小的头、尾部分,并对尺寸进行检测,以决定下步加工的工艺参数。 3 外径研磨(Su rf ace Grinding & Shaping) 由于在晶棒成长过程中,其外径尺寸和圆度均有一定偏差,其外园柱面也凹凸不平,所以必须对外径进行修整、研磨,使其尺寸、形状误差均小于允许偏差。 4 切片(Wire Saw Sl ic ing) 由于硅的硬度非常大,所以在本工序里,采用环状、其内径边缘镶嵌有钻石颗粒的薄片锯片将晶棒切割成一片片薄片。 5 圆边(Edge Profiling) 由于刚切下来的晶片外边缘很锋利,硅单晶又是脆性材料,为避免边角崩裂影响晶片强度、破坏晶片表面光洁和对后工序带来污染颗粒,必须用专用的电脑控制设备自动修整晶片边缘形状和外径尺寸。 ? 6 研磨(Lapping) 研磨的目的在于去掉切割时在晶片表面产生的锯痕和破损,使晶片表面达到所要求的光洁度。 7 蚀刻(Etching) 1

微细加工技术及其应用

微细加工技术及其应用 Last revised by LE LE in 2021

微细加工技术及其应用 微细加工技术是由瑞士BinC公司发明的一种新型加工工艺,在2004年法国巴黎举办的国际表面处理展览会(SITS)和2004年在法国里昂举办的ALLIANCE展览会上荣获2项发明奖。微细加工工艺和设备拥有国际专利。 微细加工技术结合了超精增亮和超精抛光两项革新技术,能够有选择性地保留表面的微观结构,以提高表面的摩擦和滑动性能(表面技术),以机械化和化取代传统的手工抛光,提高表面的美学功能。这种微细加工技术应用于切削刀具、冲压和锻造工具,航空、汽车、医疗器械、塑料注射模具等机械零件的表面处理,能够极大地改善零件表面的性能。 微细加工原理 微细加工技术采用全方式对金属零件表面进行超精加工,通过一种机械化学作用来清除金属零件表面上1~40μm的材料,实现被加工表面粗糙度达到或者好于ISO标准的N1级的表面质量。微细加工技术主要应用于超精抛光和超精增亮这两个领域。超精抛光使传统的手工抛光工艺化;而超精增亮则生成新的表面拓扑结构。 微细加工技术的一个突出优点是能够赋予零件表面新的微观结构。这些微观结构能提高零件表面对特定应用功能的适应性。如减小摩擦和机械差异、提高抗磨损性能、改善涂镀前后表面的沉积性能等。 总的说来,超精增亮可去除次级微观粗糙表面,次级粗糙表面的厚度在0~20μm之间,位于零件表面初级微观粗糙面的峰尖之间。而超精抛光则部分或整体去除初级微观粗糙表面,其值在10~40μm之间,当然这取决于零件材料表面的初始状态。

微细加工技术迄今能够加工的材料有退火及淬火钢、铜及铜合金、铸铁、Inconel镍合金(镍基合金)、钛金属、表面硬涂层处理前后的预处理(PVD、CVD、电镀)。 技术专利 微细加工技术是一种有选择性地精修被加工对象表面微观粗糙度和拓扑结构的创新性微观加工工艺。这种机械化学加工工艺是一种全化的加工工艺,适用于汽车制造、电子、化工、冶金、机械制造、航空制造等行业,尤其是模具、刀具和机床工具、高精密零件、光学器件,以及硬涂层处理前后的表面预处理加工。 微细加工技术的应用 微细加工技术通过改变材料表面的微细结构,能够减小摩擦、提高抗磨损性能,显着地提高材料的表面性能,在刀具行业具有广阔的应用前景。如采用超精增亮技术,彻底消除次级微观粗糙表面,减小摩擦,能够提高刀具的排屑性能,降低切削力;而保持初级粗糙表面,有利于润滑油膜,提高刀具的排屑性能,减少发热;如果在涂层处理前优化预处理涂层基面,或者在涂层之后彻底清除涂层引起粗糙表面,则能够提高PVD涂层的附着性能,延长刀具的使用寿命,消除刀具表面的积屑瘤问题。 这种创新的加工工艺近几年来在诸多工业领域的实际应用清楚地表明,微细加工技术能够大幅降低超精加工的成本;极大地缩短生产周期;方便地提高表面的质量,并且采用这种加工工艺加工出来的表面具有无以伦比的一致性和再现性。

