2020年高考数学考前冲刺八套卷(一)理科
2020届高考理科数学考前冲刺竞优卷 第一卷

2020届高考理科数学考前冲刺竞优卷第一卷1、已知集合{}2|60A x x x =∈--<Z ,{}|1B x x =>-,则A B ⋂=( ) A.{}|13x x -<<B.{}012,,C.{}1012-,,,D.{}210--,,2、复数z 满足()1i 34i z -=+,则z = ( ) A.17i 22-+B.17i 22+ C.55i 22- D.55i 22+ 3、某学校为了解1000名新生的近视情况,将这些学生编号为000,001,002,…,999,从这些新生中用系统抽样的方法抽取100名学生进行检查,若036号学生被抽到,则下面4名学生中被抽到的是( ) A. 008号学生B. 200号学生C. 616号学生D. 815号学生4、已知(1)n x λ+的展开式中第三项的二项式系数与第四项的二项式系数相等,且2012(1)n n n x a a x a x a x λ+=++++L ,若12242n a a a ++=L ,则实数λ=( ) A.3B.2C.1D.45、已知R x y ∈,,且0x y >>,则( ) A .110x y->B . sin sin 0x y ->C .11022x y ⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭D . ln ln 0x y +>6、若向量,a b r r满足2,3,a b a b ==-=r r r r ()a ab ⋅+r r r=( )A .5B .6C .7D .87、如图是求2222222++++++的程序框图,则图中和中应分别填入( )A.6k T ≤?; B.7k T ≤=?;C.6k T ≤=?;D.6k T ≥=?;8、已知圆柱的轴截面是边长为2的正方形,且该圆柱的内切球1O 的表面积为1S ,该圆开始柱的上、下底面的圆周都在球2O 上,球2O 的表面积为2S ,则12:S S =( ) A.B.1:2D.2:19、在ABC △中,,,a b c 分别是角,,A B C 的对边,若sin cos 0b A B =,且2b ac =,则a c b+的值为( )A.2D.410、关于函数()sin sin f x x x =+有下述四个结论: ①()f x 是偶函数 ②()f x 在区间π(,π)2单调递增③()f x 在[]π,π-有4个零点 ④()f x 的最大值为2其中所有正确结论的编号是( ) A.①②④B.②④C.①④D.①③11、已知椭圆()2222:10x y C a b a b +=>>的左、右顶点分别为12A A ,,焦点坐标为(0)c ±,,过1A 的直线与圆222x y c +=切于点N ,与双曲线2222:1x y E c b-=在第一象限交于M 点,且满足12MA MA ⊥若椭圆C 的离心率为1e ,双曲线E 的离心率为2e ,则211e e +的值为( ) A.165D.12、已知函数()(),0ln ,0x e x f x x x ⎧≥⎪=⎨-<⎪⎩,若函数())(2g x f x ax a =++恰好有3个零点,则实数a 的取值范围为( )A.321,12e ⎛⎤-- ⎥⎝⎦B.1211,2e ⎡⎫--⎪⎢⎣⎭C.321,12e ⎡⎤--⎢⎥⎣⎦ D.12,2e ⎛⎤⎥⎝⎦13、已知函数2()xf x e x =-的图象在点(1,(1))f 处的切线过点()0,a ,则a =__________. 14、若直线1240l x y :-+=与2430l mx y :-+=平行,则两平行直线12l l ,间的距离为-_________.15、已知某几何体的三视图如图所示,则该几何体的表面积为 .16、已知P 是抛物线24y x =上一动点,定点A ,过点P 作PQ y ⊥轴于点Q ,则PA PQ +的最小值是_______17、已知n S 为数列{}n a 的前n 项和,满足()21n n n a S n +=+,且35a =.(1)求数列{}n a 的通项公式; (2)若()111322n a n n b a -=++⨯,求数列{}n b 的前n 项和n T . 18、如图,在多面体ABCD 中,平面ADEF ⊥平面ABCD .四边形ADEF 为正方形,ABCD 为梯形,且//AD BC ,ABD ∆是边长为1的等边三角形,M 为线段BD 中点,3BC =.(1)求证:AF BD ⊥;(2)求直线MF 与平面CDE 所成角的正弦值;(3)线段BD 上是否存在点N ,使得直线//CE 平面AFN ?若存在,求BNBD的值;若不存在,请说明理由.19、第7届世界军人运动会于2019年10月18日至27日在湖北武汉举行,赛期10天,共设置射击、游泳、田径、篮球等27个大项,329个小项.共有来自100多个国家的近万名现役军人同台竞技.前期为迎接军运会顺利召开,武汉市很多单位和部门都开展了丰富多彩的宣传和教育活动,努力让大家更多的了解军运会的相关知识,并倡议大家做文明公民.武汉市体育局为了解广大民众对军运会知识的知晓情况,在全市开展了网上问卷调查,民众参与度极高,现从大批参与者中随机抽取200名幸运参与者,他们得分(满分100分)数据,统计结果如下:(1)若此次问卷调查得分整体服从正态分布,用样本来估计总体,设,μσ分别为这200人得分的平均值和标准差(同一组数据用该区间中点值作为代表),求,μσ的值(,μσ的值四舍五入取整数),并计算()5193P X <<;(2)在(1)的条件下,为感谢大家参与这次活动,市体育局还对参加问卷调查的幸运市民制定如下奖励方案:得分低于μ的可以获得1次抽奖机会,得分不低于μ的可获得2次抽奖机会,在一次抽奖中,抽中价值为15元的纪念品A 的概率为23,抽中价值为30元的纪念品B 的概率为13.现有市民张先生参加了此次问卷调查并成为幸运参与者,记Y 为他参加活动获得纪念品的总价值,求Y 的分布列和数学期望,并估算此次纪念品所需要的总金额.(参考数据:;;.)20、已知椭圆()2222:10x y C a b a b+=>>的左,右焦点分别为()()122,0,2,0F F -,点1,P ⎛- ⎝⎭在椭圆C 上. (1)求椭圆C 的标准方程;(2)是否存在斜率为-1的直线l 与椭圆C 相交于M,N 两点,使得11F M F N =?若存在,求出直线的方程;若不存在,说明理由.21、已知函数()21x x f x e-= (e 为自然对数的底数).(1)求函数()f x 的零点0x ,以及曲线()y f x =在0x x =处的切线方程; (2)设方程()()0f x m m =>有两个实数根1x ,2x ,求证:121212x x m e ⎛⎫-<-+⎪⎝⎭. 22、在平面直角坐标系xOy 中,曲线C的参数方程为sin x y αα⎧=⎪⎨=⎪⎩([]0,π,a α∈为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为πcos 44ρθ⎛⎫⎪⎝⎭-=.(1)求C 的普通方程和l 的直角坐标方程. (2)射线()2π03θρ=>和()π03θρ=>分别与曲线C 交于点A B ,,与直线l 交于点D C ,,求四边形ABCD 的面积.23、已知不等式32231x x -->的解集为A . (1)求A .()0.6827P X μδμδ-<≤+≈(22)0.9545P X μδμδ-<≤+≈(33)0.9973P X μδμδ-<≤+≈(2)若m n A ∈,,且4m n +=,证明:22811n m m n +≥--.答案以及解析1答案及解析: 答案:B解析:依题意,知{}260A x x x =∈--<Z|{}|23x x =∈-<<Z {}1012=-,,,,{}|1B x x =>-},故{}012A B ⋂=,,,故选B.2答案及解析: 答案:D解析:由已知条件,得34i +,则()()()515i 515i 1i i 1i 22z =+-++==-,故选D.3答案及解析: 答案:C解析:由题意得抽样间隔为100010100=,因为036号学生被抽到,所以被抽中的初始编号为006号,之后被抽到的编号均是10的整数倍与6的和, 故选:C.4答案及解析: 答案:B解析:由(1)n x λ+得展开式中第三项的二项式系数与第四项的二项式系数相等,得23n n C C =解得5n =,所以5250125(1)x a a x a x a x λ+=++++L ,令0x =得01a =,令1x =,得50125(1)243x a a a a λ+=++++=L ,所以13λ+=,解得2λ=5答案及解析:答案:C解析:由0x y >>,则110y x x y xy--=<,故A 错误, 根据正弦函数的图象和性质,无法比较sin x 与sin y 的大小,故B 错误,根据指数函数的性质可得11022xy⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭-<,故C 正确,根据对数的运算性质,ln ln ln x y xy +=,当01xy <„时,ln 0xy „,故D 错误6答案及解析:答案:C解析:向量,a b r r满足2,3||,a b a b ==-=r r r r可得4927a b +-⋅=r r, 可得3a b ⋅=,则24)37(a a b a a b ⋅+=+⋅=+=7答案及解析: 答案:C解析:根据题意,运行该程序,则T =,1k =;T =,2k =;T =3k =;T =4k =;T 5k =;T =6k =;T =7k =,结束循环结合选项可知,C 选项满足题意.故选C.8答案及解析: 答案:B解析:设球1O 和球2O 的半径分别为r R ,,因为该圆柱的轴截面是边长为2的正方形,所以1r =,R,所以221212S r S R ⎛⎫=== ⎪⎝⎭,故选B.9答案及解析:答案:A解析:ABC ∆中,由sin cos 0b A B ⋅=,利用正弦定理得sin sin cos 0B A A B =,∴tan B =故π3B =.由余弦定理得222222cos b a c ac B a c ac =+-⋅=+-,即22)3(b a c ac =+-, 又2b ac =,所以22)4(b a c =+,求得2a cb +=10答案及解析: 答案:C解析:()()()sin sin sin sin f x x x x x f x -=-+-=+=Q ,()f x ∴为偶函数,故①正确.当2x ππ<<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误. 当0x π≤≤时,()2sin f x x =,它有两个零点:0,π;当0x π-≤<时,()()sin sin 2sin f x x x x =--=-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N时,()2sin f x x =;当[]()2,22x k k k *∈π+ππ+π∈N时,()sin sin 0f x x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确.综上所述①④ 正确,故选C .11答案及解析: 答案:D解析:易知222a b c =+,所以12A A ,为双曲线2222:1x y E c b-=的左、右焦点,连接ON (O 为坐标原点),则1ON A M ⊥.因为直线与圆222x y c +=切于点N ,所以ON c =,所以1A N b =,12A M b =,222A M ON c ==.由双曲线的定义,知122A M A M c -=,即222b c c -=,得2b c =,从而椭圆的离心率1c e a =2ae c =,故211e e +=故选D12答案及解析: 答案:B解析:函数()()2g x f x ax a =++有3个零点,等价于函数()y f x =的图象与直线2y ax a =--有3个交点.易知直线2y ax a =--恒过点1,02⎛⎫- ⎪⎝⎭,过点1,02⎛⎫- ⎪⎝⎭作函数(0)x y e x =≥的图象的切线,设切点为00()x y ,,则00x y e =. 因为x y e '=,所以切线的斜率1012x y k e x ==+,即0012x e x x =+,解得012x =,所以121k e =.