高中数学联赛组合专题

合集下载

高中数学联赛真题分类排列组合(原卷版)

高中数学联赛真题分类排列组合(原卷版)

现安排 7 名同学去参加 5 个运动项目,要求甲、乙两同学不能参加同一个

目,每个项目都有人参加,每人只参加一个项目,则满足上述要求的不同安排方案数为
(用数字
作答).
9.【2008 高中数学联赛(第 01 试)

将 24 个志愿者名额分配给 3 个学校,则每校至少有 1 个名额且各校名额 互
不相同的分配方法共有

三边均为整数,且最大边长为 11 的三角形,共有
个.
优质模拟题强化训练
1.乒乓球集训队有 10 名队员,每两人组成一对练球,其不同的组对方式共有(
A.972
B.945
C.864
)种.
D.891
2.已知�= 1,2, ⋅⋅⋅ , 216 , � ⊆ �.若集合�中任两个元素的和都不能被 6 整除,则集合�中元素的个数最多为
种.
10.【2007 高中数学联赛(第 01 试)

将 2 个 a 和 2 个 b 共 4 个字母填在如图所示的 16 个小方格内,每个小方 格
内至多填 1 个字母,若使相同字母既不同行也不同列,则不同的填法共有
种(用数字作答)
11.【2001 高中数学联赛(第 01 试)

在一个正六边形的六个区域栽种观赏植物(如图),要求同一场块中种同一
盒子中.一种放法称为"好的",如果 1 号盒子中的卡片数多于其他每个盒子中的卡片数.则"好的"放法共有
种.
5. 【2019 高中数学联赛 A 卷(第 01 试)

将 6 个数 2、0、1、9、20、19 按任意次序排成一行,拼成一个 8 位

(首位不为 0),则产生的不同的 8 位数的个数为

高中联赛排列组合的解法

高中联赛排列组合的解法

数学竞赛中的排列组合问题江苏省梁丰高级中学 (215600) 张伟新排列组合问题主要依据分类计数原理和分步计数原理,其本身应用的知识并不多,但 由于题目灵活多样,在各级各类考试中经常出现,在数学竞赛活动中尤其突出。

其解题方法 也多种多样,归纳起来,我们一般可用下面的方法来解决。

一、列举法:例1、从0、1、2、3、4、5、6、7、8、9这10个数中取出3个数,使其和为不小于10的 偶数,不同的取法有 。

(1998年全国高中数学联赛) 解:从10个数中取出3个数,使其和为偶数,则这三个数都为偶数或一个偶数二个 奇数。

当三个数都为偶数时,有35C 种取法;当有一个偶数二个奇数时,有15C 25C 种取法。

题意要使其和为不小于10。

我们把和为小于10的偶数列举出来,有如下9种不同取法: (0,1,3),(0,1,5),(0,1,7),(0,3,5),(0,2,4),(0,2,6),(1,2,3), (1,2,5),(1,3,4)。

因此,符合题设要求的取法有35C +15C 25C -9=51种。

例2、设ABCDEF 为正六边形,一只青蛙开始在顶点A 处,它每次可随意地跳到相邻两顶 点之一。

若在5次之内跳到D 点,则停止跳动;若5次之内不能到达D 点,则跳完5次也 停止跳动。

那么这只青蛙从开始到停止,可能出现的不同跳法共 种。

(1997年全国高中数学联赛)解:如图:青蛙不能经过跳1次、2次或4次到达D 点。

故青蛙的跳法只有下列两种:(1)青蛙跳3次到达D 点,有ABCD ,AFED 两种跳法。

(2)青蛙一共跳5次后停止,那么,前3次的跳法一定不到达D ,只能到达B 或F ,则共有AFEF ,AFAF ,ABAF ,ABCB ,ABAB ,AFAB 这6种跳法。

随后的两次跳法各有四种,比如由F出发的有:FEF ,FED ,FAF ,FAB 共4种。

因此这5次跳法共有 6⨯4=24种不同跳法。

∴一共有2+24=26种不同跳法。

高中数学联赛之历年真题分类汇编(2015-2021):专题38排列组合与图论第一缉(解析版)