集成电路制造工艺流程之详细解答

集成电路制造工艺流程之详细解答 1.晶圆制造( 晶体生长-切片-边缘研磨-抛光-包裹-运输 ) 晶体生长(Crystal Growth) 晶体生长需要高精度的自动化拉晶系统。 将石英矿石经由电弧炉提炼,盐酸氯化,并经蒸馏后,制成了高纯度的多晶硅,其纯度高达0.99999999999。 采用精炼石英矿而获得的多晶硅,加入少量的电活性“掺杂剂”,如砷、硼、磷或锑,一同放入位于高温炉中融解。 多晶硅块及掺杂剂融化以后,用一根长晶线缆作为籽晶,插入到融化的多晶硅中直至底部。然后,旋转线缆并慢慢拉出,最后,再将其冷却结晶,就形成圆柱状的单晶硅晶棒,即硅棒。 此过程称为“长晶”。 硅棒一般长3英尺,直径有6英寸、8英寸、12英寸等不同尺寸。 硅晶棒再经过研磨、抛光和切片后,即成为制造集成电路的基本原料——晶圆。 切片(Slicing) /边缘研磨(Edge Grinding)/抛光(Surface Polishing) 切片是利用特殊的内圆刀片,将硅棒切成具有精确几何尺寸的薄晶圆。 然后,对晶圆表面和边缘进行抛光、研磨并清洗,将刚切割的晶圆的锐利边缘整成圆弧形,去除粗糙的划痕和杂质,就获得近乎完美的硅晶圆。 包裹(Wrapping)/运输(Shipping) 晶圆制造完成以后,还需要专业的设备对这些近乎完美的硅晶圆进行包裹和运输。 晶圆输送载体可为半导体制造商提供快速一致和可靠的晶圆取放,并提高生产力。 2.沉积 外延沉积 Epitaxial Deposition 在晶圆使用过程中,外延层是在半导体晶圆上沉积的第一层。 现代大多数外延生长沉积是在硅底层上利用低压化学气相沉积(LPCVD)方法生长硅薄膜。外延层由超纯硅形成,是作为缓冲层阻止有害杂质进入硅衬底的。 过去一般是双极工艺需要使用外延层,CMOS技术不使用。 由于外延层可能会使有少量缺陷的晶圆能够被使用,所以今后可能会在300mm晶圆上更多

半导体工艺及芯片制造技术问题答案(全)

常用术语翻译 active region 有源区 2.active ponent有源器件 3.Anneal退火 4.atmospheric pressure CVD (APCVD) 常压化学气相淀积 5.BEOL(生产线)后端工序 6.BiCMOS双极CMOS 7.bonding wire 焊线,引线 8.BPSG 硼磷硅玻璃 9.channel length沟道长度 10.chemical vapor deposition (CVD) 化学气相淀积 11.chemical mechanical planarization (CMP)化学机械平坦化 12.damascene 大马士革工艺 13.deposition淀积 14.diffusion 扩散 15.dopant concentration掺杂浓度 16.dry oxidation 干法氧化 17.epitaxial layer 外延层 18.etch rate 刻蚀速率 19.fabrication制造 20.gate oxide 栅氧化硅 21.IC reliability 集成电路可靠性 22.interlayer dielectric 层间介质(ILD) 23.ion implanter 离子注入机 24.magnetron sputtering 磁控溅射 25.metalorganic CVD(MOCVD)金属有机化学气相淀积 26.pc board 印刷电路板 27.plasma enhanced CVD(PECVD) 等离子体增强CVD 28.polish 抛光 29.RF sputtering 射频溅射 30.silicon on insulator绝缘体上硅(SOI)

微细加工技术概述及其应用

武汉工程职业技术学院 毕业论文 课题名称机加工细微加工技术概述及其应用 学生姓名陈凯 . 学号1104180317 专业模具设计与制造 班级 2011级模具三班 指导教师秦丽萍 年月日

目录 摘要 (3) 引言 (4) 第一章微细加工技术简介及国内外 (5) 1.1 (5) 1.2 (9) 第二章微细加工技术应用实例 (11) 2.1 (11) 2.2 (13) 总结 (15) 参考文献 (16)

3 微细加工技术概述及其应用 摘要:微细加工原指加工尺度约在微米级范围的加工方法,现代微细加工技术已经不仅仅局限于纯机械加工方面,电、磁、声等多种手段已经被广泛应用于微细加工,从微细加工的发展来看,美国和德国在世界处于领先的地位,日本发展最快,中国有很大差距。本文从用电火花加工方法加工微凹坑和用微铣削方法加工微小零件两方面描述了微细加工技术的实际应用。 关键词:微细加工;电火花;微铣削