又过点(0)1,,1,02⎛⎫- ⎪⎝⎭的直线与曲线()y f x =恰有3个交点,且该直线的斜率22k =, 所以函数()y f x =的图象与直线2y ax a =--有3个交点时,1222e a <-≤,解得12112a e -≤<-.综上,实数a 的取值范围为1211,2e ⎡⎫--⎪⎢⎣⎭故选B.13答案及解析:答案:1 解析:∵()2x f x e x =-,∴()()11,2x f e f x e x'=-=-,∴()12f e '=-,∴函数()2x f x e x =-的图象在点()()1,1f 处的切线的方程为()()()121y e e x --=--,即()21y e x =-+,∵直线()21y e x =-+过点()0,a ,∴()2011a e =-⨯+=14答案及解析:解析:若直线1:240l x y -+=与2:430l mx y -+=平行,则有43124m -=≠-,求得2m =, 两直线即1:2480l x y -+=与2:2430l x y -+=,则两平行直线12,l l 间的距离为=15答案及解析:解析:由三视图还原该几何体的直观图如图所示, 易知AA BB CC ''',,均垂直于底面ABC ,且1AA '=,2BB '=,3CC '=,1AC BC ==,AC BC ⊥,所以AB B C ''==A B ''=A C ''=B C A B ''''⊥, 所以该几何体的表面积()()()12231131112222S ++⨯+⨯⨯=+++=.16答案及解析: 答案:2解析:由抛物线24y x =可知,其焦点坐标为(1,0)F ,准线1x =-,设点P 到其准线的距离为d ,根据抛物线的定义可的d PF = 则点P 到y 轴的距离为1PQ PF =-,且3FA 则112PA PQ PA PF FA +=+-≥-=(当且仅当,,A P F 三点共线时取等号),所以PA PQ +的最小值为2.17答案及解析:答案:(1)由()21n n n a S n +=+,得()1n n na S n n =+-①,所以()()1111n n n a S n n +++=++②,由②-①,得()1112n n n n a na a n +++-=+,所以12n n a a +-=, 故数列{}n a 是公差为2的等差数列.因为35a =,所以112225a d a +=+⨯=,解得11a =, 所以()12121n a n n =+-=-. (2)由(1)得,134n n b n -=+⨯,所以()011123444n n T n -=++⋯++⨯+++L ()1143214n n n +-=+⨯-()1412n n n +=+-.解析:18答案及解析:答案:(1)证明:因为ADEF 为正方形,所以AF AD ⊥. 又因为平面ADEF ⊥平面ABCD ,且平面ADEF ⋂平面ABCD AD =, 所以AF ⊥平面ABCD .所以AF BD ⊥.(2)取AD 中点O,EF 中点K ,连接OB ,OK.于是在ABD ∆中,OB OD ⊥,在正方ADEF 中OK OD ⊥,又平面ADEF ⊥平面ABCD ,故OB ⊥平面AFEF ,进而OB OK ⊥,即OB, OD, OK 两两垂直.分别以,,OB OD OK 为x 轴,y 轴,z 轴建立空间直角坐标系(如图).于是,B ⎫⎪⎪⎝⎭,10,,02D ⎛⎫⎪⎝⎭,C ⎫⎪⎪⎝⎭,1E 0,,12⎛⎫ ⎪⎝⎭,11M ,0,F 0,,142⎫⎛⎫-⎪ ⎪⎪⎝⎭⎝⎭所以35,1,,0,(0,0,1)42MF CD DE ⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭u u u u ru u u r u u u r 设平面CDE 的一个法向量为(,,)n x y z =r ,则00CD n DE n ⎧⋅=⎪⎨⋅=⎪⎩u u u v u r u u v r即5020x y z ⎧-⋅=⎪⎨⎪=⎩ 令5x =-,则y =,则(n =-r.设直线MF 与平面CDE 所成角为θ,||sin |cos ,|||||MF n MF n MF n θ⋅=<>==u u u u r ru u u u r r u u u u r r (3) 要使直线//CE 平面AFN ,只需AN //CD , 设,[0,1]BN BD λλ=∈u u u ru u u r,则1,,02n n n x y z λ⎛⎫⎛⎫-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,1,,02n n n x y z λ===,1,,02N λ⎫⎪⎪⎝⎭,所以11,,022AN λ⎫=+⎪⎪⎝⎭u u u r , 又5(,0)2CD =-u u u r ,由//AN CD u u u r u u u r得1122 52λ-+=-,解得2=[0,1]3λ∈ 所以线段BD 上存在点N,使得直线//CE 平面AFN ,且2=3BN BD 解析:19答案及解析:答案:(1)由已知频数表得:5304050452010()3545556575859565200200200200200200200E X =⨯+⨯+⨯+⨯+⨯+⨯+⨯=, 22222()(3565)0.025(4565)0.15(5565)0.2(6565)0.25(7565)0.225D X =-⨯+-⨯+-⨯+-⨯+-⨯22(8565)0.1(9565)0.05210+-⨯+-⨯=,由2196225σ<<,则1415σ<<,而214.5210.5210=>,所以14σ≈, 则X 服从正态分布(65,14)N ,所以(22)()(5193)(2)2P X P X P X P X μσμσμσμσμσμσ-<<++-<<+<<=-<<+=0.95450.68270.81862+==; (2)显然,()()0.5P X P X μμ<=≥=, 所以所有Y 的取值为15,30,45,60,121(15)233P Y ==⨯=,111227(30)2323318P Y ==⨯+⨯⨯=,1211122(45)2332339P Y ==⨯⨯+⨯⨯=,1111(60)23318P Y ==⨯⨯=,所以Y 的分布列为:所以1721()1530456030318918E Y =⨯+⨯+⨯+⨯=, 需要的总金额为:200306000⨯=.解析:20答案及解析:答案:(1)因为椭圆C 的左右焦点分别为()12,0F -,()22,0F ,所以2c =.由椭圆定义可得2a ==,解得a =所以222642b a c =-=-=,所以椭圆C 的标准方程为22162x y +=(2)假设存在满足条件的直线l ,设直线l 的方程为y x t =-+, 由22162x y y x t ⎧+=⎪⎨⎪=-+⎩得223()60x x t +-+-=,即()2246360x tx t -+-=,()222(6)443696120t t t ∆=--⨯⨯-=->,解得t -<<,设()11,M x y ,()22,N x y ,则1232t x x +=,212364t x x -=,由于11F M F N =,设线段MN 的中点为E ,则1F E MN ⊥,所以111F EMNK K =-=又3,44t t E ⎛⎫ ⎪⎝⎭,所以141324F E t K t==+,解得4t =-.当4t =-时,不满足t -<<. 所以不存在满足条件的直线l.解析:21答案及解析:答案:(1)由()210x x f x e-==,得1x =±,∴函数的零点01x =±.()221xx x f x e --'=,()12f e '-=,()10f -=. 曲线()y f x =在1x =-处的切线方程为()21y e x =+.()21f e'=-,()10f =,∴曲线()y f x =在1x =处的切线方程为()21y x e=--.(2)()221xx x f x e --'=.当(()11x ∈-∞+∞U ,时,()0f x '>;当(1x ∈时,()0f x '<. ∴()f x 的单调递增区间为(()1 1-∞++∞,,,单调递减区间为(1.由(1)知,当1x <-或1x >时,()0f x <;当11x -<<时,()0f x >.下面证明:当()1 1x ∈-,时,()()21e x f x +>. 当()1 1x ∈-,时,()()()21112121002x x x x e x f x e x e e +--+>⇔++>⇔+>.易知,()112x x g x e +-=+在[]1 1x ∈-,上单调递增, 而()10g -=,∴()()10g x g >-=对()1 1x ∀∈-,恒成立, ∴当()1 1x ∈-,时,()()21e x f x +>. 由()21y e x y m⎧=+⎪⎨=⎪⎩得12m x e =-.记112mx e '=-.不妨设12x x <,则12111x x -<<-<, ∴121221212m x x x x x x x e ⎛⎫''-<-=-=--⎪⎝⎭.要证121212x x m e ⎛⎫-<-+⎪⎝⎭,只要证2112122m x m e e ⎛⎫⎛⎫--≤-+ ⎪ ⎪⎝⎭⎝⎭,即证21x m ≤-. 又∵2221x x m e -=,∴只要证222211x x x e-≤-,即()()()222110x x e x -⋅-+≤.∵()21x ∈-,即证()2210x e x -+≥.令()()()11x x x e x x e ϕϕ'=-+=-,.当()1x ∈时,()0x ϕ'<,()x ϕ为单调递减函数; 当()0,1x ∈时,()0x ϕ'>,()x ϕ为单调递增函数. ∴()()00x ϕϕ≥=,∴()2210x e x -+≥,∴121212x x m e ⎛⎫-<-+⎪⎝⎭. 解析:22答案及解析:答案:(1)由sin x y αα⎧⎪⎨=⎪⎩,消去参数α,得2212x y +=.因为[]0,πα∈,所以0y ≥.即曲线C 的普通方程为221()02x y y +=≥由πcos 44ρθ⎛⎫ ⎪⎝⎭-=,得4θρθ⎫⎪⎪⎭=⎝, 将cossin x y ρθρθ=⎧⎨=⎩代上式,简得x y +=,所以直线l 的直角坐标方程为0x y +-=.(2)由(1)知,曲线C 的方程为221()02x y y +=≥,将cos sin x y ρθρθ=⎧⎨=⎩代入上式,得2222cos sin 12ρθρθ+=()2ππ2π,k k k θ≤≤+∈Z .将π3θ=代入上式,解得ρ=OB =将2π3θ=代人上式,解得ρ=OA =.将π3θ=代入πcos 44ρθ⎛⎫ ⎪⎝⎭-=,解得4ρ=,即4OC =.将2π3θ=代入πcos 44ρθ⎛⎫ ⎪⎝⎭-=,解得4ρ=,即4OD =.所以四边形ABCD 的面积1π1πsin sin 2323S OD OC OA OB =⋅-⋅⋅11442277=⨯⨯-⨯=. 解析:23答案及解析: 答案:(1)当32x >时,原不等式可化为3)32(21x x -->,得352x <<; 当302x ≤≤时,原不等式可化为()32231x x +->,得312x <≤; 当0x <时,原不等式可化为()32231x x -+->,无解. 综上,)5(1A =,. (2)m n A ∈Q ,,1m ∴>,1n >,10m ∴->,1n -> 0.欲证22811n m m n +≥--,只需证()()3232811n n m m m n -+-≥--,即证()()()()2222888m n m mn n m n mn m n +-+-+≥-++, 即证()22312240m n mn +-+≥,即证()23212240m n mn mn ⎡⎤+--+≥⎣⎦,即证4mn ≤. 242m n mn ⎛⎫⎪⎝⎭+≤=Q ,当且仅当2m n ==时取等号,∴原不等式成立.解析:。
2020年高考数学(理)金榜冲刺卷(一)解析版

f (x) cos x sin x (a sin x) ( sin x) a sin x 1 因 为 cos2 x 0 , 所 以 a sin x 1 0 在 区 间
cos2 x
cos2 x ,
( π , π ) 恒成立,所以 a 1
因为
x
(
,
) ,所以
1
sin
x
32 3
1
2 所以 a 的取值范
3.4 张卡片上分别写有数字 1,2,3,4,从这 4 张卡片中随机抽取 2 张,则取出的 2 张卡片上的数字之和
本资料由集师广益·教学研究所整理
为奇数的概率为( )
1
A.