高中数学联赛之历年真题分类汇编(2015-2021):专题38排列组合与图论第一缉(解析版)

.
【答案】ퟒퟒ
【解析】由 (� − ퟓ� + ퟑ − �ퟓ)� = (� + ퟑ)�( − ퟓ)� , 共有 (� + �)� 项,
所以 (� + �)� ≥ �ퟎ�� , 得 � ≥ �ퟎ�� − � , 则 �min = ퟒퟒ .
3.【2021 年广西预赛】某学校在不同时段开设了三门选修课,要求每位学生至少选择其中一门,则 A、B、C
个,四位正整数有 5× �ퟑ = �ퟎ�ퟎ 个,共有 1295 个:
万位数为 1,千位为 0,共 216 个; 万位数为 1,千位为 1,共 216 个; 万位数为 1,千位为 2,共 216 个;共 1943 个, 万位数为 1,千位为 3,百位是 0,1 各 36 个,共 72 个,一共 1943+72=2015 个,还差 6 个,百位是 2,个位取 0,1,2,3,4,5,所以第 2021 个数是 13205. 方法二:数码不超过 5 的数可以与一个六进制数建立一一对应关系,�ퟎ�� = � × �ퟒ + ퟑ × �ퟑ + � × �� +
且随时保证�� + �� + ⋯ + �� ≥ ퟎ(� = �, �, ⋯, �ퟎ�ퟎ) .
即为卡特兰数�ퟎ���
��ퟎ�ퟎ
�ퟎ�ퟎ
.
2.【2021 年浙江预赛】对于正整数� ,若(� − ퟓ� + ퟑ − �ퟓ)� 展开式经同类项合并,�� �(�, � =
ퟎ, �, ⋯, �) 合并后至少有 2021 项,则� 的最小值为
.
【答案】�ퟎ���
��ퟎ�ퟎ
�ퟎ�ퟎ
【解析】由�� + �� + ⋯ + ��ퟎ�ퟎ ≥ ퟎ, �� + �� + ⋯ + ��ퟎ�� =− �, ��ퟎ�� ∈ { − �, �} ,

高中数学排列组合专题练习题

高中数学排列组合专题练习题

高中数学排列组合专题练习题一、选择题1、从 5 名男同学和 4 名女同学中选出 3 名男同学和 2 名女同学,分别担任 5 种不同的职务,不同的选法共有()A 5400 种B 18000 种C 7200 种D 14400 种解析:第一步,从 5 名男同学中选出 3 名,有\(C_{5}^3\)种选法;第二步,从 4 名女同学中选出 2 名,有\(C_{4}^2\)种选法;第三步,将选出的 5 名同学进行排列,有\(A_{5}^5\)种排法。

所以不同的选法共有\(C_{5}^3 × C_{4}^2 × A_{5}^5 = 10×6×120 =7200\)种,故选 C。

2、有 5 本不同的书,其中语文书 2 本,数学书 2 本,物理书 1 本。

若将其并排摆放在书架的同一层上,则同一科目书都不相邻的放法种数是()A 24B 48C 72D 96解析:先排语文书有\(A_{2}^2 = 2\)种排法,再在语文书的间隔(含两端)处插数学书有\(A_{3}^2 = 6\)种插法,最后将物理书插入 4 个间隔中的一个有 4 种方法。

所以共有\(2×6×4 = 48\)种排法,故选 B。

3、从 0,1,2,3,4,5 这 6 个数字中,任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为()A 300B 216C 180D 162解析:分两类情况讨论:第一类:取出的偶数含 0。

偶数 0 和另外一个偶数的取法有\(C_{2}^1\)种,奇数的取法有\(C_{3}^2\)种。

0 在个位时,其他三个数字全排列,有\(A_{3}^3\)种;0 不在个位时,0 有 2 种位置,其他三个数字全排列,有\(2×A_{2}^1×A_{2}^2\)种。