引言:随着科学技术的发展,近年来在IT 、医疗器械以及通讯领域,人们对微小型零件(如:微型传感器、微型加速度计、微透镜阵列等)的需求日益增加。这种需求的增加促进了微细加工技术的发展。在目前的多种微细加工技术中,微机电系统(MicroElectroMechanicalSystem ,MEMS)一直是主流技术之一。由于MEMS 技术衍生于微电子技术,它的主要加工对象被限制在硅基材料上,并且工件的几何形状基本上是简单的二维形状,因而只有在大规模集成电路的批量制造等方面才是经济的。微细切削加工技术,特别是微细铣削作为MEMS 技术的补充,由于其几乎不受加工对象材料和几何形状的限制而受到研究人员的重视,正在成为微细加工技术中的新生力量。 近年来,采用传统的机械加工方法而进行微细制造的研究越来越受到人们的重 视,针对特征尺寸在 410~10m 所谓中间尺度微小机械零件的微细切削制造成为一大研究热点,其原因是机加工具有几大优势: 1加工精度高; 2生产效率高、灵活; 3能加工任意三维特征的零件; 4能加工包括钢在内的多种材料;

半导体制造工艺流程

半导体制造工艺流程 N型硅:掺入V族元素--磷P、砷As、锑Sb P型硅:掺入III族元素—镓Ga、硼B PN结: 半导体元件制造过程可分为 前段(FrontEnd)制程 晶圆处理制程(WaferFabrication;简称WaferFab)、 晶圆针测制程(WaferProbe); 後段(BackEnd) 构装(Packaging)、 测试制程(InitialTestandFinalTest) 一、晶圆处理制程 晶圆处理制程之主要工作为在矽晶圆上制作电路与电子元件(如电晶体、电容体、逻辑闸等),为上述各制程中所需技术最复杂且资金投入最多的过程,以微处理器(Microprocessor)为例,其所需处理步骤可达数百道,而其所需加工机台先进且昂贵,动辄数千万一台,其所需制造环境为为一温度、湿度与含尘(Particle)均需控制的无尘室(Clean-Room),虽然详细的处理程序是随著产品种类与所使用的技术有关;不过其基本处理步骤通常是晶圆先经过适当的清洗(Cleaning)之後,接著进行氧化(Oxidation)及沈积,最後进行微影、蚀刻及离子植入等反覆步骤,以完成晶圆上电路的加工与制作。 二、晶圆针测制程 经过WaferFab之制程後,晶圆上即形成一格格的小格,我们称之为晶方或是晶粒(Die),在一般情形下,同一片晶圆上皆制作相同的晶片,但是也有可能在同一片晶圆上制作不同规格的产品;这些晶圆必须通过晶片允收测试,晶粒将会一一经过针测(Probe)仪器以测试其电气特性,而不合格的的晶粒将会被标上记号(InkDot),此程序即称之为晶圆针测制程(WaferProbe)。然後晶圆将依晶粒为单位分割成一粒粒独立的晶粒 三、IC构装制程 IC構裝製程(Packaging):利用塑膠或陶瓷包裝晶粒與配線以成積體電路目的:是為了製造出所生產的電路的保護層,避免電路受到機械性刮傷或是高溫破壞。 半导体制造工艺分类 半导体制造工艺分类 一双极型IC的基本制造工艺: A在元器件间要做电隔离区(PN结隔离、全介质隔离及PN结介质混合隔离)ECL(不掺金)(非饱和型)、TTL/DTL(饱和型)、STTL(饱和型)B在元器件间自然隔离 I2L(饱和型) 半导体制造工艺分类 二MOSIC的基本制造工艺: 根据栅工艺分类 A铝栅工艺 B硅栅工艺

CMOS集成电路制造工艺流程

C M O S集成电路制造工艺 流程 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

陕西国防工业职业技术学院课程报告 课程微电子产品开发与应用 论文题目CMOS集成电路制造工艺流程 班级电子3141 姓名及学号王京(24#) 任课教师张喜凤 目录