3
1
B.
2
【答案】C
2
C.
3
3
D.
4
【解析】取出的
2
张卡片上的数字之和为奇数的抽取方法是一奇一偶,
C21C21 C42
=
2 3
9.已知正方体 ABCD A1B1C1D1 的棱长为 2,直线 AC1 平面 .平面 截此正方体所得截面有如下四个
结论:①截面形状可能为正三角形;②截面形状可能为正方形;③截面形状不可能是正五边形;
④截面面积最大值为 3 3 .则正确的是( )
A.①②
B.①③
C.①②④
D.①③④
【答案】D
【解析】对①,当 截此正方体所得截面为 B1CD1 时满足.故①正确.
【答案】B
【解析】根据题意有 f x cos2x 1 1 cos2x 2 3 cos2x 5 ,
2
2
2
所以函数 f x 的最小正周期为 T 2 ,且最大值为 f x 3 5 4 ,故选 B.
专题20 2020年全国普通高等学校统一招生考试数学冲刺试卷(全国I卷)(理)(解析版)

第I 卷 选择题部分(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,1,2,3,4,5}A =-,{|(1)(5)0}B x x x =∈--<N ,则AB =( ).A .{3}B .{2,3}C .{2,3,5}D .{1,1,5}-【答案】D 【解析】{|(1)(5)0}{2,3,4}B x x x =∈--<=N ,所以{1,1,5}A B =-.故选:D.2.设i 为虚数单位,复数z 满足()25z i -=,则在复平面内,z 对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】B 【解析】因为()25z i -=,所以()()()5252222i z i i i i +===----+, 由共轭复数的定义知,2z i =-+,由复数的几何意义可知,z 在复平面对应的点为()2,1-,位于第二象限. 故选:B3.某公司以客户满意为出发点,随机抽选2000名客户,以调查问卷的形式分析影响客户满意度的各项因素.每名客户填写一个因素,下图为客户满意度分析的帕累托图.帕累托图用双直角坐标系表示,左边纵坐标表示频数,右边纵坐标表示频率,分析线表示累计频率,横坐标表示影响满意度的各项因素,按影响程度(即频数)的大小从左到右排列,以下结论正确的个数是( ).①35.6%的客户认为态度良好影响他们的满意度; ②156位客户认为使用礼貌用语影响他们的满意度; ③最影响客户满意度的因素是电话接起快速;④不超过10%的客户认为工单派发准确影响他们的满意度. A .1 B .2C .3D .4【答案】C 【解析】①认为态度良好影响他们满意度的客户比例为35.6%18.35%17.25%-=,故错误; ②156位客户认为使用礼貌用语影响他们的满意度,故正确; ③影响客户满意度的因素是电话接起快速,故正确;④认为工单派发准确影响他们满意度的客户比例为100%98.85% 1.15%-=,故正确. 故选:C . 4.函数()()1ln 1xxe xf x e -=+的部分图像大致为( )A .B .C .D .【答案】B 【解析】()()1ln 1xxe xf x e -=+,其定义域为:(,0)(0,)-∞+∞,又()()()1ln 1ln ()11x xx xe x e xf x f x e e ------===-++,所以()f x 为奇函数,故排除A,C 选项,又当12x =时,1(1)ln 12()021e f e ⨯=<+, 所以排除D 选项, 故选:B.5.惰性气体分子为单原子分子,在自由原子情形下,其电子电荷分布是球对称的.负电荷中心与原子核重合,但如两个原子接近,则彼此能因静电作用产生极化(正负电荷中心不重合),从而导致有相互作用力,这称为范德瓦尔斯相互作用.今有两个相同的惰性气体原子,它们的原子核固定,原子核正电荷的电荷量为q ,这两个相距为R 的惰性气体原子组成体系的能量中有静电相互作用能221121111c U k q R R x x R x R x ⎛⎫=+-- ⎪+-+-⎝⎭,其中c k 为静电常量,1x ,2x 分别表示两个原子负电中心相对各自原子核的位移,且1x 和2x 都远小于R ,当x 远小于1时,()1211x x x -+≈-+,则U 的近似值为( )A .21232c k q x x RB .21232c k q x x R - C .2123c k q x x R D .2123c k q x x R- 【答案】B 【解析】根据题意,221121111c U k q R R x x R x R x ⎛⎫=+-- ⎪+-+-⎝⎭21212c k q R R R R R R R x x R x R x ⎛⎫=+-- ⎪+-+-⎝⎭212121111111c k q x x x x R R R R⎛⎫⎪=+--⎪- ⎪++-⎝⎭, 因为1x 和2x 都远小于R ,当x 远小于1时,()1211x x x -+≈-+,所以212121111111c k q x x x x R R R R⎛⎫⎪+--⎪- ⎪++-⎝⎭222212121122221111+c k q x x x x x x x x R R R R R R R ⎡⎤⎛⎫⎛⎫--⎛⎫≈+-+--+-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎢⎥⎝⎭⎝⎭⎣⎦()222212121122222c x x k q x x x x x x RR R R R R R ⎡⎤--≈-++---⎢⎥⎢⎥⎣⎦21232c k q x x R ≈-, 故选:B6.若曲线()xf x mx e n =⋅+在点()()1,1f 处的切线方程为y ex =,则m n +的值为( )A .12e + B .12e - C .12D .2e 【答案】A 【解析】()x f x mx e n =⋅+,则()()'1x f x m x e =+⋅,故()1f e =,()1f e '=,()11me n e m e e +=⎧∴⎨+=⎩,解得122m e n ⎧=⎪⎪⎨⎪=⎪⎩,所以12e m n ++=. 故选:A .7.据《九章算术》记载,商高是我国西周时期的数学家,曾经和周公讨论过“勾3股4弦5”的问题,比毕达哥拉斯早500年.如图,现有ABC 满足“勾3股4弦5”,其中3AC =,4BC =,点D 是CB 延长线上的一点,则AC AD ⋅=( )A .3B .4C .9D .不能确定【答案】C 【解析】因为3,4,5AC CB AB ===,所以222AC CB AB +=, 所以AC CB ⊥,所以0AC CB ⋅=,所以0AC CD ⋅=, 所以2()AC AD AC AC CD AC AC CD ⋅=⋅+=+⋅909=+=. 故选:C8.一个球体被挖去一个圆锥,所得几何体的三视图如图所示,则该几何体的体积为( )A .403πB .56πC .1843πD .104π【答案】C 【解析】由题意可知该几何体是球体被挖去一个圆锥,圆锥底面半径为332=6, 设球的半径为R ,可得(()22236R R =+-,解得4R =,所以该几何体的体积为(2341184236333R π⨯π⨯-⨯⨯π=. 故选:C .9.为响应国家“节能减排,开发清洁能源”的号召,小华制作了一个太阳灶,如图所示.集光板由抛物面(抛物线绕对称轴旋转得到)形的反光镜构成,已知镜口圆的直径为2m ,镜深0.25m ,为达到最佳吸收太阳光的效果,容器灶圈应距离集光板顶点( )A .0.5米B .1米C .1.5米D .2米【答案】B 【解析】若使吸收太阳光的效果最好,容器灶圈应在抛物面对应轴截面的抛物线的焦点处, 如图,画出抛物面的轴截面,并建立坐标系,设抛物线方程22x py = 集光板端点()1,0.25A ,代入抛物线方程可得24p =, 所以抛物线方程24x y =, 故焦点坐标是()0,1F.所以容器灶圈应距离集光板顶点1m . 故选:B10.若等差数列{}n a 的前n 项和为n S ,且130S =,3421a a +=,则7S 的值为( ). A .21 B .63C .13D .84【答案】B 【解析】因为130S =,3421a a +=,所以111313602521a d a d +⨯=⎧⎨+=⎩,解可得,3d =-,118a =,则7171876(3)632S =⨯+⨯⨯⨯-=.故选:B .11.已知函数()14sin cos f x x x =-,现有下述四个结论: ①()f x 的最小正周期为π;②曲线()y f x =关于直线4πx =-对称; ③()f x 在5,412ππ⎛⎫⎪⎝⎭上单调递增;④方程()2f x =在[],ππ-上有4个不同的实根. 其中所有正确结论的编号是( ) A .②④ B .①③④C .②③④D .①②④【答案】D 【解析】()112sin 2,sin 2214sin cos 12sin 212sin 21,sin 22x x f x x x x x x ⎧-<⎪⎪=-=-=⎨⎪-≥⎪⎩, 作出()f x 在[],ππ-上的图象(先作出2sin 2y x =-的图象,再利用平移变换和翻折变换得到12sin 2y x =-的图象),如图所示,由图可知①②④正确,③错误.故所有正确结论的编号是①②④.故选:D.12.三棱锥P ABC -中,,,PA PB PC 互相垂直,1PA PB ==,M 是线段BC 上一动点,若直线AM 与平面PBC 6P ABC -的外接球的体积是( ) A .2π B .4πC .83πD .43π 【答案】D 【解析】M是线段BC上一动点,连接PM,PA PB PC,,互相垂直,AMP∴∠就是直线AM与平面PBC所成角,当PM最短时,即PM BC⊥时直线AM与平面PBC所成角的正切的最大.此时6 APPM=,6PM=,在直角PBC中,2612PB PC BC PM PC PC PC⋅=⋅⇒=+⨯⇒=. 三棱锥P ABC-扩充为长方体,则长方体的对角线长为1122++=.∴三棱锥P ABC-的外接球的半径为1R=,∴三棱锥P ABC-的外接球的体积为34433Rππ=.故选:D.第II卷非选择题部分(共90分)二、填空题:本大题共4小题,每题5分,共20分.13.若x,y满足约束条件24010220x yx yx y-+≥⎧⎪++≥⎨⎪+-≤⎩,则3z x y=+的最大值为______.【答案】5【解析】由题意,作出约束条件所表示的平面区域,如图所示:目标函数3z x y =+,可化为直线3y x z =-+, 当3y x z =-+经过点A 时,直线在y 轴上的截距最大. 此时目标函数取得最大值,又由10220x y x y ++=⎧⎨+-=⎩,解得3x =,4y =-,即()3,4A -,所以目标函数的最大值为3345z =⨯-=. 故答案为:514.设n S 是等比数列{}n a 的前n 项和,425S S =,则此数列的公比q =____________. 【答案】1-或2± 【解析】设等比数列{}n a 的首项为10a ≠,公比为q ,425S S =,∴1q ≠, ∴()()421115111a q a q qq--=--,化简可得()()22140qq--=,解得1q =-或2q =±. 故答案为:1-或2±.15.2020年初,我国突发新冠肺炎疫情.面对“突发灾难”,举国上下心,继解放军医疗队于除夕夜飞抵武汉,各省医疗队也陆续增援,纷纷投身疫情防控与病人救治之中.