不确定度的计算方法(可编辑修改word版)
不确定度与测量结果不确定的表达(可编辑修改word版)

1.2不确定度与测量结果不确定的表达由于误差的存在,使得测量结果具有一定程度的不确定性.为了加强国际间的交流与合作,1996年,中国计量科学研究院在国际权威文件《测量不确宙度表达指南》的基础上,制定了我国的《测量不确定度规范》O从此,物理实验的不确定度评泄有了国际公认的准则。
下而将结合对测量结果的评定对不确定度的概念、分类、合成等问题进行讨论。
121不确定度的概念不确定度是评价测量质量的一个新概念•是表达测量结果具有分散性的一个参数,它是被测量的真值在某个量值范围内的一个评世-不确圧度反映了可能存在的误差分布范围,是決差的数字指标。
不确楚度愈小,测量结果可信赖程度愈高:不确建度愈大,测量结果可信赖程度愈低。
在实验和测量工作中,不确世度是作为估计而言的,因为误差是未知的,不可能用指出误差的方法去说明可信赖程度,而只能用误差的某种可能的数值去说明可信赖程度,所以不确迫度更能表示测量结果的性质和测屋的质量。
用不确左度评定实验结果的误差,其中包含了各种来源不同的误差对结果的影响,而它们的讣算又反映了这些误差所服从的分布规律,这是更准确地表述了测量结果的可靠程度,因而有必要采用不确楚度的概念。
122测量结果的表示和合成不确定度在做物理实脸时,要求表示出测量的最终结果。
在这个结果中既要包含待测量的近似貞实值7,又要包含测量结果的不确定度6还要反映出物理量的单位。
因此,要写成物理含意深刻的标准表达些式,即x=x±.(单位)(1—4)式中X为待测S: 是测量的近似貞•实值Q是合成不确楚度,一般保留一位有效数字,若首数是1或2时可取2位。
这种表达形式反应了三个基本要素:测呈值、合成不确定度和单位。
在物理实验中,直接测量时若不需要对被测量进行系统误差的修正,一般就取多次测量的算术平均值;作为近似貞实值:若在实验中有时只需测一次或只能测一次,该次测II值就为被测量的近似真实值。
如果要求对被测量进行一总系统误差的修正,通常是将一定系统误差(即绝对值和符号都确定的可估计出的误差分量)从算术平均值;或一次测量值中减去,从而求得被修正后的宜接测量结果的近似真实值。
不确定度和相对不确定度公式

不确定度和相对不确定度公式
不确定度和相对不确定度是测量或计算过程中用来描述结果精
度的重要参数。
不确定度是指测量或计算结果与真实值之间的差异,而相对不确定度则是指不确定度与测量或计算结果的比值。
计算不确定度和相对不确定度的公式如下:
不确定度 = √(Σ(xi - x) / (n - 1))
其中,xi表示每个测量值,x表示所有测量值的平均值,n表示测量次数。
相对不确定度 = 不确定度 / (测量结果的平均值)
通过计算不确定度和相对不确定度,可以评估测量或计算结果的可靠性和精度,有助于确定是否需要采取更精确的测量或计算方法以提高结果的准确性。
- 1 -。
丁二酮肟分光光度法测定合金钢中的镍含量不确定度的评定(可编辑修改word版)

丁二酮肟分光光度法测定合金钢中镍含量不确定度的评定1被测对象满足 GB/T 223.23-1994 丁二酮肟分光光度法测定镍含量的合金钢试样。
2引用文件GB/T 223.23-1994 丁二酮肟分光光度法测定镍量JJF 1059-1999 测量不确定度评定与表示CNAL/AG 07:2002 化学分析中不确定度评估指南CSM 01 01 01 00-2006 化学成分分析测量不确定度评定导则3分析方法和测量参数概述称取 0.1000g 某合金钢试样于锥形瓶中,用酸溶解,高氯酸冒烟,加水溶解盐类,冷却定容至100mL 容量瓶中。
吸取 10.00mL 试液于 100mL 容量瓶中,以酒石酸为掩蔽剂,在强碱性介质中,以过硫酸铵为氧化剂,生成丁二酮肟镍红色络合物,测量其吸光度。
每个工作曲线溶液测量三次,试液测量两次,由工作曲线查出试液中镍的浓度,计算镍的质量分数。
7 次重复测量结果分别为1.886%,1.898%,1.878%,1.886%,1.892%,1.892%,1.886%。
使用 10mL 滴定管分别移取了 2.00mL,4.00mL,6.00mL,8.00mL 和 10.00mL 镍标准溶液[(50± 0.12)μg/mL(k=2)]于100mL 容量瓶中,以下直接发色,操作同试样,绘制工作曲线。