此时共有\(C_{2}^1×C_{3}^2×(A_{3}^3 + 2×A_{2}^1×A_{2}^2) = 108\)种。

高中数学竞赛专题精讲30组合数学选讲(含答案).docx

高中数学竞赛专题精讲30组合数学选讲(含答案).docx

组合数学选讲合数学是中学数学的“重”,具有形式多,内容广泛的特点.本主要合数,合恒等式及合最展开例题讲解1.周上有 800 个点,依方向号 1,2,⋯ ,800 它将周分成 800 个隙 . 今定某一点染成色,然后按如下,逐次染其余的一些点:若第 k 号点染成了色,可依方向k 个隙,将所到达的点染成色,求周上最多可以得到多少个点?2.集合 X 的覆盖是指 X 的一族互不相同的非空子集∪⋯∪ A k =X ,有集合 X={1,2, ⋯ ,n} ,若不考少个?A 、A 、⋯、 A,它的并集 A ∪ A2 12k1A , A,⋯, Ak的序,求X 的覆盖有多123.已知集合X={1,2, ⋯ ,n} ,映射 f: X→ X,足所有的x∈ X ,均有 f(f(x))=x ,求的映射 f 的个数 .4. S {1,2, ⋯ ,n} 的一些子集族,且S 中任意两个集合互不包含,求:S 的元素个数的最n大n(Sperner 定理 )25. M={ 1,2,3, ⋯ ,2m n} (m,n N* )是 2m n 个正整数成的集合,求最小的正整数k,使得M 的任何 k 元子集中都存在 m+1 个数, a1,a2,⋯ a m+1,足 a i |a i+1 (i=1,2, ⋯,m).n 2n6.算k.k 1kq 7.明:k 0n m m nk q k(范德蒙公式 )q8.在平面上有n(≥3) 个点,其中任意两点的距离的最大d,我称距离 d 的两点的段点集的直径,明:直径的数目至多有n 条 .9 .已知:两个非整数成的不同集合{ a1 , a a , ,a n } 和 {b1 , b2 , ,b n } .求:集合{ a i a j 1 i j n} 与集合 { b i b j 1 i j n} 相同的充要条件是n 是 2 的次,里允集合内,相同的元素重复出.课后练习1. 空间 n 条直线,最多能把空间分成多少块空间区域? n2. 证明:k2n 2n .knn k n 1 1 1 3. 证明:( 1)k1k.k2n1 4. 证明:在边长为1 的等边三角形内有五个点,则这五个点中一定有距离小于的2两点 .例题答案:1.解:易,第 k 号点能被染的充要条件是j N * {0} ,使得 a0 2j k (mod800) , 1≤ k≤ 800①里 a0是最初染的点的号,求最大,不妨令a0=1.即 2j k (mod2 5× 52).当 j=0,1,2,3,4, k 分 1,2,4,8,16,又由于 2模 25的25 (2)20 ,因此,当j ≥52j+20 2j=2 j(220 1) 0(mod 800),而 k<20,k N*,及 j ≥ 5,j N*,由于 25+(2k1),所以2j+k 2j=2j(2k1)不 800的倍数 .所以,共存在5+20=25 个 k,足①式。

高中数学竞赛_组合【讲义】

高中数学竞赛_组合【讲义】

第十八章 组合一、方法与例题1.抽屉原理。

例1 设整数n ≥4,a 1,a 2,…,a n 是区间(0,2n)内n 个不同的整数,证明:存在集合{a 1,a 2,…,a n }的一个子集,它的所有元素之和能被2n 整除。

[证明] (1)若n ∉{a 1,a 2,…,a n },则n 个不同的数属于n-1个集合{1,2n-1},{2,2n-2},…,{n-1,n+1}。

由抽屉原理知其中必存在两个数a i ,a j (i ≠j)属于同一集合,从而a i +a j =2n 被2n 整除;(2)若n ∈{a 1,a 2,…,a n },不妨设a n =n ,从a 1,a 2,…,a n -1(n-1≥3)中任意取3个数a i , a j , a k (a i ,<a j < a k ),则a j -a i 与a k -a i 中至少有一个不被n 整除,否则a k -a i =(a k -a j )+(a j -a i )≥2n ,这与a k ∈(0,2n)矛盾,故a 1,a 2,…,a n-1中必有两个数之差不被n 整除;不妨设a 1与a 2之差(a 2-a 1>0)不被n 整除,考虑n 个数a 1,a 2,a 1+a 2,a 1+a 2+a 3,…,a 1+a 2+…+a n-1。