为分担“逆行者”的后顾之忧,某大学学生志愿者团队开展“爱心辅学”活动,为抗疫前线工作者子女在线辅导功课.现随机安排甲、乙、丙3名志愿者为某学生辅导数学、物理、化学、生物4门学科,每名志愿者至少辅导1门学科,每门学科由1名志愿者辅导,则数学学科恰好由甲辅导的概率为______.【答案】13【解析】根据题意,要求甲、乙、丙3名志愿者每名志愿者至少辅导1门学科, 每门学科由1名志愿者辅导,则必有1人辅导2门学科;则有23436636C A =⨯=种情况,若甲辅导数学,有2212323212C A C A +=种情况, 则数学学科恰好由甲辅导的概率为13, 故答案为:13. 16.过双曲线2221(0)x y a a -=>上一点M 作直线l ,与双曲线的两条渐近线分别交于,P Q ,且M 为线段PQ 的中点,若POQ △(O 为坐标原点)的面积为2,则双曲线的离心率为______.【解析】由题意知,双曲线2221(0)x y a a-=>的两条渐近线方程为1y x a =±,设112211,,,P x x Q x x a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,则()12121,22x x M x x a +⎛⎫- ⎪⎝⎭,根据点M 在双曲线2221x y a -=上,得()()22121222144x x x x a a +--=,得212x x a =,由双曲线的两条渐近线方程得1tan2POQ a∠= 222sin cos 22sin =2sin cos 22sin cos 22POQ POQ POQ POQ POQ POQ POQ ∠∠∠∠∠=∠∠+ 22212tan2tan 211POQPOQ a a∠==∠++ ,所以21222211121POQ a aS POQ x x a a a∆+=∠=⨯⨯⨯=+,而2POQS=,所以2a =,又1b =,所以5c =,离心率5e =.故答案为:5 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17—21题为必考题,每个考生都必须作答.22、23题为选考题,考生根据要求作答.(一)必考题:共60分17.平面四边形ABCD ,点,,A B C 均在半径为2的圆上,且6BAC π∠=.(1)求BC 的长;(2)若3BD =,2DBC BCD ∠=∠,求BCD ∆的面积. 【答案】(1)2;(2)352【解析】(1)设外接圆半径为2R =, 在ABC 中,6BAC π∠=,由正弦定理得12sin 422BC R BAC =∠=⨯=, 即2BC =; (2)在BCD 中,2DBC BCD ∠=∠,sin sin 22sin cos DBC BCD BCD BCD ∴∠=∠=∠∠则由正弦定理可得2cos CD BD BCD =⋅∠,又由余弦定理知222cos 2BC CD BD BCD BC CD +-∠=⋅,222()BD BC CD BD CD BC CD+-∴=⋅,又2BC =,3BD =, 解得215CD =,由余弦定理2222232151cos 22326BD BC CD CBD BD BC +-+-∠===-⋅⨯⨯,则35sin 6CBD ∠=, BCD ∴△的面积135sin 22BCDSBC BD CBD =⋅⋅∠=. 18.如图1,在多边形ABCDEF 中,四边形ABCD 为等腰梯形,//BC AD ,1AB AF BC ===,2AD DE ==,四边形ADEF 为直角梯形,//AF DE ,90DAF ∠=︒.以AD 为折痕把等腰梯形ABCD 折起,使得平面ABCD ⊥平面ADEF ,如图2所示.(1)证明:AC ⊥平面CDE .(2)求直线CF 与平面EAC 所成角的正切值. 【答案】(1)详见解析;(2)1919. 【解析】(1)证明:取AD 的中点M ,连接CM ,如下图所示:1AB AF BC ===,//BC AM ,由四边形ABCM 为菱形,可知12AM AD =, 在ACD 中,在90ACD ∠=︒, 所以AC DC ⊥.又平面ABCD ⊥平面ADEF ,平面ABCD 平面ADEF AD =,//AF DE ,90DAF ∠=︒,所以DE AD ⊥,DE ⊂平面ADEF ,所以DE ⊥平面ABCD ,AC ⊂平面ABCD , 所以DE AC ⊥,又因为DE DC D ⋂=, 所以AC ⊥平面CDE .(2)由平面ABCD ⊥平面ADEF ,如图取AD 的中点为O ,以O 为原点,以OA 为x 轴,其中y 轴,z 轴分别在平面ADEF 平面ABCD 中,且与AD 垂直,垂足为O 建立空间直角坐际系O xyz -.因为()1,1,0F ,13,0,22C ⎛⎫- ⎪ ⎪⎝⎭,()1,2,0E -,()1,0,0A ,33,0,22CA ⎛=- ⎝⎭,()2,2,0AE =-,33,1,2CF ⎛= ⎝⎭. 设平面CAE 的法向量(),,n x y z =,则00CA n AE n ⎧⋅=⎨⋅=⎩,即330220x z x y ⎧=⎪⎨-+=⎪⎩,不妨令1x =,得(1,1,3n =.设直线CF 与平面EAC 所成的角为θ,则331522sin 1045CF n CF nθ+-⋅===⨯⋅, 所以19tan θ=.19.在平面直角坐标系xOy中,设椭圆22221x ya b+=(0ab>>)的离心率是e,定义直线bye=±为椭圆的“类准线”,已知椭圆C的“类准线”方程为23y=±,长轴长为4.(1)求椭圆C的方程;(2)点P在椭圆C的“类准线”上(但不在y轴上),过点P作圆O:223x y+=的切线l,过点O且垂直于OP的直线l交于点A,问点A是否在椭圆C上?证明你的结论.【答案】(1)22143x y+=;(2)在,证明见解析.【解析】(1)由题意得:23b abe c==,24a=,又222a b c=+,联立以上可得:24a=,23b=,21c=.∴椭圆C的方程为22143x y+=;(2)如图,由(1)可知,椭圆的类准线方程为23y=±,不妨取23y=,设(),23P x(x≠),则23OPk=,∴过原点且与OP垂直的直线方程为023y x=,当3=x时,过P点的圆的切线方程为3x=过原点且与OP垂直的直线方程为12y x=-,联立312xy x⎧=⎪⎨=-⎪⎩,解得:33,2A⎫-⎪⎪⎭,代入椭圆方程成立;同理可得,当0x =时,点A 在椭圆上;当0x ≠时,联立223412y x x y ⎧=⎪⎨⎪+=⎩,解得1A ⎛⎫,2A ⎛⎫⎝, 1PA所在直线方程为()()20060x x y --=.此时原点O 到该直线的距离d ==∴说明A 点在椭圆C 上;同理说明另一种情况的A 也在椭圆C 上. 综上可得,点A 在椭圆C 上.20.已知函数()()2ln 1f x x a x =+-.(1)讨论函数()f x 的单调性;(2)设函数()()0g x kx b k =+>,当0a =时,若对任意的()0,x ∈+∞,存在实数k ,b 使得关于x 的不等式()()221ef x g x x -≤≤恒成立,求k 的最小值.【答案】(1)详见解析;(2)2. 【解析】(1)()()212120ax f x ax x x x+'=+=>,当0a ≥时,()0f x '≥在()0,∞+上恒成立, 所以函数()f x 在()0,∞+上单调递增; 当0a<时,若()0f x '>,解得0x <<若()0f x '<,解得x >所以函数()f x 在区间⎛ ⎝上单调递增,在区间⎫+∞⎪⎪⎭上单调递减. (2)因为()2g x x ≤,所以20x kx b --≥,0k >,故240k b ∆=+≤,即24k b ≤-,又因为()()21ef x g x -≤,所以2ln 10e x kx b ---≤. 设()2ln 10x e x kx b ϕ=---≤,()2ex k xϕ'=-, 当20,e x k ⎛⎫∈ ⎪⎝⎭时,()0x ϕ'>,()x ϕ单调递增, 当2,e x k ⎛⎫∈+∞⎪⎝⎭时,()0x ϕ'<,()x ϕ单调递减. 故()max 2222ln 212ln 10e ex e e b e b k k k ϕϕ⎛⎫==---=--≤ ⎪⎝⎭,所以22ln 1e b k -≤,所以有222ln 14k e b k -≤≤-. 由题知,存在实数k ,b 使得关于x 的不等式()()221ef x g x x -≤≤恒成立的充要条件是不等式222ln 14k e k -≤-有解,将该不等式化为222ln 104k e k--+≥,令2kt =,则22ln 10t e t -++≥有解. 设()22ln 1h t t e t =-++,()22e h t t t'=-+,可知()h t 在区间(上单调递增,在区间)+∞单调递减,又()10h =,10h=>,()2210h e e e =-++<,所以()22ln 1h x t e t =-++在区间)e 内存在唯一零点0t,故不等式22ln 10t e t -++≥的解集为01t t ≤≤,即012kt ≤≤,故k 的最小值为2. 21.11月,2019全国美丽乡村篮球大赛在中国农村改革的发源地-安徽凤阳举办,其间甲、乙两人轮流进行篮球定点投篮比赛(每人各投一次为一轮),在相同的条件下,每轮甲乙两人在同一位置,甲先投,每人投一次球,两人有1人命中,命中者得1分,未命中者得-1分;两人都命中或都未命中,两人均得0分,设甲每次投球命中的概率为12,乙每次投球命中的概率为23,且各次投球互不影响.(1)经过1轮投球,记甲的得分为X ,求X 的分布列;(2)若经过n 轮投球,用i p 表示经过第i 轮投球,累计得分,甲的得分高于乙的得分的概率. ①求,,p p p 123;②规定00p =,经过计算机计算可估计得11(1)i i i i p ap bp cp b +-=++≠,请根据①中,,p p p 123的值分别写出a ,c 关于b 的表达式,并由此求出数列{}n p 的通项公式. 【答案】(1)分布列见解析;(2)①1231743,,636216p p p ===;②116177i i i p p p +-=+,11156n np ⎛⎫=- ⎪⎝⎭. 【解析】(1)记一轮投球,甲命中为事件A ,乙命中为事件B ,,A B 相互独立,由题意1()2P A =,2()3P B =,甲的得分X 的取值为1,0,1-,(1)()P X P AB =-=121()()(1)233P A P B ==-⨯=, (0)()()()()()()P X P AB P AB P A P B P A P B ==+=+12121(1)(1)23232=⨯+-⨯-=, 121(1)()()()(1)236P X P AB P A P B ====⨯-=,∴X 的分布列为:(2)由(1)16p =, 2(0)(1)(1)((0)(1))p P X P X P X P X P X ==⋅=+==+=111117()2662636=⨯+⨯+=,同理,经过2轮投球,甲的得分Y 取值2,1,0,1,2--:记(1)P X x =-=,(0)P X y ==,(1)P X z ==,则2(2)P Y x =-=,(1)P Y xy yx =-=+,2(0)P Y xz zx y ==++,(1)P Y yz zy ==+,2(2)P Y z ==由此得甲的得分Y 的分布列为:∴3()()3362636636636216p =⨯+⨯++⨯++=, ∵11(1)i i i i p ap bp cp b +-=++≠,00p =,∴1212321p ap bp p ap bp cp =+⎧⎨=++⎩,71136664371721636636a b a b c ⎧+=⎪⎪⎨⎪++=⎪⎩,∴6(1)717b a b c -⎧=⎪⎪⎨-⎪=⎪⎩,代入11(1)i i i i p ap bp cp b +-=++≠得:116177i i i p p p +-=+, ∴111()6i i i i p p p p +--=-, ∴数列1{}n n p p --是等比数列,公比为16q =,首项为1016p p -=, ∴11()6nn n p p --=.