分析所使用的仪器和标准溶液试剂有:天平:万分之一,检定允许差±0.1mg容量瓶:100mL,B 级,允许差±0.2mL吸量管:10mL,A 级,允许差±0.05mL滴定管:10mL,A 级,允许差±0.025mL镍标准溶液:(50±0.12)μg/mL,k=24测量的数学模型w =c ⨯V ⨯V0 ⨯100-6m ⨯V1⨯10式中:w Ni-镍的质量分数,%Ni7 c -试液中镍的浓度,μg/mL V -测量溶液的体积,mL V 1-分取试料溶液的体积,mL V 0-试料溶液的定容体积,mL m -试料的质量,gc 为从工作曲线方程(A=a +bc )上查出试液中镍的浓度(μg/100mL),A 为镍的吸光度。
不确定度计算公式

不确定度计算公式不确定度是一个衡量测量结果与真实值之间差异的指标,用来表示测量结果的可靠程度。
在科学实验或工程测量中,不确定度的计算对于数据的正确解释和有效应用至关重要。
不确定度的计算需要考虑多个因素,如测量仪器的精确度、测量方法的误差、环境因素的影响等。
根据国际标准ISO5725-1中的定义,不确定度是测量结果的一个参数,该参数表征了测量结果与被测量值的偏差的范围。
不确定度的计算涉及到数理统计的理论和方法。
根据统计学的原理,不确定度可以通过标准偏差、置信区间和扩展不确定度等方法进行计算。
下面分别介绍这些方法。
1.标准偏差:标准偏差是一种常用的不确定度度量指标,用来描述测量结果的离散程度。
它通过计算测量数据集合的平均值与每个数据值之间的差异,并取平均值的平方根得到。
标准偏差越小,表示测量结果越稳定、可靠。
标准偏差的计算公式如下:s=√(∑(x-x̄)²/(n-1))其中,s为标准偏差,x为每个测量数据值,x̄为数据集合的平均值,n为数据集合的样本数量。
2.置信区间:置信区间是一种常用的不确定度度量方法,用来描述测量结果的范围。
置信区间表示了测量结果与真实值之间的差异可能存在的范围。
通常以置信水平来表示,如95%的置信区间表示在95%的概率下真实值位于置信区间内。
置信区间的计算公式如下:CI=x̄±t*(s/√n)其中,CI为置信区间,x̄为数据集合的平均值,t为t分布的临界值,s为标准偏差,n为数据集合的样本数量。
3.扩展不确定度:扩展不确定度是一种常用的不确定度度量方法,用来描述测量结果的范围。
扩展不确定度首先计算标准偏差,再乘以一个覆盖系数,将标准偏差扩展到一定的置信水平下的区间范围内。
扩展不确定度的计算公式如下:U=k*s其中,U为扩展不确定度,k为覆盖系数,s为标准偏差。
上述的计算公式是一种简单的不确定度计算方法,对于特定的测量数据集合和测量需求,可能需要考虑更复杂的数学模型和统计方法。
不确定度计算

不确定度计算2、不确定度各分量的评定根据测量步骤可知,测量氨氮质量的不确定度来源有几个方面,一是由标准曲线配制所产生的不确定度,二是测试过程所产生的不确定度。
按《化学分析中不确定度的评估指南》,对于只涉及积或商的模型,例如:c N=m/v,合成标准不确定度为:式中,u(c)为质量m和体积v的合成标准测量不确定度,mg/L;u(m)为质量m的标准测量不确定度,ug;u(v)为体积v的标准测量不确定度,mL。
2.1 取样体积引入的相对不确定度u rel(v)所取水样用50mL单标线吸管移取。
查JJG 196-2006《常用玻璃量器检定规程》,A级50mL 单标线吸管的容量允差为0.05mL,根据JJF 1059-1999《测量不确定度评定与表示》的规定,标定体积为三角分布,则容量允差引入的不确定度为:u(△V)=0.050/√6 。
根据制造商提供的信息,吸量管校准温度为20℃,设实验室内温度控制在±5℃范围内波动,与校准时的温差为5℃,由膨胀系数(以水的膨胀系数计算)为2.1×10-4/℃得到50mL水样的标准不确定度为(假定为均匀分布):2.2重复性测定引入的相对不确定度u rel(rep)采用A类方法评定,与重复性有关的合成标准不确定度均包含其中。
对某水样进行7次重复性测定,所得结果如下:1.33、1.35、1.34、1.34、1.35、1.38、1.35mg/L,平均值1.35 mg/L。
重复测量数据的标准不确定度为:2.3 铵(以氮计)的绝对量m引入的不确定度u rel(m)配制过程中引入的不确定度u rel(1)a.) 标准贮备液的不确定度u rel(1-1):包括纯度、称量、体积及摩尔质量计算4个部分,其中,摩尔质量计算不确定度可省略不计(与其它因素相比,其对标准浓度计算相差1-2个数量级)。
纯度p:按供应商提供的参考数据,分析纯氯化铵[NH4Cl]纯度为≥99.5%,将该不确定度视为矩形分布,则标准不确定度为u(p) =0.5/√3=28.9×10-4;称量m:经检定合格的天平最大允许误差±0.1mg,将该不确定度视为矩形分布,标准偏差为0.058mg,称量3.819g时的相对标准偏差为u(m) =0.152×10-4;体积v:影响体积的主要不确定度有校准及温度。