CMOS集成电路制造工艺流程 摘要:本文介绍了CMOS集成电路的制造工艺流程,主要制造工艺及各工艺步骤中的核心要素,及CMOS器件的应用。 引言:集成电路的设计与测试是当代计算机技术研究的主要问题之一。硅双极工艺面世后约3年时间,于1962年又开发出硅平面MOS工艺技术,并制成了MOS集成电路。与双极集成电路相比,MOS集成电路的功耗低、结构简单、集成度和成品率高,但工作速度较慢。由于它们各具优劣势,且各自有适合的应用场合,双极集成工艺和MOS集成工艺便齐头平行发展。 关键词:工艺技术,CMOS制造工艺流程 1.CMOS器件 CMOS器件,是NMOS和PMOS晶体管形成的互补结构,电流小,功耗低,早期的CMOS电路速度较慢,后来不断得到改进,现已大大提高了速度。 分类 CMOS器件也有不同的结构,如铝栅和硅栅CMOS、以及p阱、n阱和双阱CMOS。铝栅CMOS和硅栅CMOS的主要差别,是器件的栅极结构所用材料的不同。P阱CMOS,则是在n型硅衬底上制造p沟管,在p阱中制造n沟管,其阱可采用外延法、扩散法或离子注入方法形成。该工艺应用得最早,也是应用得最广的工艺,适用于标准CMOS电路及CMOS与双极npn兼容的电路。N阱CMOS,是在p型硅衬底上制造n沟晶体管,在n阱中制造p沟晶体管,其阱一般采用离子注入方法形成。该工艺可使NMOS晶体管的性能最优化,适用于制造以NMOS为主的CMOS以及E/D-NMOS和p沟MOS兼容的CMOS电路。双阱CMOS,是在低阻n+衬底上再外延一层中高阻n――硅层,然后在外延层中制造n 阱和p阱,并分别在n、p阱中制造p沟和n沟晶体管,从而使PMOS和NMOS晶体管都在高阻、低浓度的阱中形成,有利于降低寄生电容,增加跨导,增强p沟和n沟晶体管的平衡性,适用于高性能电路的制造。

浅谈微细加工技术

浅谈微细加工技术 xx (xx学院机自1001班430205) [摘要] 特种微细加工技术已成为许多工业领域产品制造技术群中不可缺少的分支,在难切削材料、复杂型面、精细表面、低刚度零件及模具加工等领域中,已成为重要的工艺方法.目前,特种微细加工技术正处于蓬勃发展的阶段。 [关键词]特种微细加工光刻技术发展成果 引言 一、微细加工技术发展研究 微细加工技术是集成电路(lC)工业的基础,是半导体器件研究的必要手段。其中的lC以动态随机存储器(ORAM)为代表,具有肉眼无法看见的记忆功能结构,而半导体器件以小尺寸器件为主。为了制备大规模集成电路(VL引)、超大规模集成电路(ULSI)和量子器件,微细加工技术正由微米、亚微米、亚半微米一直向纳米级和量子化方向发展。除了lC技术外,液晶显示器(LCO)技术、微机械技术和光电子技术的发展同样离不开微细加工技术水平的提高。人们越来越感到以微细加工技术为支柱的微电子技术正在成为一个国家综合国力的重要体现,成为国际竞争的焦点。因此许多发达国家目前都加大了在微细加工技术研究方面的投资强度,以期取得微细加工技术领域的领先地位。 微细加工技术包括曝光技术(即光刻技术)、刻蚀技术、浅结掺杂技术、超薄膜形成技术等。其中的曝光技术是微细加工技术的核心。 作者简介: xx(xx年-);男;汉族;机械工程方向:机械制造与自动化

1、国外微细加工技术在Ic方面的成就。国外微细加工技术在IC工业方面取得了很大的成就。表1是ORAM发展所要求达到的光刻技术水平和近年来ORAM的发展趋势。需要特别提到的是,1991年,日本日立公司研制成功64MORAM,其加工线宽为0.3微米,芯片面积为9.74X20.28平方毫米,集成度为1.21火1护个元器件;1992年,日本富士通公司推出256MORAM,加工线宽为0.2微米,芯片面积为16火25平方毫米,集成度为5.6x1了个元器件。由表5不难看到,国外在微细加工技术研究方面取得的进展是很快的,以致于每隔几年就能推出一代产品。以下是生产256MORAM所需达到的微细加工技术水平:光刻0.25微米(套刻精度士0.08微米,线宽控制0.04微米),无机且能真空处理的全干刻蚀剂技术,0.1微米以下浅结技术,低温工艺仁平坦化,全干法加工、刻蚀、清洗,CVO 铝和铜金属化,全自动化。 表5 2、国外微细加工技术在半导体器件研究方面的成就。国外微细加工技术在半导体器件研究 方面也取得了很大的成就。1993年,日本东芝公司的研究开发中心研制成功门长度仅为0.04微 米的n沟道MOSFE丁,并且可在室温下工作。德仪(TI)公司在工993年也研制成功晶体管特征 尺寸为0.02微米的集成电路,在该特征尺寸下,电子已经停止了粒子活动,开始转化为类似波 的活动。目煎国外研制的日EM下器件的最小栅长仅为25纳米。另外,国外也利用高水平的微 细加工技术制作出了与电子相干长度相当的纳米结构(包括量子线、量子点阵、量子点接触等), 并对其物理过程进行了广泛的研究,提出了电子波器件的可能性。美国《物理评论》杂志指出, 以量子效应为基础的电子波器件有可能成为ULsl技术的基础,并将导致未来电子学发展的一场 新革命。 国外在lC工业和半导体器件研究方面所取得的成就无一不得益于微细加工技术的发展。可