∴11210()()()n n n n n p p p p p p p ---=-+-++-111111()()(1)66656n n n -=+++=-. (二)选考题:共10分.请考生在22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.在平面直角坐标系xOy 中,直线l 的参数方程为12112x y t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数).以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程2cos ρθ=. (Ⅰ)求直线l 的极坐标方程和曲线C 的直角坐标方程; (Ⅱ)若直线l 与曲线C 交于M ,N 两点,求MON ∠的大小.【答案】(Ⅰ)直线l 的极坐标方程为(cos )1ρθθ=+曲线C 的直角坐标方程为222x y x +=;(Ⅱ)6MON π∠=.【解析】(Ⅰ)由1112x y t ⎧=⎪⎪⎨⎪=+⎪⎩,,得直线l的普通方程为1x += 又因为cos ,sin ,x y ρθρθ=⎧⎨=⎩所以直线l的极坐标方程为(cos )1ρθθ+=+曲线C 的极坐标方程为2cos ρθ=,22cos ρρθ∴=,222x y x ∴+=,即曲线C 的直角坐标方程为222x y x +=.(Ⅱ)设M ,N 的极坐标分别为()11,ρθ,()22,ρθ, 则12MON θθ∠=-,由(cos )12cos ,ρθθρθ⎧=+⎪⎨=⎪⎩消去ρ得2cos (cos )1θθθ+=+,化为cos 22θθ+=sin 26πθ⎛⎫+= ⎪⎝⎭ 不妨设0,2πθ⎛⎫∈ ⎪⎝⎭,即72,666πππθ⎛⎫+∈ ⎪⎝⎭, 所以263ππθ+=,或2263ππθ+=, 即12,12,4πθπθ⎧=⎪⎪⎨⎪=⎪⎩或12412πθπθ⎧=⎪⎪⎨⎪=⎪⎩,, 所以126MON πθθ∠=-=.23.已知函数()|4||4|f x x x =++-. (Ⅰ)求不等式()3f x x >的解集;(Ⅱ)设函数()f x 的最小值为z ,正实数m ,n 满足2mn m n z --=,求证:2103m n ++. 【答案】(Ⅰ)8|3x x ⎧⎫<⎨⎬⎩⎭;(Ⅱ)详见解析. 【解析】(Ⅰ)()3f x x >,即|4||4|3x x x ++->.当4x <-时,不等式可化为443x x x --+->,解得4x <-; 当44x -时,不等式可化为443x x x ++->,解得843x -<; 当4x >时,不等式可化为443x x x ++->,无解. 综上,原不等式的解集为8|3x x ⎧⎫<⎨⎬⎩⎭.(Ⅱ)由绝对值不等式性质得,|4||4||44|8x x x x ++-+-+=,8z ∴=,即28mn m n --=,所以(1)(2)10m n --=,所以(1)(2)32103m n m n +=-+-++,当且仅当1m =,2n =时取“=”, 原不等式得证.。
金考卷—百校联盟—领航高考冲刺卷(理数答案)

平”的原则.
〃答案速查
镶2 静
4
鳞
辩
拱″
慧鳞
~ ~
酗ii!10
~|~~~|~
B|[
∩
\
D|B
B
A~{C~|[〕
】
■
■ [考查目标] 本题考查集合的并运算`简单指数不等式和一元二次
辩
11
辫
刁
·
′
●
[考查目标]
蕊
嚣霹撼嗡慧霉 ″
∏
/I∏+2 | 了
四
4
2
′
气
‖
勺
烂
本题考查三角恒等变换`三角函数的图象和性质’考
第
14垫[考查目标] 本题主要; α厕ˉl≠0,所以α″ˉα″ˉ|=1,又易知αl=1 ’故数列{α鹏}是首项和公
本题主要考 查双曲线的离心率,考查了分析
一
差都为l的等差数列,故α,="`s"=÷″(″+l) ’则b"= 2
模
问题和解决问题的能力。
(—]),警二(—])馏(←击) ,则数列|h鹏|的煎2022项和
考生的逻辑椎理能力以及运算求解能力,考查的核心素养是逻辑椎
面积,再利用几何概型的概率计算公式求解即可。
≤沪 [解析] 如图所示,设AB=α,连接CF,根据
题意可知乙CEF=90°’乙CFE=45°,EF=
\.~
÷』则cF=粤α;正八边形的面积为α2+4×
理`数学运算。 [解题思路] 分公比是否为l进行讨论,再利用等比数列的前门项 和公式及定义求解即可。 [解析] 设等比数列{α′』 }的公比为q’当q=1时,S"_2α| =nαl
司
∩■
』
|三
乙
γ 几
2020年高考押题预测卷01(新课标Ⅰ卷)-理科数学(考试版)

…
理科数学试题 第 1页(共 6页)
微信公众号: 嗨呀 同学
理科数学试题 第 2页(共 6页)
………………○………………外………………○………………装………………○………………订………………○………………线………………○………………
D.[1, )
2.已知条件 p : f (x) 2cos(x )( 0) 是奇函数,条件 q : k , k Z ,则 p 是 q的( )
2
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
3.设复数 z 满足 z iz 2 i ( i 为虚数单位),则 z 在复平面内对应的点位于( )
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷
一、选择题(本题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目 要求的)
1.已知全集U
R
,集合
A
{x
|
y
lg(1
x)}
,
B
x
|
y
1 ,则
x
ðU A
B(
)
A. (1, )
B. (0,1)
C. (0, )
呀 标保持不变;再把所得图象向上平移1个单位长度,得到函数 y g x 的图象,若 g x1 g x2 9 ,则
x1 x2 的值可能为( )
同 学
A. 5 4
3
B.
4
C.
2
D.
3
9.1927 年德国汉堡大学的学生考拉兹提出一个猜想:对于任意一个正整数,如果它是奇数,对它乘 3 加 1, 如果它是偶数,对它除以 2,这样循环,最终结果都能得到 1.有的数学家认为“该猜想任何程度的解决都是
2020年河北省衡水中学高考(理科)数学考前密卷(一) (解析版)

2020年河北省衡水中学高考(理科)数学考前密卷一、选择题(共12小题).1.设集合A={x|x2﹣3x+2≤0},B={x|log2x<1},则A∪B=()A.{x|1≤x<2}B.{x|1<x≤2}C.{x|0<x≤2}D.{x|0≤x≤2} 2.已知z1、z2均为复数,下列四个命题中,为真命题的是()A.|z1|=||=B.若|z2|=2,则z2的取值集合为{﹣2,2,﹣2i,2i}(i是虚数单位)C.若z12+z22=0,则z1=0或z2=0D.z1+z2一定是实数3.已知正实数a,b满足,,则()A.a<b<1B.1<b<a C.b<1<a D.1<a<b 4.2019年5月22日,具有“国家战略”意义的“长三角一体化”会议在芜湖举行;长三角城市群包括:上海市,江苏省、浙江省、安徽省三省部分城市,简称“三省一市”.现有4名高三学生准备高考后到上海市、江苏省、浙江省、安徽省四个地方旅游,假设每名同学均从这四个地方中任意选取一个去旅游,则恰有一个地方未被选中的概率为()A.B.C.D.5.已知函数f(x)=2sin(ωx+φ)(ω>0,0<φ<π)的部分图象如图所示,点,,则下列说法错误的是()A.直线是f(x)图象的一条对称轴B.f(x)的最小正周期为πC.f(x)在区间上单调递增D.f(x)的图象可由g(x)=2sin2x向左平移个单位而得到6.设向量与的夹角为θ,定义与的“向量积”:是一个向量,它的模,若,则=()A.B.2C.D.47.已知(1+)(1+x)6的展开式中各项系数的和为256,则该展开式中x3的系数为()A.26B.32C.38D.448.执行如图的程序框图,则输出的S是()A.36B.45C.﹣36D.﹣459.数列{a n}满足a1∈Z,a n+1+a n=2n+3,且其前n项和为S n.若S13=a m,则正整数m=()A.99B.103C.107D.19810.已知双曲线(a>0,b>0)的左、右焦点分别为F1,F2,过F2的直线交双曲线右支于P,O两点,且PQ⊥PF1,若,则该双曲线离心率e=()A.B.C.D.11.在三棱锥P﹣ABC中,△ABC与△PBC均为边长为1的等边三角形,P,A,B,C四点在球O的球面上,当三棱锥P﹣ABC的体积最大时,则球O的表面积为()A.B.2πC.5πD.12.已知函数f(x)与f'(x)的图象如图所示,则不等式的解集为()A.(0,1)B.C.D.(1,4)二、填空题:本题共4小题,每小题5分,共20分13.为了防止受到核污染的产品影响我国民众的身体健康,要求产品在进入市场前必须进行两轮核辐射检测,只有两轮都合格才能进行销售,否则不能销售,已知某产品第一轮检测不合格的概率为,第二轮检测不合格的概率为,两轮检测是否合格相互没有影响.若产品可以销售,则每件产品获科40元,若产品不能销售,则每件产品亏损80元,已知一箱中有4件产品,记一箱产品获利X元,则P(X≥﹣80)=.14.已知f(x)=sin(2019x+)+cos(2019x﹣)的最大值为A,若存在实数x1,x2使得对任意实数x总有f(x1)≤f(x)≤f(x2)成立,则A|x1﹣x2|的最小值为.15.设函数f(x)在定义域(0,+∞)上是单调函数,∀x∈(0,+∞),f[f(x)﹣e x+x]=e,若不等式f(x)+f'(x)≥ax对x∈(0,+∞)恒成立,则实数a的取值范围是.16.已知抛物线y2=2px(p>0),F为其焦点,l为其准线,过F作一条直线交抛物线于A,B两点,A′,B′分别为A,B在l上的射线,M为A′B′的中点,给出下列命题:①A′F⊥B′F;②AM⊥BM;③A′F∥BM;④A′F与AM的交点在y轴上;⑤AB′与A′B交于原点.其中真命题的是.(写出所有真命题的序号)三、解答题(共5小题,满分60分)17.设公差不为0的等差数列{a n}的前n项和为S n,等比数列{b n}的前n项和为T n,若a2是a1与a4的等比中项,a6=12,a1b1=a2b2=1.(1)求a n,S n与T n;(2)若,求证:.18.某大型公司为了切实保障员工的健康安全,贯彻好卫生防疫工作的相关要求,决定在全公司范围内举行一次乙肝普查.为此需要抽验960人的血样进行化验,由于人数较多,检疫部门制定了下列两种可供选择的方案.方案①:将每个人的血分别化验,这时需要验960次.方案②:按k个人一组进行随机分组,把从每组k个人抽来的血混合在一起进行检验,如果每个人的血均为阴性,则验出的结果呈阴性,这k个人的血就只需检验一次(这时认为每个人的血化验次);否则,若呈阳性,则需对这k个人的血样再分别进行一次化验.