如何计算不确定度

任何测量中的不确定度一般类型
(四)
• 图4表示一组接近矩形分布的10个"随机"值。 图5所示为矩形分布的示意图。
任何测量中的不确定度一般类型(四)
• 5.2.3其他分布 分布还会有其他形状,但较少见,例如三角分布、M 形分布(双峰分布)、倾斜分布(不对称分布)等等。 5.3什么不是测量不确定度 操作人员失误就不是不确定度。这一类都不应计入对 不确定度的贡献。这些都应通过仔细工作并检查工作 来避免发生。 允差不是不确定度。允差是对工艺或产品所选定的允 许级限值。(参见下文第10节,关于对技术规范的符 合性)
关于数字集合的基本统计学 (二)
3.2基本统计计算: 从你的测量中,通过取多次读数 并进行某些基本统计计算,你就 能增加你所得到的信息量。有两 项最主要的统计计算,就是要求 的一组数值的平均值或算术平均 值,以及它们的标准偏差。
关于数字集合的基本统计学(二)
• 3.3获得最佳估计值--取多次读数的平均值 虽然重复测量给出不同结果,但你也许并没有 做错什么。这可能是由于进行的测量有自然变 化。(例如:若你在野外测量风速,常常不会 有稳定的值。)或者,也可能因为你的测量器 具没有工作在完全稳定状态。(例如:卷尺可 能因拉紧情况不同而给出不同结果。)如果在 重复读数时读数有变化,那么最好多次读数并 取平均值。
• 虽然这种"尺度"决非普遍适用,但应用广 泛。对标准偏差的"真"值只能从一组非常 大量(无穷多)的读数来求得。从适度 个数的量值能够求得的只是标准偏差的 估计值。3.6计算估计的标准偏差
• 例2表明如何计算标准偏差的估计值 例2计算一组数值的估计的标准偏差
关于数字集合的基本统计学(二)
• 单用笔和纸来算标准偏差是不方便的,但下例 可以手算。例如你有一组n次的读数(让我们 用于上例同样的10次一组) 先求平均值:该组读数如前例所述:16、19、 18、16、17、19、20、15、17、13,平均值为 17。 下一步求每个读数与平均值之差,即 -1、+2、 +1、-1、0、+2、+3、-2、0、-4。 对上面的数求平方值,即 1、2、1、1、0、4、 9、4、0、16
不确定度的计算

测量误差与不确定度评定测量误差1、测量误差和相对误差〔1〕、测量误差测量结果减去被测量的真值所得的差,称为测量误差,简称误差.这个定义从20世纪70年代以来没有发生过变化,以公式可表示为:测量误差=测量结果一真值.测量结果是由测量所得到的赋予被测量的值,是客观存在的量的实验表现,仅是对测量所得被测量之值的近似或估计,显然它是人们熟悉的结果,不仅与量的本身有关,而且与测量程序、测量仪器、测量环境以及测量人员等有关.真值是量的定义的完整表达,是与给定的特定量的定义完全一致的值,它是通过完善的或完美无缺的测量,才能获得的值.所以,真值反映了人们力求接近的理想目标或客观真理,本质上是不能确定的,量子效应排除了唯一真值的存在, 实际上用的是约定真值,须以测量不确定度来表征其所处的范围.因而, 作为测量结果与真值之差的测量误差,也是无法准确得到或确切获知的.过去人们有时会误用误差一词,即通过误差分析给出的往往是被测量值不能确定的范围,而不是真正的误差值.误差与测量结果有关,即不同的测量结果有不同的误差,合理赋予的被测量之值各有其误差并不存在一个共同的误差.一个测量结果的误差,假设不是正值〔正误差〕就是负值〔负误差〕,它取决于这个结果是大于还是小于真值.实际上,误差可表示为:误差=测量结果一真值=〔测量结果一总体均值〕+ 〔总体均值一真值〕=随机误差+系统误差1(2)、相对误差测量误差除以被测量的真值所得的商,称为相对误差.2、随机误差和系统误差(1)、随机误差测量结果与重复性条件下,对同一被测量进行无限屡次测量所得结果的平均值之差,称为随机误差.随机误差=测量结果一屡次测量的算术平均值(总体均值) 重复性条件是指在尽量相同的条件下,包括测量程序、人员、仪器、环境等,以及尽量短的时间间隔内完成重复测量任务.此前,随机误差曾被定义为:在同一量的屡次测量过程中,以不可预知方式变化的测量误差的分量.随机误差的统计规律性:①对称性:绝对值相等而符号相反的误差,出现的次数大致相等, 也即测得值是以它们的算术平均值为中央而对称分布的.由于所有误差的代数和趋于零,故随机误差又具有低偿性,这个统计特性是最为本质的;换言之,凡具有低偿性的误差,原那么上均可按随机误差处理.①有界性:测得值误差的绝对值不会超过一定的界限,也即不会出现绝对值很大的误差.