【半导体芯片制造】芯片生产工艺流程

芯片生产工艺流程 现今世界上超大规模集成电路厂(台湾称之为晶圆厂,为叙述简便,本文以下也采用这种称谓)主要集中分布于美国、日本、西欧、新加坡及台湾等少数发达国家和地区,其中台湾地区占有举足轻重的地位。 晶圆厂所生产的产品实际上包括两大部分:晶圆切片(也简称为晶圆)和超大规模集成电路芯片(可简称为芯片)。前者只是一片像镜子一样的光滑圆形薄片,从严格的意义上来讲,并没有什么直接实际应用价值,只不过是供其后芯片生产工序深加工的原材料。而后者才是直接应用在计算机、电子、通讯等许多行业上的最终产品,它可以包括CPU、内存单元和其它各种专业应用芯片。 一、芯片生产工艺流程: 芯片的制造过程可概分为晶圆处理工序(WaferFabrication)、晶圆针测工序(WaferProbe)、构装工序(Packaging)、测试工序(InitialTestandFinalTest)等几个步骤。其中晶圆处理 1

工序和晶圆针测工序为前段(FrontEnd)工序,而构装工序、测试工序为后段(BackEnd)工序。 1、晶圆处理工序:本工序的主要工作是在晶圆上制作电路及电子元件(如晶体管、电容、逻辑开关等),其处理程序通常与产品种类和所使用的技术有关,但一般基本步骤是先将晶圆适当清洗,再在其表面进行氧化及化学气相沉积,然后进行涂膜、曝光、显影、蚀刻、离子植入、金属溅镀等反复步骤,最终在晶圆上完成数层电路及元件加工与制作。 2、晶圆针测工序:经过上道工序后,晶圆上就形成了一个个的小格,即晶粒,一般情况下,为便于测试,提高效率,同一片晶圆上制作同一品种、规格的产品;但也可根据需要制作几种不同品种、规格的产品。在用针测(Probe)仪对每个晶粒检测其电气特性,并将不合格的晶粒标上记号后,将晶圆切开,分割成一颗颗单独的晶粒,再按其电气特性分类,装入不同的托盘中,不合格的晶粒则舍弃。 2

微细加工技术的应用和趋势

微细加工技术的应用和趋势 [摘要]先进制造工艺是先进制造技术的核心和基础,一个国家的制造工艺的水平的高低,在很大程度上决定了其制造业在国际市场的竞争实力。本文主要介绍先进制造工艺中的微细加工技术在现在各个方面的应用及发展。 [关键词]微机械;微机械加工技术;超微机械加工;光刻加工 引言 随着微纳米技术的不断发展, 以本身形状尺寸微小或操作尺度极小为特征的微机械已成为人们在微观领域认识和改造客观世界的一种高新技术。微机械由于具有能够在狭小空间内进行作业, 而又不扰乱工作环境和对象的特点, 在航空航天, 精密仪器, 生物医学等领域有着广阔的应用潜力, 且是实现纳米技术( Nanotechnology ) 的重要环节, 因而受到人们的高度重视,被列为21世纪关键技术之首。 1 微机械的特征 微机械在美国常称为微型机电系统( micro-electro-mechanicalsystem,MEMS) ; 在日本称作微机器( micro-machine) ; 而在欧洲则称作微系统( micro-system) 。 微机械按其尺寸特征可以分为1~10mm 的微小型机械, 1nm~1mm 的微机械, 以及1nm~1mm 的纳米机械。而制造微机械常采用的微细加工又可以进一步分为微米级微细加工( micro-fabricat ion) , 亚微米级微细加工( sub-micro-fabrication) 和纳米级微细加工( nano-fabrication) 等。概括起来, 微机械具有以下几个基本特点: 1.1 体积小、精度高、重量轻。其体积可小至亚微米以下, 尺寸精度达纳米级, 重量可轻至纳克。 1.2 性能稳定、可靠性高。由于微机械的体积甚小, 几乎不受热膨涨, 噪声和挠曲等因素影响, 具有较高的抗干扰性, 可在较差的环境下进行稳定的工作。 1.3 能耗低、灵敏性和工作效率高。微机械所消耗的能量远小于传统机械的十分之一, 但却能