这样,该组k个人的血总共需要化验k+1次.假设此次普查中每个人的血样化验呈阳性的概率为p,且这些人之间的试验反应相互独立.(1)设方案②中,某组k个人中每个人的血化验次数为X,求X的分布列;(2)设p=0.1.试比较方案②中,k分别取2,3,4时,各需化验的平均总次数;并指出在这三种分组情况下,相比方案①,化验次数最多可以平均减少多少次?(最后结果四舍五入保留整数).19.如图,直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC,D,E分别为AA1、B1C 的中点.(1)证明:DE⊥平面BCC1B1;(2)已知B1C与平面BCD所成的角为30°,求二面角D﹣BC﹣B1的余弦值.20.已知椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,P是椭圆上一点,且△PF1F2面积的最大值为1.(1)求椭圆C的方程;(2)过F2且不垂直坐标轴的直线l交椭圆C于A,B两点,在x轴上是否存在一点N (n,0),使得|AN|:|BN|=|AF2|:|BF2|,若存在,求出点N(n,0),若不存在,说明理由.21.已知函数f(x)=e2x﹣ax.(1)讨论f(x)的单调性;(2)当x>0时,f(x)>ax2+1,求a的取值范围.(二)选考题:共10分,请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.22.在直角坐标系xOy中,曲线C的参数方程为(t为参数).以坐标原点O为极点,x轴正半轴为极轴,建立极坐标系.直线l的极坐标方程为2ρcosθ﹣ρsinθ+m =0.(1)求C和l的直角坐标方程;(2)已知l与C相切,求m的值.23.已知a>0,b>0,c>0设函数f(x)=|x﹣b|+|x+c|+a,x∈R.(1)若a=b=c=2,求不等式f(x)>7的解集;(2)若函数f(x)的最小值为2,证明:++≥(a+b+c).参考答案一、选择题(共12小题,每小题5分,满分60分)1.设集合A={x|x2﹣3x+2≤0},B={x|log2x<1},则A∪B=()A.{x|1≤x<2}B.{x|1<x≤2}C.{x|0<x≤2}D.{x|0≤x≤2}解:A={x|1≤x≤2},B={x|0<x<2},∴A∪B={x|0<x≤2}.故选:C.2.已知z1、z2均为复数,下列四个命题中,为真命题的是()A.|z1|=||=B.若|z2|=2,则z2的取值集合为{﹣2,2,﹣2i,2i}(i是虚数单位)C.若z12+z22=0,则z1=0或z2=0D.z1+z2一定是实数解:A.不成立,例如取z1=i;B.不成立,|z2|=2,则z2=2(cosθ+i sinθ),θ∈[0,2π);C.不成立,例如取z1=i,z2=﹣i;D.设z1=a+bi,z2=c+di,a,b,c,d∈R,则z1+z2=(a+bi)(c﹣di)+(a﹣bi)(c+di)=ac+bd+(bc﹣ad)i+ac﹣bd+(ad﹣bc)i=2ac,因此是实数,正确.故选:D.3.已知正实数a,b满足,,则()A.a<b<1B.1<b<a C.b<1<a D.1<a<b解:在同一坐标系中分别作出函数y=,y=及y=log2x的图象如图:由图可知,1<b<a.故选:B.4.2019年5月22日,具有“国家战略”意义的“长三角一体化”会议在芜湖举行;长三角城市群包括:上海市,江苏省、浙江省、安徽省三省部分城市,简称“三省一市”.现有4名高三学生准备高考后到上海市、江苏省、浙江省、安徽省四个地方旅游,假设每名同学均从这四个地方中任意选取一个去旅游,则恰有一个地方未被选中的概率为()A.B.C.D.解:现有4名高三学生进行去四个地方的总共有:4×4×4×4=44种情况;再四个地方选出一个地方空出C41种情况;将剩下的三个地方进行四人选择,将四人中捆绑两人有C42种情况进行排列在三个位置有:A33种;则恰有一个地方未被选中的可能有:C41C42A33种;由古典概型的定义知:则恰有一个地方未被选中的概率为:=故选:A.5.已知函数f(x)=2sin(ωx+φ)(ω>0,0<φ<π)的部分图象如图所示,点,,则下列说法错误的是()A.直线是f(x)图象的一条对称轴B.f(x)的最小正周期为πC.f(x)在区间上单调递增D.f(x)的图象可由g(x)=2sin2x向左平移个单位而得到解:由题意可得:,由2sinφ=,得sinφ=,由0<φ<π,得φ=或φ=;又点在最高点的左侧,∴φ=.由五点作图的第三点知,,即ω=2.∴f(x)=2sin(2x+).由f()=2sin()=2,可知直线是f(x)图象的一条对称轴,故A正确;由周期公式可得T=,故B正确;当x∈,2x+∈(),可知f(x)在区间上单调递增,故C正确;∵f(x)=2sin(2x+)=2sin2(x+),∴f(x)的图象可由g(x)=2sin2x向左平移个单位而得到,故D错误.故选:D.6.设向量与的夹角为θ,定义与的“向量积”:是一个向量,它的模,若,则=()A.B.2C.D.4解:设的夹角为θ,则cosθ==﹣,∴sinθ=,∴=2×2×=2.故选:B.7.已知(1+)(1+x)6的展开式中各项系数的和为256,则该展开式中x3的系数为()A.26B.32C.38D.44解:令x=1,可得(1+)(1+x)6的展开式中各项系数的和为(1+a)•26=256,∴a=3,则(1+)(1+x)6的展开式中x3的系数为+3=38,故选:C.8.执行如图的程序框图,则输出的S是()A.36B.45C.﹣36D.﹣45解:模拟程序的运行,可得该程序的功能是利用循环结构计算并输出变量S=﹣12+22﹣32+…﹣72+82的值,由于S=﹣12+22﹣32+…﹣72+82=(22﹣12)+(42﹣32)+(62﹣52)+(82﹣72)=3+7+11+15=36.故选:A.9.数列{a n}满足a1∈Z,a n+1+a n=2n+3,且其前n项和为S n.若S13=a m,则正整数m=()A.99B.103C.107D.198解:由a n+1+a n=2n+3,得a n+1﹣(n+1)﹣1=﹣(a n﹣n﹣1),∴{a n﹣n﹣1}为等比数列,∴,∴,,∴S13=a1+(a2+a3)+…+(a12+a13)=a1+2×(2+4+…+12)+3×6=a1+102,①m为奇数时,a1﹣2+m+1=a1+102,m=103;②m为偶数时,﹣(a1﹣2)+m+1=a1+102,m=2a1+99,∵a1∈Z,m=2a1+99只能为奇数,∴m为偶数时,无解.综上所述,m=103,故选:B.10.已知双曲线(a>0,b>0)的左、右焦点分别为F1,F2,过F2的直线交双曲线右支于P,O两点,且PQ⊥PF1,若,则该双曲线离心率e=()A.B.C.D.解:设P,Q为双曲线右支上一点,由PQ⊥PF1,|PQ|=|PF1|,在直角三角形PF1Q中,|QF1|==|PF1|,由双曲线的定义可得:2a=|PF1|﹣|PF2|=|QF1|﹣|QF2|,由|PQ|=|PF1|,即有|PF2|+|QF2|=|PF1|,即为|PF1|﹣2a+|PF1|﹣2a=|PF1|,∴(1﹣+)|PF1|=4a,解得|PF1|=.∴|PF2|=|PF1|﹣2a=,由勾股定理可得:2c=|F1F2|==,则e=.故选:C.11.在三棱锥P﹣ABC中,△ABC与△PBC均为边长为1的等边三角形,P,A,B,C四点在球O的球面上,当三棱锥P﹣ABC的体积最大时,则球O的表面积为()A.B.2πC.5πD.解:因为△ABC和△PBC为等边三角形,V=h,而S一定,所以高最大值时,所以当面△PBC⊥面ABC时,三棱锥的体积最大,设两个外接圆的圆心分别为G,F,如图所示,过G,F分别作两个面的垂线,交于O,连接OP,OA,则OA=OP为外接球的半径R,△OAG中,OA2=OG2+AG2,而由题意OG=EF==,AG==,所以OA2=()2+()2=,所以外接球的表面积S=4πR2=,故选:A.12.已知函数f(x)与f'(x)的图象如图所示,则不等式的解集为()A.(0,1)B.C.D.(1,4)解:根据导数与单调性的关系可知,当f′(x)<0时,函数单调递减,当f′(x)>0,函数单调递增,结合图象可知,图象中实线为f′(x)的图象,虚线为f(x)的图象,由可得,0<x<1,故选:A.二、填空题:本题共4小题,每小题5分,共20分13.为了防止受到核污染的产品影响我国民众的身体健康,要求产品在进入市场前必须进行两轮核辐射检测,只有两轮都合格才能进行销售,否则不能销售,已知某产品第一轮检测不合格的概率为,第二轮检测不合格的概率为,两轮检测是否合格相互没有影响.若产品可以销售,则每件产品获科40元,若产品不能销售,则每件产品亏损80元,已知一箱中有4件产品,记一箱产品获利X元,则P(X≥﹣80)=.解:由题意得该产品能销售的概率为(1﹣)(1﹣)=,X的可能取值为﹣320,﹣200,﹣80,40,160,设ξ表示一篇产品中可以销售的件数,ξ~B(4,),∴P(ξ=k)=,∴P(X=﹣80)=P(ξ=2)==,P(X=40)=P(ξ=3)=,P(X=160)=P(ξ=4)==,∴P(X≥﹣80)=P(X=﹣80)+P(X=40)+P(X=160)==.故答案为:.14.已知f(x)=sin(2019x+)+cos(2019x﹣)的最大值为A,若存在实数x1,x2使得对任意实数x总有f(x1)≤f(x)≤f(x2)成立,则A|x1﹣x2|的最小值为π.解:已知=sin2019x+cos2019x+cos2019x+sin2019x=sin2019x+cos2019x=2sin (2019x+),函数的最大值为A=2,若存在实数x1,x2使得对任意实数x总有f(x1)≤f(x)≤f(x2)成立,∴f(x1)为最小值,f(x2)为最大值,∴|x1﹣x2|的最小值为•=,∴A|x1﹣x2|=2|x1﹣x2|的最小值为π,故答案为:π.15.设函数f(x)在定义域(0,+∞)上是单调函数,∀x∈(0,+∞),f[f(x)﹣e x+x]=e,若不等式f(x)+f'(x)≥ax对x∈(0,+∞)恒成立,则实数a的取值范围是{a|a ≤2e﹣1}.解:令t=f(x)﹣e x+x,所以f(x)=e x﹣x+t,因为f(x)在定义域(0,+∞)上是单调函数,∀x∈(0,+∞),f[f(x)﹣e x+x]=e,故t为常数且f(t)=e t=e,所以,t=1,f(x)=e x﹣x+1,f′(x)=e x﹣1因为f(x)+f'(x)≥ax对x∈(0,+∞)恒成立,所以2e x≥(a+1)x对x∈(0,+∞)恒成立,即a+1对x∈(0,+∞)恒成立,令g(x)=,x>0,则g′(x)=,当x>1时,g′(x)>0,g(x)单调递增,当0<x<1时,g′(x)<0,g(x)单调递减,故当x=1时,函数取得最小值g(1)=2e,故a+1≤2e即a≤2e﹣1.故答案为:{a|a≤2e﹣1}.16.已知抛物线y2=2px(p>0),F为其焦点,l为其准线,过F作一条直线交抛物线于A,B两点,A′,B′分别为A,B在l上的射线,M为A′B′的中点,给出下列命题:①A′F⊥B′F;②AM⊥BM;③A′F∥BM;④A′F与AM的交点在y轴上;⑤AB′与A′B交于原点.其中真命题的是①②③④⑤.