③单峰性:绝对值小的误差比绝对值大的误差数目多,也即测得值是以它们的算术平均值为中央而相对集中地分布的.(2)、系统误差在重复性条件下,对同一被测量进行无限屡次测量所得结果的平均值与被测量的真值之差,称为系统误差.它是测量结果中期望不为零的误差分量.系统误差=屡次测量的算术平均值一被测量真值由于只能进行有限次数的重复测量,真值也只能用约定真值代替, 因此可能确定的系统误差只是其估计值,并具有一定的不确定度.系统误差大抵来源于影响量,它对测量结果的影响假设已识别并可定量表述,那么称之为“系统效应〞.该效应的大小假设是显著的,那么可通过估计的修正值予以补偿.但是,用以估计的修正值均由测量获得,本身就是不确定的.至于误差限、最大允许误差、可能误差、引用误差等,它们的前面带有正负(土)号,因而是一种可能误差区间,并不是某个测量结果的误差.对于测量仪器而言,其示值的系统误差称为测量仪器的“偏移〞, 通常用适当次数重复测量示值误差的均值来估计.过去所谓的误差传播定律,所传播的其实并不是误差而是不确定度, 故现已改称为不确定度传播定律.还要指出的是:误差一词应按其定义使用,不宜用它来定量说明测量结果的可靠程度.3、修正值和偏差(1)、修正值和修正因子用代数方法与未修正测量结果相加,以补偿其系统误差的值,称为修正值.含有误差的测量结果,加上修正值后就可能补偿或减少误差的影响. 由于系统误差不能完全获知,因此这种补偿并不完全.修正值等于负的系统误差,这就是说加上某个修正值就像扣掉某个系统误差,其效果是一样的,只是人们考虑问题的出发点不同而已,即真值=测量结果+修正值=测量结果一误差在量值溯源和量值传递中,常常采用这种加修正值的直观的方法.用高一个等级的计量标准来校准或检定测量仪器,其主要内容之一就是要获得准确的修正值.换言之,系统误差可以用适当的修正值来估计并予以补偿.但应强调指出:这种补偿是不完全的,也即修正值本身就含有不确定度.当测量结果以代数和方式与修正值相加后,其系统误差之模会比修正前的小,但不可能为零,也即修正值只能对系统误差进行有限程度的补偿.修正因子:为补偿系统误差而与未修正测量结果相乘的数字因子, 称为修正因子.含有系统误差的测量结果,乘以修正因子后就可以补偿或减少误差的影响.但是,由于系统误差并不能完全获知,因而这种补偿是不完全的, 也即修正因子本身仍含有不确定度.通过修正因子或修正值已进行了修正的测量结果,即使具有较大的不确定度,但可能仍然十分接近被测量的真值(即误差甚小).因此,不应把测量不确定度与已修正测量结果的误差相混淆.(2)、偏差:一个值减去其参考值,称为偏差.这里的值或一个值是指测量得到的值,参考值是指设定值、应有值或标称值.例如:尺寸偏差=实际尺寸一应有参考尺寸偏差=实际值一标称值在此可见,偏差与修正值相等,或与误差等值而反向.应强调指出的是:偏差相对于实际值而言,修正值与误差那么相对于标称值而言,它们所指的对象不同.所以在分析时,首先要分清所研究的对象是什么.常见的概念还有上偏差〔最大极限尺寸与参考尺寸之差〕、下偏差〔最小极限尺寸与参考尺寸之差〕,它们统称为极限偏差.由代表上、下偏差的两条直线所确定的区域,即限制尺寸变动量的区域,统称为尺寸公差 i+t 巾.二、测量不确定度的评定与表示1、测量不确定度表征合理地赋予被测量之值的分散性、与测量结果相联系的参数, 称为测量不确定度.“合理〞意指应考虑到各种因素对测量的影响所做的修正,特别是测量应处于统计限制的状态下,即处于随机限制过程中.“相联系〞意指测量不确定度是一个与测量结果“在一起〞的参数,在测量结果的完整表示中应包括测量不确定度.此参数可以是诸如标准[偏]差或其倍数, 或说明了置信水准的区间的半宽度.测量不确定度从词意上理解,意味着对测量结果可信性、有效性的疑心程度或不肯定程度,是定量说明测量结果的质量的一个参数.实际上由于测量不完善和人们的熟悉缺乏,所得的被测量值具有分散性,即每次测得的结果不是同一值,而是以一定的概率分散在某个区域内的许多个值.虽然客观存在的系统误差是一个不变值,但由于我们不能完全认知或掌握,只能认为它是以某种概率分布存在于某个区域内,而这种概率分布本身也具有分散性.测量不确定度就是说明被测量之值分散性的参数,它不说明测量结果是否接近真值.为了表征这种分散性,测量不确定度用标准[偏]差表示.在实际使用中,往往希望知道测量结果的置信区间,因此规定测量不确定度也可用标准[偏]差的倍数或说明了置信水准的区间的半宽度表示.为了区分这两种不同的表示方法,分别称它们为标准不确定度和扩展不确定度.