半导体IC制造流程

一、晶圆处理制程 晶圆处理制程之主要工作为在硅晶圆上制作电路与电子组件(如晶体管、电容体、逻辑闸等),为上述各制程中所需技术最复杂且资金投入最多的过程,以微处理器(Microprocessor)为例,其所需处理步骤可达数百道,而其所需加工机台先进且昂贵,动辄数千万一台,其所需制造环境为为一温度、湿度与含尘量(Particle)均需控制的无尘室(Clean-Room),虽然详细的处理程序是随着产品种类与所使用的技术有关;不过其基本处理步骤通常是晶圆先经过适当的清洗(Cleaning)之后,接着进行氧化(Oxidation)及沈积,最后进行微影、蚀刻及离子植入等反复步骤,以完成晶圆上电路的加工与制作。 二、晶圆针测制程 经过Wafer Fab之制程后,晶圆上即形成一格格的小格,我们称之为晶方或是晶粒(Die),在一般情形下,同一片晶圆上皆制作相同的芯片,但是也有可能在同一片晶圆上制作不同规格的产品;这些晶圆必须通过芯片允收测试,晶粒将会一一经过针测(Probe)仪器以测试其电气特性,而不合格的的晶粒将会被标上记号(Ink Dot),此程序即称之为晶圆针测制程(Wafer Probe)。然后晶圆将依晶粒为单位分割成一粒粒独立的晶粒,接着晶粒将依其电气特性分类(Sort)并分入不同的仓(Die Bank),而不合格的晶粒将于下一个制程中丢弃。 三、IC构装制程 IC构装制程(Packaging)则是利用塑料或陶瓷包装晶粒与配线以成集成电路(Integrated Circuit;简称IC),此制程的目的是为了制造出所生产的电路的保护层,避免电路受到机械性刮伤或是高温破坏。最后整个集成电路的周围会向外拉出脚架(Pin),称之为打线,作为与外界电路板连接之用。

激光微细加工技术及其在MEMS微制造中的应用讲解

SpecialReports 2002年第3期 综述 激光微细加工技术及其在MEMS微制造中的应用LaserMicromachiningandItsApplicationintheMicrofabricationofMEMS 潘开林①②陈子辰②傅建中① (①浙江大学生产工程研究所②桂林电子工业学院) 摘要:文章综述了当前MEMS各类微制造技术,阐述了各种激光微细加工技术的原理、特点,主要包括准 分子激光微细加工技术、激光LIGA技术、激光微细立体光刻技术等,以及它们在MEMS微制造中的应用。 关键词:激光微细加工微机电系统激光LIGA1所示[5]。 表1MEMS主要微制造技术对比 技术 LIGA 1MEMS及其微制造技术概述 微机电系统(ME,,知功能和执行功能,在此基础上可开发出高度智能、高功能密度的新型系统。MEMS器件与系统未来将成为多个领域的核心,其作用与以CPU为代表的集成电路构成当今电子系统的核心一样。鉴于MEMS技术的重要技术经济潜力和战略地位,引起了世界各国的高度重视。MEMS主要是美国学者的称谓,在日本称为微机械,在欧洲称为微系统。此外,微技术在不同的学科与应用领域,还有类似的不同的专业或行业术语,如生物技术领域的基因芯片(DNA芯片)、生物芯片(Bio-Chip),分析化学领域的微全流体分析系统(uTAS)、芯 最小尺寸 +++--(+)-(+)+++ 精度 +++--(+)++-+ 高宽比粗糙度 ++-+-+++++++

++--+-++ 几何自 由度 +-++++++-- 材料范围金属、聚合物、 陶瓷金属、聚合物金属、聚合物、 陶瓷聚合物金属、半导体、 陶瓷金属、半导体非铁金属、聚合物 技术准分子激光微细立体光刻微细电火化 LCVD 金刚石片实验室(LabonChip),与光学集成形成微光机电系统(MOEMS)等。MEMS是从微电子技术发展而来,其微制造技术 注:表中++、+、-、--分别表示很好、好、较差、很差,+-表示不同应用条件下的相对效果,括号内的“+”表示最新研究有所进展。 在目前MEMS微细加工技术的研究与应用中,激光微细加工技术得到了广泛的关注与研究。激光微细加工制造商宣称激光微细加工技术具有:非接触工艺、有选择性加工、热影响区域小、高精度与高重复率、高的零件尺寸与形状的加工柔性等优点。 实际上,激光微细加工技术最大的特点是“直写”加工,简化了工艺,实现了MEMS的快速原型制造。此外,该方法没有诸如腐蚀等方法带来的环境污染问题,可谓“绿色制造”。 在MEMS微制造中主要采用的激光微细加工技术有:激光直写微细加工、激光LIGA、激光微细立体光刻等,下面分别加以介绍。 主要沿用微电子加工技术与设备。微电子加工技术与设备价格昂贵,适合批量生产。由于微电子工艺是平面工艺,在加工MEMS三维结构方面有一定的难度。目前,通过与其它学科的交叉渗透,已研究开发出以下一些特定的MEMS微制造技术。 (1)LIGA技术LIGA和准LIGA技术最大的特点是可制出高径比很大的微构件,但缺点同样突出,成本高。 (2)材料去除加工技术这类技术主要包括准分 子激光微细加工[1~4]、微细电火花加工[5]、以牺牲层技术为代表的硅表面微细加工、以腐蚀技术为主体的体硅加工技术、电子束铣、聚焦离子束铣等。(3)材料淀积加工技术这类技术主要包括激光 7] 辅助淀积(LCVD)、微细立体光刻[6、、电化学淀积等。