(写出所有真命题的序号)解:①由于A,B在抛物线上,根据抛物线的定义可知A'A=AF,B'B=BF,因为A′、B′分别为A、B在l上的射影,所以A'F⊥B'F;②取AB中点C,则CM=,∴AM⊥BM;③由②知,AM平分∠A′AF,∴A′F⊥AM,∵AM⊥BM,∴A'F∥BM;④取AB⊥x轴,则四边形AFMA′为矩形,则可知A'F与AM的交点在y轴上;⑤取AB⊥x轴,则四边形ABB'A'为矩形,则可知AB'与A'B交于原点故答案为①②③④⑤.三、解答题(共5小题,满分60分)17.设公差不为0的等差数列{a n}的前n项和为S n,等比数列{b n}的前n项和为T n,若a2是a1与a4的等比中项,a6=12,a1b1=a2b2=1.(1)求a n,S n与T n;(2)若,求证:.【解答】(1)解:由题意得,,即,得a1=d(d ≠0),由a6=12,得a1=d=2.∴a n=a1+(n﹣1)d=2+2(n﹣1)=2n,,由a1b1=a2b2=1,得,,∴;(2)证明:∵,由0<<1恒成立,∴c n<<=,∴c1+c2+…+c n<.18.某大型公司为了切实保障员工的健康安全,贯彻好卫生防疫工作的相关要求,决定在全公司范围内举行一次乙肝普查.为此需要抽验960人的血样进行化验,由于人数较多,检疫部门制定了下列两种可供选择的方案.方案①:将每个人的血分别化验,这时需要验960次.方案②:按k个人一组进行随机分组,把从每组k个人抽来的血混合在一起进行检验,如果每个人的血均为阴性,则验出的结果呈阴性,这k个人的血就只需检验一次(这时认为每个人的血化验次);否则,若呈阳性,则需对这k个人的血样再分别进行一次化验.这样,该组k个人的血总共需要化验k+1次.假设此次普查中每个人的血样化验呈阳性的概率为p,且这些人之间的试验反应相互独立.(1)设方案②中,某组k个人中每个人的血化验次数为X,求X的分布列;(2)设p=0.1.试比较方案②中,k分别取2,3,4时,各需化验的平均总次数;并指出在这三种分组情况下,相比方案①,化验次数最多可以平均减少多少次?(最后结果四舍五入保留整数).解:(1)设每个人的血呈阴性反应的概率为q,则q=1﹣p.所以k个人的血混合后呈阴性反应的概率为q k,呈阳性反应的概率为1﹣q k.依题意可知X=,1+所以X的分布列为:X1+P q k1﹣q k(2)方案②中.结合(1)知每个人的平均化验次数为:E(X)=•q k+(1+)(1﹣q k)=﹣q k+1.所以当k=2时,E(X)=﹣0.92+1=0.69,此时960人需要化验的总次数为662次,k=3时,E(X)=﹣0.93+1≈0.6043,此时960人需要化验的总次数为580次,k=4时,E(X)=﹣0.94+1=0.5939,此时960人需要化验的次数总为570次,即k=2时化验次数最多,k=3时次数居中,k=4时化验次数最少.而采用方案①则需化验960次,故在这三种分组情况下,相比方案①,当k=4时化验次数最多可以平均减少960﹣570=390次.19.如图,直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC,D,E分别为AA1、B1C的中点.(1)证明:DE⊥平面BCC1B1;(2)已知B1C与平面BCD所成的角为30°,求二面角D﹣BC﹣B1的余弦值.【解答】(1)证明:以A为坐标原点,射线AB为x轴的正半轴,建立如图所示的直角坐标系A﹣xyz.设AB=1,AD=a,则B(1,0,0),C(0,1,0),B1(1,0,2a),D(0,0,a),B1(1,0,2a),,,,.∵,,∴DE⊥BC,DE⊥B1C,又BC∩B1C=C,∴DE⊥平面BCC1B1;(2)解:设平面BCD的法向量=(x0,y0,z0),则,又,故,取x0=1,得.∵B1C与平面BCD所成的角为30°,,∴|cos<>|=,解得,∴.由(1)知平面BCB1的法向量,∴cos<>==.∴二面角D﹣BC﹣B1的余弦值为.20.已知椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,P是椭圆上一点,且△PF1F2面积的最大值为1.(1)求椭圆C的方程;(2)过F2且不垂直坐标轴的直线l交椭圆C于A,B两点,在x轴上是否存在一点N (n,0),使得|AN|:|BN|=|AF2|:|BF2|,若存在,求出点N(n,0),若不存在,说明理由.解:(1)由题意可得e==,(S)max==1,即bc=1,又c2=a2﹣b2,解得:a2=2,b2=1,所以椭圆的方程为:+y2=1;(2)假设存在N(n,0)满足条件,由|AN|:|BN|=|AF2|:|BF2|,可得AF2为∠ANB的角平分线,所以k AN+k BN=0,由题意直线AB的斜率存在且不为0,由(1)可得右焦点F2(1,0),设直线AB的方程为x=my+1,设A(x1,y1),B(x2,y2),将直线AB的方程与椭圆的方程联立:,整理可得:(2+m2)y2+2my﹣1=0,y1+y2=﹣,y1y2=﹣,k AN+k BN=+===0,所以2my1y2﹣(n+1)(y1+y2)==0,即2mn=0,因为m≠0,所以n=0,即存在N(0,0)满足条件.21.已知函数f(x)=e2x﹣ax.(1)讨论f(x)的单调性;(2)当x>0时,f(x)>ax2+1,求a的取值范围.解:(1)f′(x)=2e2x﹣a,a≤0时,f′(x)>0,f(x)在R上递增,a>0时,由f′(x)=0得x=ln,x∈(﹣∞,ln),f′(x)<0,f(x)在(﹣∞,ln)上递减;x∈(ln,+∞),f′(x)>0,f(x)在(ln,+∞)上递增.(2)f(x)=e2x﹣ax>ax2+1变形为e2x﹣ax2﹣ax﹣1>0,令g(x)=e2x﹣ax2﹣ax﹣1,g′(x)=2e2x﹣2ax﹣a,令g′(x)=0,可得a=,令h(x)=,h′(x)=,x>0时,h′(x)>0,h(x)在(0,+∞)上单调递增,∴h(x)的值域是(2,+∞),当a≤2时,g′(x)=0没有实根,g′(x)>0,g(x)在(0,+∞)上单调递增,g(x)>g(0)=0,符合题意,当a>2时,g′(x)=0有唯一实根x0,x∈(0,x0)时,g′(x)<0,g(x)在(0,x0)上递减,g(x)<g(0)=0,不符题意,综上,a的取值范围是a≤2.(二)选考题:共10分,请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.22.在直角坐标系xOy中,曲线C的参数方程为(t为参数).以坐标原点O为极点,x轴正半轴为极轴,建立极坐标系.直线l的极坐标方程为2ρcosθ﹣ρsinθ+m =0.(1)求C和l的直角坐标方程;(2)已知l与C相切,求m的值.解:(1)因为,,两式相减,有4x2﹣2y2=4,所以C的直角坐标方程为.直线l的极坐标方程为2ρcosθ﹣ρsinθ+m=0.把x=ρcosθ,y=ρsinθ,代入上述方程可得:直线l的直角坐标方程为2x﹣y+m=0.(2)联立l与C的方程,有,消y,得2x2+4mx+m2+2=0,因为l与C相切,所以有△=16m2﹣4×2(m2+2)=8m2﹣16=0,解得:.23.已知a>0,b>0,c>0设函数f(x)=|x﹣b|+|x+c|+a,x∈R.(1)若a=b=c=2,求不等式f(x)>7的解集;(2)若函数f(x)的最小值为2,证明:++≥(a+b+c).解:(1)当a=b=c=2时,f(x)=|x﹣2|+|x+2|+2=.∵f(x)>7,∴或,∴或,∴不等式的解集为.(2)∵f(x)=|x﹣b|+|x+c|+a≥|(x﹣b)﹣(x+c)|+a=|b+c|+a=b+c+a,∴f(x)min=b+c+a=2,∴=≥,∴≥。
全国新课标试卷2020届高三下学期考前冲刺一数学理试题Word版含答案

全国卷理科数学模拟试题一第Ⅰ卷一 选择题:本题共12题,每小题5分,共60.在每小题给出的四个选项中,有且只有一个是正确的.1.设集合{1,2,3,4},{1,2,3},{2,3,4}U M N ===,则)(N M C U = ( ) A.{1,2} B.{2,3} C.{2,4} D.{1,4} 2.复数131iZ i -=+的实部是( ) A . 2 B . 1C .1-D .4-3.设0.8log 0.9a =, 1.1log 0.9b =,0.91.1c =,则a ,b , c 的大小关系是 ( ) (A )a b c <<(B )a c b << (C )b a c <<(D )c a b <<4.如图,在66⨯的方格纸中,若起点和终点均在格点的向量,,a b c 满足,(,)c xa yb x y R =+∈,则x y +=A .0B . 1C .5D .1355.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程ˆy=3-5x ,变量x 增加一个单位时,y 平均增加5个单位; ③回归方程ˆˆˆy=bx+a 必过(x,y) ④有一个2×2列联表中,由计算得2k =13.079,则有99%的把握确认这两个变量间有关系.其中错误的个数是( )(A)0 (B)1 (C)2 (D)3P(2k ≥0k )0.50 0.40 0.25 0.15 0.10 0.05 0. 025 0.010 0k0.4550.7081.3232.0722.7063.8415. 0246.635a b c6.执行如图的程序框图,输出的S 值是( ) A .23-B .23C .0D .37.等差数列{a n }中,a 1+a 2+…+a 50=200,a 51+a 52+…+a 100=2700,则a 1等于( ) A .-1221 B .-21.5 C .-20.5 D .-208.下列命题中正确的是( )A .若p q ∨为真命题,则p q ∧为真命题B .“0a >,0b >”是“2b aa b+≥”的充分必要条件 C .命题“若2320x x -+=,则1x =或2x =”的逆否命题为“若1x ≠或2x ≠,则2320x x -+≠”D .命题:p R x ∃∈,使得210x x +-<,则:p ⌝R x ∀∈,使得210x x +-≥9.设等比数列{}n a 的前n 项和为n S .则“10a >”是“32S S >”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (D )既不充分又不必要条件 (C )充要条件10.某四棱柱的三视图如图所示,该几何体的各面中互相垂直的面的对数是( )A .2B .4C .6D .811.设Q P ,分别为()2622=-+y x 和椭圆11022=+y x 上的点,则Q P ,两点间的最大距离是( ).52A B.246+ C.27+ D.2612.已知函数2,1,()1,1,x ax x f x ax x ⎧-+≤=⎨->⎩若1212,,x x x x ∃∈≠R ,使得12()()f x f x =成立,则实数a 的取值范围是 ( ) (A )2a (B )2a (C )22a (D )2a 或2a第II 卷本卷包括必考题和选考题两部分。
06.2020考前冲刺八套卷理科答案(一)

1分
2分 3分 4分 5分
6分
h证明: bn
an2 2n1 an an1
n2 2n1 n (n 1)
1 n 2n
1 (n 1) 2n1
所以 Tn
(1121
1 2 22
)
(
2
1 22
3
1 23
)
[
n
1 2n
(n
1 1)
2n1
]
1 2
(n
1 1) 2n1
1 2
9分 12 分
19.解: h作 MM ' y 轴交 y 轴于 M '
a
b
b
a2
a
ab b
b
.