(1)测量不确定度来源在实践中,测量不确定度可能来源于以下十个方面:①对被测量的定义不完整或不完善;②实现被测量的定义的方法不理想;③取样的代表性不够,即被测量的样本不能代表所定义的被测量;④对测量过程受环境影响的熟悉不周全,或对环境条件的测量与限制不完善;③对模拟仪器的读数存在人为偏移;③测量仪器的分辩力或鉴别力不够;③赋予计量标准的值或标准物质的值不准;⑧引用于数据计算的常量和其它参量不准;③测量方法和测量程序的近似性和假定性;③在外表上看来完全相同的条件下,被测量重复观测值的变化.由此可见,测量不确定度一般来源于随机性和模糊性,前者归因于条件不充分,后者归因于事物本身概念不明确.这就使测量不确定度一般由许多分量组成,其中一些分量可以用测量列结果(观测值)的统计分布来进行评价,并且以实验标准[偏]差表征;而另一些分量可以用其它方法(根据经验或其它信息的假定概率分布)来进行评价,并且也以标准[偏]差表征.所有这些分量,应理解为都奉献给了分散性.假设需要表示某分量是由某原因导致时,可以用随机效应导致的不确定度和系统效应导致的不确定度.(2)标准不确定度和标准[偏]差以标准[偏]差表示的测量不确定度,称为标准不确定度.标准不确定度用符号u表示,它不是由测量标准引起的不确定度, 而是指不确定度以标准[偏]差表示,来表征被测量之值的分散性.这种£( -)Xi - x分散性可以有不同的表示方式,例如:用—表示时,由于正残差与负 £Xi - X| 残差可能相消,反映不出分散程度;用—表示时,那么不便于进行解析 运算.只有用标准[偏]差表示的测量结果的不确定度,才称为标准不确 定度.当对同一被测量作n 次测量,表征测量结果分散性的量s 按下式算 出时,称它为实验标准[偏]差:式中:X j 为第i 次测量的结果;,为所考虑的n 次测量结果的算术平均值.对同一被测量作有限的n 次测量,其中任何一次的测量结果或观测 值,都可视作无穷屡次测量结果或总体的一个样本.数理统计方法就是 要通过这个样本所获得的信息(例如算术平均值,和实验标准[偏]差s 等),来推断总体的性质(例如期望N 和方差.2等).期望是通过无穷多 次测量所得的观测值的算术平均值或加权平均值,又称为总体均值N , 显然它只是在理论上存在并表示为lim ZN =i : J 方差.2那么是无穷屡次测量所得观测值x 与期望N 之差的平方的算 i 术平均值,它也只是在理论上存在并可表示为lim Z 一 02=3"「小四- i =1方差的正平方根.,通常被称为标准[偏]差,又称为总体标准[偏] 差或理论标准[偏]差;而通过有限屡次测量得的实验标准[偏]差S,又称 为样本标准[偏]差.这个计算公式即为贝赛尔公式,算得的S 是.的估 计值. S 是单次观测值x i 的实验标准[偏]差,s/旬才是n 次测量所得算术 平均值工的实验标准[偏]差,它是工分布的标准[偏]差的估计值.为易于 区别,前者用s(x)表示,后者用$(x )表示,故有s(x )=s(x)/、n.通常用s(x)表征测量仪器的重复性,而用s(x )评价以此仪器进行n 次测量所得测量结果的分散性.随着测量次数n 的增加,测量结果的分 散性s(x )即与打成反比地减小,这是由于对屡次观测值取平均后,正、 负误差相X1Z 一 X -互抵偿所致.所以,当测量要求较高或希望测量结果的标准[偏]差较小时,应适当增加n;但当n>20时,随着n的增加,s(x)的减小速率减慢.因此,在选取n的多少时应予综合考虑或权衡利弊,由于增加测量次数就会拉长测量时间、加大测量本钱.在通常情况下,取nN3, 以n =4〜20为宜.另外,应当强调s〔1〕是平均值的实验标准[偏]差, 而不能称它为平均值的标准误差.2.不确定度的A类、B类评定及合成由于测量结果的不确定度往往由许多原因引起,对每个不确定度来源评定的标准[偏]差,称为标准不确定度分量,用符号u .表示.对这些标准不确定度分量有两类评定方法,即A类评定和B类评定.〔1〕不确定度的A类评定用对观测列进行统计分析的方法来评定标准不确定度,称为不确定度的A类评定,有时也称A类不确定度评定.通过统计分析观测列的方法,对标准不确定度的进行的评定,所得到的相应标准不确定度称为A类不确定度分量,用符号u A表示.这里的统计分析方法,是指根据随机取出的测量样本中所获得的信息,来推断关于总体性质的方法.例如:在重复性条件或复现性条件下的任何一个测量结果,可以看作是无限屡次测量结果〔总体〕的一个样本,通过有限次数的测量结果〔有限的随机样本〕所获得的信息〔诸如平均值工、实验标准差$〕,来推断总体的平均值〔即总体均值N或分布的期望值〕以及总体标准[偏]差.,就是所谓的统计分析方法之一.A 类标准不确定度用实验标准[偏]差表征.