芯片制作工艺流程

芯片制作工艺流程 工艺流程 1) 表面清洗 晶圆表面附着一层大约2um的Al2O3和甘油混合液保护之,在制作前必须进行化学刻蚀和表面清洗。 2) 初次氧化 有热氧化法生成SiO2 缓冲层,用来减小后续中Si3N4对晶圆的应力 氧化技术 干法氧化 Si(固) + O2 à SiO2(固) 湿法氧化 Si(固) +2H2O à SiO2(固) + 2H2 干法氧化通常用来形成,栅极二氧化硅膜,要求薄,界面能级和固定电荷密度低的薄膜。干法氧化成膜速度慢于湿法。湿法氧化通常用来形成作为器件隔离用的比较厚的二氧化硅膜。当SiO2膜较薄时,膜厚与时间成正比。SiO2膜变厚时,膜厚与时间的平方根成正比。因而,要形成较厚的SiO2膜,需要较长的氧化时间。SiO2膜形成的速度取决于经扩散穿过SiO2膜到达硅表面的O2及OH基等氧化剂的数量的多少。湿法氧化时,因在于OH基在SiO2膜中的扩散系数比O2的大。氧化反应,Si 表面向深层移动,距离为SiO2膜厚的0.44倍。因此,不同厚度的SiO2膜,去除后的Si表面的深度也不同。SiO2膜为透明,通过光干涉来估计膜的厚度。这种干涉色的周期约为200nm,如果预告知道是几次干涉,就能正确估计。对其他的透明薄膜,如知道其折射率,也可用公式计算出 (d SiO2) / (d ox) = (n ox) / (n SiO2)。SiO2膜很薄时,看不到干涉色,但可利用Si的疏水性和SiO2的亲水性来判断SiO2膜是否存在。也可用干涉膜计或椭圆仪等测出。 SiO2和Si界面能级密度和固定电荷密度可由MOS二极管的电容特性求得。(100)面的Si的界面能级密度最低,约为10E+10 -- 10E+11/cm –2 .e V -1 数量级。(100)面时,氧化膜中固定电荷较多,固定电荷密度的大小成为左右阈值的主要因素。 3) CVD(Chemical Vapor deposition)法沉积一层Si3N4(Hot CVD或LPCVD)。 1 常压CVD (Normal Pressure CVD) NPCVD为最简单的CVD法,使用于各种领域中。其一般装置是由(1)输送反

激光微细加工技术的研究与应用

激光微细加工技术的研究与应用

激光微细加工技术的研究与应用 摘要 激光加工的实质是激光将能量传递给被加工材料,被加工材料发生物理或 化学变化,使其达到加工的目的。激光微细加工技术是指加工精度O.1mm_lμm 的激光加工技术。激光微加工的应用范围十分广泛,尤其在集成电路芯片的制造、计算机外设以及通讯等方面的应用推动了信息产业革命,在电子、仪表、 航空航天工业中,激光微细加工可以高效率高质量地完成微细小孔、划片微调、切割、焊接以及标记等加工,其中以准分子激光的应用最为广泛,准分子激光 除做常规的钻、切、划加工外,还可用掩模法直接在工件上生成图案。目前的 研究进展已经显示,激光微技术是有发展潜力的三维微制造技术,将可能成为 微系统制造的主流技术之一,并已是激光加工技术及产业发展研究开发的重点 之一。激光微技术将是21世纪高新技术发展的主要标志和现代信息社会光电子技术的支柱之一。 关键词:激光微细加工;制造技术;优点;应用;孔加工;发展趋势 一、激光微细加工技术简介 激光加工是将激光束作用于物体表面而引起物体形状或性能改变的加工过程,其实质是激光将能量传递给被加工材料,被加工材料发生物理或化学变化,使其达到加工的目的。加工技术可以分为4个层次:一般加工、微细加工(加工精度O.1mm_lμm)、精密加工(加工精度1μm -O.1μm)和超精密加工(加工精度 高于O.1pm)。激光具有高单色性、高方向性和高亮度的优点 . 在理论上将相 干光聚焦后形成直径为亚微米级的光点 , 温度高达 10000 ℃以上 , 可在千 分之几秒内急剧熔化和汽化各种材料。激光加工技术是利用激光束与物质相互作用的特性对材料 ( 包括金属与非金属) 进行切割、焊接、表面处理、打 孔及微加工等的一门加工技术。激光加工技术是涉及到光、机、电、材料及检测等多门学科的一门综合技术。其工作原理:激光器由激光工作物质、激励 能源、全反射镜和部分反射镜构成的光谐振腔组成,当工作物质被光或放电 电流等能源激发后 , 在一定的条件下可以使光得到放大 , 并通过光谐振腔的 作用产生光的振荡 , 由光谐振腔的部分反射镜输出激光,由激光器发射的激 光束通过透镜聚焦到工件的待加工表面 , 对工件进行各种加工。激光加工技 术不仅可以方便地加工硅、金刚石、石英、人造金刚石、玻璃、陶瓷和硬金属 等材料,也可以对容易产生塑性流动的低硬度聚合物材料进行精确的加工。激 光加工同样也适合于精密和形状复杂的零件的加工,同时,激光加工还适用于 表面的亚微米加工,能够加工传统方法难以实现的孔或空腔。