4分
h首先,
P(X
n1
a
0)
P0
a
a
; b
k 1 时,第 t 次取出来有 t h 个白球的可能性有两种;
第 次袋中有 t h 个白球,显然次取出球后,球的总数保持不变;即 t h 个白球(故
此时黑球有 h d h 个),第 t 次取出来的也是白球,这种情况发生的概率为 P a k ; 5 k ab
(EX n
1)
(EX n )2 ab
(1
EX a
n
b
)(
EX
n
1)
(EX n )2 ab
EX n
(EX n )2 ab
1
EX n ab
(1
a
1
b
)
EX
n
1
12 分
5/7
22.解 h依题意可得:圆 C1 : (x 1)2 y2 1;圆 C2 : (x 2)2 y2 4 所以 C1 : x2 y2 2x;C2 : x2 y2 4x, 又因为 x2 y2 2 , x cos 所以 C1 : 2 cos ;C2 : 4 cos .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
h Ґ( )
Ǥ⺁
Ǥ⺁
Ǥ
对称,若 Ǥ
Ґ ⺁Ǥ则
12.
椭圆
x2 a2
y2 b2
1
(a 0,b 0) 的左右焦点为 F1,F2 若在椭圆上存在一点 P,使得
PF1F2 的内心 I 与重心 G 满足 IG//F1F2,则椭圆的离心率为( )
A. 2
B. 2
C. 1
D. 1
2
3
3
2
2 / 共 6页
沉着、冷静、细心、认真
第 II 卷(共 90 分)
本卷包括必考题和选考题两部分。第 13 题~第 21 题为必考题,每个试题考生都必须 作答;第 22 题~第 23 题为选考题,考生根据要求作答。 二、填空题:本题共 4 小题,每小题 5 分。
13.已知 ⥰,ㄴሻ, ⥰ㄴ, ሻ,若点 在函数 y x 的图像上,则使得 PAB 的面积为 2
沉着、冷静、细心、认真
20. (本小题满分 12 分)
已知 f (x) (1 x)e x 1
(1)求函数 ⥰˶ሻ的最大值;
(2)设 g(x) f (x) ,证明: g(x) 有最大值 g(t) ,且 2 t 1 x
21. (本小题满分 12 分) 一袋中有 ৹ 白球和 个黑球,从中任取一球,如果取出白球,则把它放回袋中;如果
取到黑球,则该黑球不再放回,另补一个白球放到袋中。在重复 ݅ 次这样的操作后,记袋
中白球的个数为 X n
(1)求 EX1 ;
(2)设 P( X n a k) pk ,求 P( X n1 a k ), k 0,1,b;
(3)证明:
EX
n1
(1
a
1
)EX b
n
1
5 / 共 6页
沉着、冷静、细心、认真
23. (本小题满分 10)
已知 a 0,b 0, c 0, d 0, a 2 b 2 ab 1, cd 1 (1)求证: a b 2 ; (2)判断等式 ac bd c d 能否成立,并说明理由。
6 / 共 6页
沉着、冷静、细心、认真
蜜蜂优课 2020 考前冲刺卷(一) 数学(理科)试题
2020.3.21 出题人:凉学长 (满分:150 分,考试时间:120 分钟)
第 I 卷(选择题 共 60 分)
一、选择题:本题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合 题目要求的.
1.设集合 Ґ ਣ⥰˶, ሻ ˶ Ґ , Ґ ਣ⥰˶, ሻ Ґ ˶ ,则
的点 的个数为_________.
14. 设 变 量 ˶,
x 2 0,
满
足
约
束
条
件
x
y
3
0,
则目标函数 z x6y 的最大值为
2x y 3 0,
_________.
15.设锐角 ABC 的内角 A, B, C 所对的边分别为 a, b, c ,且 ৹ Ґ , Ґ ,则 的取值范
围是_________.
1 / 共 6页
沉着、冷静、细心、认真
7.在 中,角 A, B, C 所对边分别为 a, b, c ,若 a cos Asin C (2b a) sin A cos C ,
则角 的大小为( )
A.
B.
6
4
C. .
D.
3
2
8. 在 同 一 平 面 直 角 坐 标 系 中 , 画 出 三 个 函 数 ˶ Ґ ݅ ݏ˶
16.在半径为 5 的球面上有不同的四点 A, B, C, D ,若 AB AC AD 2 5 ,则平面 BCD
被球所截得图形的面积为_________.
三、解答题:解答应写出文字说明、证明过程或演算步骤。 17.(本小题满分 12 分)
如图,在斜三棱柱 ABC A1B1C1 中,O 是 的中点,A1O 平面ABC,BCA 90 , AA1 AC BC .
(1) 求证: A1B AC1 ; (2) 求二面角 A BB1 C 的余弦值.
3 / 共 6页
沉着、冷静、细心、认真
18. (本小题满分 12 分)
已知数列{an} 为单调递增数列, Sn 为其前 ݅ 项和, 2Sn =an2 n .
(1)求{an} 的通项公式;
(2)若 bn =
an2 2n1 an an1
g(x) sin(2x ), h(x) cos(x ) 的部分图像如图所示,则( )
5
7
ʹ ݏ˶ ,
Ǥ৹ 为 ˶ , 为 ˶ ,ʹ 为 ˶
Ǥ৹ 为 ˶ , 为 ⥰˶ሻ,ʹ 为 ⥰˶ሻ
Ǥ৹ 为 ˶ , 为 ⥰˶ሻ,ʹ 为 ⥰˶ሻ
Ǥ৹ 为 ˶ , 为 ⥰˶ሻ,ʹ 为 ⥰˶ሻ
9.下列命题正确的是( ) Ǥ若两条直线和同一个平面平行,则这两条直线平行 Ǥ若一直线与两个平面所成的角相等,则这两个平面平行 Ǥ若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行 Ǥ若两个平面垂直于同一个平面,则这两个平面平行
请考生在 22,23 题中任选一题作答,如果多做,则按所做的第一题计分。 22. (本小题满分 10)
角坐标系 ˶ 中,圆 C1 : (x 1)2 y2 1,圆 C2 : (x 2)2 y2 4 , 为极点,˶ 轴
的正半轴为极轴建立极坐标系.
(1)求圆 C1 , C2 的极坐标方程; (2)设 , 分别为 C1 , C2 上的点,若 OAB 为等边三角形,求 .
10. 已 知 (x 2)9 a0 a1x a2x2 a9x9 , 则 (a1 3a3 5a5 7a7 9a9 )2
(2a2 4a4 6a6 8a8 ) 2 的值为( )
A.39
B.310
C.311
D.312
11. 已知 ⥰˶ሻ为奇函数,函数 ⥰˶ሻ与 ⥰˶ሻ的图像关于直线 Ґ ˶
=( )
Ǥਣ⥰ ሺ ሻ
Ǥਣ⥰ ሺ⺁ሻ
Ǥਣ⥰ ሺ ሻ,⥰ ሺ⺁ሻ
Ǥ
2.在等比数列{an} 中, a2 a4 5, a3 a5 10 ,则 a7 ( )
Ǥh
Ǥ⺁
Ǥh
Ǥ⺁⺁
3.抛物线 y2 4x 上到其焦点的距离为 1 的点的个数为( )
Ǥㄴ
Ǥ
Ǥ
Ǥh
4.欧拉公式 eix cos x i sin x ( 为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数
(P(| X | ) 0.6826 , P(| X | 2 ) 0.9544 , P(| X | 3 ) 0.9974)
ǤㄴǤ⺁h⺁
ǤㄴǤ Ǥ⺁⺁
ǤㄴǤ ⺁
ǤㄴǤh⺁ h
6.已知非零单位向量
a,
b
满足
|
a
b
||
a
b
|
,则
a
与
b
a
的夹角为(
)
A.
B.
C.
D. 3
6
3
4
4
, Tn
为数列{bn} 的前
݅
项和,证明: Tn
1 2
.
19. (本小题满分 12 分)
已知圆 的方程为: (x 1)2 y2 1 ,与 轴相切的圆 与圆 相外切且圆 在
轴右侧,记圆心 的轨迹为 (1)求 的方程;
AF
(2)过 的直线与轨迹 交于 , 两点, 为坐标原点,若
Ґ
,求 的
BF
值
4 立了三角函数和指数的关系,它在复变函数论里占有非常重要
的地位,被誉为“数学家中的天桥”,根据欧拉公式可知, e4i 表示的复数在复平面中位于
() Ǥ第一象限
Ǥ第二象限
Ǥ第三象限
Ǥ第四象限
5.据统计,某城市的火车站春运期间日接送旅客人数 (单位:万)服从正态分布,
X ~ N(6, 0.82),则日接送人数在 6 万到 6.8 万之间的概率为( )