〔2〕不确定度的B类评定用不同于对观测列进行统计分析的方法来评定标准不确定度,称为不确定度的B类评定,有时也称B类不确定度评定.这是用不同于对测量样本统计分析的其他方法,进行的标准不确定度的评定,所得到的相应的标准不确定度称为B类标准不确定度分量, 用符号u B表示.它用根据经验或资料及假设的概率分布估计的标准[偏]差表征,也就是说其原始数据并非来自观测列的数据处理,而是基于实验或其他信息来估计,含有主观鉴别的成分.用于不确定度B类评定的信息来源一般有:①以前的观测数据;②对有关技术资料和测量仪器特性的了解和经验;③生产部门提供的技术说明文件;④校准证书、检定证书或其他文件提供的数据、准确度的等别或级别,包括目前仍在使用的极限误差、最大允许误差等;⑤手册或某些资料给出的参考数据及其不确定度;⑥规定实验方法的国家标准或类似技术文件中给出的重复性限r或复现性限R.不确定度的A类评定由观测列统计结果的统计分布来估计,其分布来自观测列的数据处理,具有客观性和统计学的严格性.这两类标准不确定度仅是估算方法不同,不存在本质差异,它们都是基于统计规律的概率分布,都可用标准[偏]差来定量表达,合成时同等对待.只不过A 类是通过一组与观测得到的频率分布近似的概率密度函数求得.而B类是由基于事件发生的信任度〔主观概率或称为经验概率〕的假定概率密度函数求得.对某一项不确定度分量究竟用A类方法评定,还是用B类10 方法评定,应由测量人员根据具体情况选择.特别应当指出:A类、B类与随机、系统在性质上并无对应关系,为防止混淆,不应再使用随机不确定度和系统不确定度.(3)合成标准不确定度当测量结果是由假设干个其他量的值求得时,按其他各量的方差和协方差算得的标准不确定度,称为合成标准不确定度.在测量结果是由假设干个其他量求得的情形下,测量结果的标准不确定度,等于这些其他量的方差和协方差适当和的正平方根,它被称为合成标准不确定度.合成标准不确定度是测量结果标准[偏]差的估计值, 用符号也表示.方差是标准[偏]差的平方,协方差是相关性导致的方差.当两个被测量的估计值具有相同的不确定度来源,特别是受到相同的系统效应的影响(例如:使用了同一台标准器)时,它们之间即存在着相关性.如果两个都偏大或都偏小,称为正相关;如果一个偏大而另一个偏小,那么称为负相关.由这种相关性所导致的方差,即为协方差.显然,计入协方差会扩大合成标准不确定度,协方差的计算既有属于A类评定的、也有属于B类评定的.人们往往通过改变测量程序来防止发生相关性,或者使协方差减小到可以略计的程序,例如:通过改变所使用的同一台标准等.如果两个随机变量是独立的,那么它们的协方差和相关系数等于零, 但反之不一定成立.合成标准不确定度仍然是标准[偏]差,它表征了测量结果的分散性. 所用的合成的方法,常被称为不确定度传播律,而传播系数又被称为灵11 敏系数,用c i表示.合成标准不确定度的自由度称为有效自由度,用 v eff表示,它说明所评定的u c的可靠程度.通常在报告以下测量结果时, 可直接使用合成标准不确定度u c(y),同时给出自由度v eff:①根底计量学研究;②根本物理常量测量;③复现国际单位制单位的国际比对.3.扩展不确定度和包含因子(1)扩展不确定度扩展不确定度是确定测量结果区间的量,合理赋予被测量之值分布的大局部可望含于此区间.它有时也被称为展伸不确定度或范围不确定度.实际上扩展不确定度是由合成标准不确定度的倍数表示的测量不确定度,通宵用符号U表示.它是将合成标准不确定度扩展了k倍得到的, 即U=ku c,这里k值一般为2,有时为3,取决于被测量的重要性、效益和风险.扩展不确定度是测量结果的取值区间的半宽度,可期望该区间包含了被测量之值分布的大局部.而测量结果的取值区间在被测量值概率分布中所包含的百分数,被称为该区间的置信概率、置信水准或置信水平, 用符号p表示.这时扩展不确定度用符号U p表示,它给出的区间能包含被测量可能值的大局部(比方95%或99%等).按测量不确定度的定义,合理赋予的被测量之值的分散区间理应包含全部的测得值,即100%地包含于区间内,此区间的半宽通常用符号a12表示.假设要求其中包含95%的被测量之值,那么此区间称为概率为p=95%的置信区间,其半宽就是扩展不确定度与;类似地,假设要求99%的概率, 那么半宽为以.这个与置信概率区间或统计包含区间有关的概率,即为上述的置信概率.显然,在上面例举的三个半宽之间存在着U95VU99Va的关系,至于具体小多少或大多少,还与赋予被测量之值的分布情况有关.