半导体生产流程

半导体生产流程 所谓的半导体,是指在某些情况下,能够导通电流,而在某些条件下,又具有绝缘体效用的物质;而至于所谓的IC,则是指在一半导体基板上,利用氧化、蚀刻、扩散等方法,将众多电子电路组成各式二极管、晶体管等电子组件,作在一微小面积上,以完成某一特定逻辑功能(例如:AND、OR、NAND等),进而达成预先设定好的电路功能。自1947年12月23日第一个晶体管在美国的贝尔实验室(BellLab)被发明出来,结束了真空管的时代,到1958年TI开发出全球第一颗IC成功,又意谓宣告晶体管的时代结束,IC的时代正式开始。从此开始各式IC 不断被开发出来,集积度也不断提升。从小型集成电路(SSI),每颗IC包含10颗晶体管的时代;一路发展MSI、LSI、VLSI、ULSI;再到今天,短短50年时间,包含千万个以上晶体管的集成电路已经被大量生产,并应用到我们的生活的各领域中来,为我们的生活带来飞速的发展。不能想象离开半导体产业我们的生活将会怎样,半导体技术的发展状况已成为一个国家的技术状况的重要指针,电子技术也成为一个国家提高国防能力的重要途径。?半导产品类别目前的半导体产品可分为集成电路、分离式组件、光电半导体等三种。?集成电路(IC),是将一电路设计,包括线路及电子组件,做在一片硅芯片上,使其具有处理信息的功能,有体积小、处理信息功能强的特性。依功能可将IC分为四类产品:内存IC、微组件、逻辑IC、模拟IC。?分离式半导体组件,指一般电路设计中与半导体有关的组件。常见的分离式半导体组件有晶体管、二极管、闸流体等。?光电式半导体,指利用半导体中电子与光子的转换效应所设计出之材料与组件。主要产品包括发光组件、受光组件、复合组件和光伏特组件等。?IC产品介绍 IC产品可分为四个种类,这些产品可细分为许多子产品,分述如下:?内存IC:顾名思义,内存IC是用来储存资料的组件,通常用在计算机、电视游乐器、电子词典上。依照其资料的持久性(电源关闭后资料是否消失)可再分为挥发性、非挥发性内存;挥发性内存包括DRAM、SRAM,非挥发性内存则大致分为MaskRO M、EPROM、EEPROM、FlashMemory四种。?微组件IC:指有特殊的资料运算处理功能的组件;有三种主要产品:微处理器指微电子计算器中的操作数件,如计算机的CPU;微控制器是计算机中主机与接口中的控制系统,如声卡、影视卡...等的控制组件;数字讯号处理IC可将模拟讯号转为数字讯号,通常用于语音及通讯系统。?模拟IC:低复杂性、应用面积大、整合性低、流通性高是此类产品的特色,通常用来作为语言及音乐IC、电源管理与处理的组件。?逻辑IC:为了特殊信息处理功能(不同于其它IC用在某些固定的范畴)而设计的IC,目前较常用在电子相机、3DGame、 IC产业 IC的制造可由上游至下游分为三种工业,一是与IC的制造有直接关系的工业、包括晶圆制造业、IC制造业、IC封装业;二是辅助IC制造的工业,包括IC设计、光罩制造、IC测试、化学品、导线架工业;三是提供IC制造支持的产业,如设备、仪器、计算机辅助设计工具工业...等。? IC(集成电路)制作过程简介?集成电路的生产过程极其复杂,习惯上将其分为前置作业,电路的制作,晶圆及晶粒测试和后段的封装测试等。因为IC是由很多的电路集合而成的,而这些电路组件和线路是以晶圆为基础并以层状分布的,制造过程也是一层层的建造出来的,类似于建楼房的过程。?其中前置作业类似于楼房的设计

相关文档
最新文档