归纳上述内容,可将测量不确定度的分类简示为:测量不确定度:标准不确定度:A类标准不确定度B类标准不确定度合成标准不确定度扩展不确定度:U (k=2, 3)U p(p为置信概率)值得指出的是:在20世纪80年代曾用术语总不确定度,由于在报告最终测量结果时既可用扩展不确定度也可用合成标准不确定度,为避免混淆,目前在定量表示时一般不再使用总不确定度这个术语.(2)包含因子和自由度为求得扩展不确定度,对合成标准不确定度所乘之数字因子,称为包含因子,有时也称为覆盖因子.包含因子的取值决定了扩展不确定度的置信水平.鉴于扩展不确定度有U与U p两种表示方式,它们在称呼上并无区别,但在使用时k 一般为2或3,而k p那么为给定置信概率p所要求的数字因子.在被测量估计值拉近于正态分布的情况下,k p就是t分布(学生分布)中的t值.评定扩展不确定度U p时,p与自由度v,即可查表得到k p,进而求得13U p.参见JJF1059-1999?测量不确定度评定与表示?的附录A:“t分布在不同置信概率p与自由度v的t p〔v〕值〞.自由度一词,在不同领域有不同的含义.这里对被测量假设只观测一次,有一个观测值,那么不存在选择的余地,即自由度为0.假设有两个观测值,显然就多了一个选择.换言之,本来观测一次即可获得被测量值, 但人们为了提升测量的质量〔品质〕或可信度而观测n次,其中多测的〔n-1〕次实际上是由测量人员根据需要自由选定的,故称之为“自由度〞.在A类标准不确定度评定中,自由度用于说明所得的标准[偏]差的可靠程度.它被定义为“在方差计算中,和的项数减去对和的限制数〞. 按贝塞尔公式计算时,取和符号工后的项数等于n,而n个观测值与其平均值,之差〔残差〕的和显然为零,即工〔x i-工〕=0.这就是一个限制条件,即限制数为1,故自由度v=n-1.通常,自由度等于测量次数n减去被测量的个数叫即丫中小.实际上,自由度往往用于求包含因子k p,如果只评定U而不是U p,那么不必计算自由度及有效自由度.4.测量不确定度的评定和报告〔1〕测量不确定度的评定流程下列图简示了测量不确定度评定的全部流程.在标准不确定度分量评定环节中,JJF1059-1999建议列表说明,即列出标准不确定度一览表, 以便一目了然.14开始规定被测量第一步第二步第三步第四步结束下列图简示了扩展不确定度评定的流程.当以U报告最终测量结果时,可采用以下两种形式之一,但均须指明 k 值.例如:u (y)=0.35mg,取包含因子 k = 2,U = 2X0.35mg = 0.70mg,贝(a)m = 100.02147g, U = 0.70mg; k = 2(b)m=(100.02147±0.00070) g; k = 2当以U p报告最终测量结果时,可采用以下四种形式之一,但均须指明有效自由度v®.例如:u c(y)=0.35mg, v e ef = 9 按 p = 95%,查 JJF1059-1999?测量不确定度评定与表示?的附录A表得k p = t95(9)=2.26;U95=2.26X0.35mg=0.79mg,那么(a)m = 100.02147g; U95=0.79mg, 丫^ = 9.(b)m = 100.02147 (79) g; 丫^ = 9,括号内为45之值,其末位与前面结果内末位数对齐.(c)m = 100.02147 (0.00079) g;丫^ = 9,括号内为 U*之值,与前面结果有相同计量单位.(d)m=(100.02147±0.00079) g;丫^ = 9,括号内第二项为 U95之值.为明确起见,建议用以下方式说明:“式中,正负号后的值为扩展不确定度4广屋ujm),而合成标准不确定度ujm) =0.35由8,自由度v eef=9,包含因子k p = t95 (9)=2.26,从而具有约95%概率的置信区间工报告最终测量结果时,应注意有效位数:通常ujy)和U (或U p) 最多取2位有效数字,且y与y c(y)或U (或U p)的修约间隔应相同.不确定度也可以相对形式u r/y)或U@报告.三、测量误差与测量不确定度归纳上述内容,可将测量误差与测量不确定度之间存在的主要区别列于下表测量误差与测量不确定度的主要区别常用玻璃量器比对测量结果不确定度评定一、目的用衡量法检定10 ml分度吸管.二、检定步骤取容量50 ml的洁净量瓶,在电子天平上称量,去皮重〔清零〕,用被检定的10 ml分度吸管分别参加总容量的1/10、半容量和总容量的纯水〔自流液口起〕,天平显示的数值即为被检容量的质量值鲸〕,称完后将数字温度计直接插入瓶内测温,然后在JJG196-90衡量法用表〔二〕中查得质量值〔m〕,根据公式计算标准温度20℃时的实际容量. 三、被测量V20——标准温度20℃时量器的实际容量〔ml〕量器在标准温度20℃时的实际容量计算公式:V20 = V0+〔m0—m〕 / p式中:V20——量器在标准温度20℃时的实际容量〔ml〕;V0——量器的标称容量〔ml〕;m0——称得的纯水质量值〔g〕;m——衡量法用表〔二〕中查得的质量值〔g〕;pw——1℃时纯水密度值,近似为1 〔g/ml〕. 四、不确定度来源的识别根据被测量的计算公式可了解到,对被测量及其不确定度的影响主要有以下四个因素:19。
标准不确定度计算公式

标准不确定度计算公式在科学实验和工程设计中,我们经常需要评估测量结果的不确定度。
不确定度是指对测量结果的不确定程度的度量,它是表示测量结果的范围的一种方式。
标准不确定度是一种常用的不确定度度量方法,它可以帮助我们更好地理解测量结果的可靠性和精确度。
本文将介绍标准不确定度的计算公式及其应用。
标准不确定度的计算公式如下:u(x) = k σ。
其中,u(x)表示测量结果的标准不确定度,k表示扩展不确定度的系数,σ表示测量结果的标准偏差。
标准偏差是对测量结果离散程度的度量,它可以反映测量结果的稳定性和精确度。
扩展不确定度的系数k是一个常数,它通常取2,表示置信水平为95%。
在一些特殊情况下,k的取值也可能会有所不同。
在实际应用中,我们可以通过以下步骤来计算测量结果的标准不确定度:1. 收集数据,首先,我们需要进行实验或测量,得到一组数据集合。
2. 计算平均值,然后,我们计算这组数据的平均值,作为测量结果的估计值。
3. 计算标准偏差,接下来,我们计算这组数据的标准偏差,用来衡量数据的离散程度。
4. 计算标准不确定度,最后,我们利用上述公式,将标准偏差乘以扩展不确定度系数k,得到测量结果的标准不确定度。
通过上述计算,我们可以得到测量结果的标准不确定度,从而更好地评估测量结果的可靠性和精确度。
标准不确定度的计算公式是一种简单而有效的方法,它可以帮助我们在科学实验和工程设计中更好地处理测量结果的不确定度问题。
需要注意的是,标准不确定度的计算公式是基于一些假设和条件的,例如数据服从正态分布、测量误差是独立同分布的等。
在实际应用中,我们需要根据具体情况对这些假设进行合理的评估和修正,以确保计算结果的准确性和可靠性。
总之,标准不确定度的计算公式是一种重要的不确定度度量方法,它可以帮助我们更好地理解测量结果的不确定性。
通过对测量结果的标准不确定度进行评估和控制,我们可以提高实验和设计的可靠性和精确度,从而更好地满足科学研究和工程实践的需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(U u )2 + (U w )2 u w =
= = =
测量结果的正确表达
被测量 X 的测量结果应表达为: X = X ± U (仪仪
)
表 1 常用函数不确定度合成公式
其中 X 是测量值的平均值,U 是不确定度。
例如:
用最小刻度为 cm 的直尺测量一长度最终结果为:L =(0.750±0.005)cm ; 测量金属丝杨氏模量的最终结果为:E =(1.15±0.07)×1011Pa 。
1. 不确定度的计算方法 2
N =
X αY β
Z γ
U N = N
直接测量不确定度的计算方法
U = 1. 在函数关系是乘除法时,先计算相对不确定度( U N )比较方便.例如表中第二行
N
的公式.
2. 不确定度合成公式可以联合使用.
其中: S =
为标准差;
sin θ u
例如:
若 τ ,令u sin θ , w 3φ 则 τ .
3φ
w
∆仪 是仪器误差,一般按仪器最小分度的一半计算,但是游标卡尺和角游标按最小
分度计算。
也可按仪器级别计算或查表。
间接测量不确定度的合成方法
根据表中第二行公式,有:
U τ
= ;
τ
间接测量 N = f (x , y , z ,⋯⋯仪
的平均值公式为: N =
f (x , y
, z ,⋯⋯仪 ;
根据表中第一行公式,有: U w =
= 3U φ ;
不确定度合成公式为:U N =
根据表中第三行公式,有: 。
U u = cos θ ⋅U θ .
也可根据表 1 中的公式计算间接测量的不确定度。
所以, U τ = τ ⋅
= τ S 2 + ∆ 2
仪
∑ ( X - X )
2
i
n -1
( ) ⋅U + ( ) ⋅U + ( ) ⋅U + ∂ N 2 2 ∂ N 2 2 ∂ N 2 2 ∂X X ∂Y Y ∂Z
Z α 2 (U X ) 2 + β 2 (U Y ) 2 + γ 2 (U Z ) 2
X Y Z 32U 2 φ。