ⅰ)若这n 个数中有一个被n 整除,设此数等于k n ,若k 为偶数,则结论成立;若k 为奇数,则加上a n =n 知结论成立。

ⅱ)若这n 个数中没有一个被n 整除,则它们除以n 的余数只能取1,2,…,n-1这n-1个值,由抽屉原理知其中必有两个数除以n 的余数相同,它们之差被n 整除,而a 2-a 1不被n 整除,故这个差必为a i , a j , a k-1中若干个数之和,同ⅰ)可知结论成立。

2.极端原理。

例2 在n ×n 的方格表的每个小方格内写有一个非负整数,并且在某一行和某一列的交叉点处如果写有0,那么该行与该列所填的所有数之和不小于n 。

高中数学联赛组合专题

高中数学联赛组合专题

课程简介:全国高中数学联赛是中国高中数学学科的最高等级的数学竞赛,其地位远高于各省自行组织的数学竞赛。

在这项竞赛中取得优异成绩的全国约90名学生有资格参加由中国数学会主办的“中国数学奥林匹克〔CMO〕暨全国中学生数学冬令营〞。

优胜者可以自动获得各重点大学的保送资格。

各省赛区一等奖前6名可参加中国数学奥林匹克,获得进入国家集训队的机会。

中小学教育网重磅推出“全国高中数学联赛〞辅导课程,无论是有意向参加竞赛的初学者,还是已入围二试的竞赛选手,都有适合的课程提供。

本套课程由中国数学奥林匹克高级教练熊斌、人大附中数学教师李秋生等名师主讲,轻松突破你的数学极限!课程招生简章:选课中心地址:://member.g12e/selectcourse/commonCourse.shtm?courseeduid=170037#_170037_第二章组合专题一、重要的概念与定理1、完全图:每两个顶点之间均有边相连的简单图称为完全图,有个顶点的完全图〔阶完全图〕记为.2、顶点的度:图中与顶点相关联的边数〔环按2条边计算〕称为顶点的度〔或次数〕,记为.与分别表示图的顶点的最小度与最大度.度为奇数的顶点称为奇顶点,度为偶数的顶点称为偶顶点.3、树:没有圈的连通图称为树,用表示,其中度为1的顶点称为树叶〔或悬挂点〕.阶树常表示为.4、部图:若图的顶点集可以分解为个两两不相交的非空子集的并,即并且同一子集内任何两个顶点没有边相连,则称这样的图为部图,记作. 2部图又叫做偶图,记为.5、完全部图:在一个部图中, ,若对任意均有边连接和,则称图为完全部图,记为.6、欧拉迹:包含图中所有边的迹称为欧拉迹.起点与终点重合的欧拉迹称为闭欧拉迹.欧拉图:包含欧拉迹的图为欧拉图. 欧拉图必是连通图.哈密顿链〔圈〕:经过图上各顶点一次并且仅仅一次的链〔圈〕称为哈密顿链〔圈〕.包含哈密顿圈的图称为哈密顿图.7、平面图:若一个图可画在平面上,即可作一个与同构的图,使的顶点与边在同一平面内,且任意两边仅在端点相交,则图称为平面图.一个平面图的顶点和边把一个平面分成若干个互相隔开的区域,称为平面图的一个面,在所有边的外面的面称为外部面,其余的称为内部面.8、竞赛图:有向完全简单图称为竞赛图.有个顶点的竞赛图记作.9、有向路:在有向图中,一个由不同的弧组成的序列,其中的起点为,终点为,称这个序列为从到的有向路〔简称路〕,为这个路的长,为路的起点,为路的终点.若,则称这个路为回路.定理1设是阶图,则中个顶点的度之和为边数的2倍.定理2对于任意图,奇顶点的个数一定是偶数.定理3〔Turan定理〕有个顶点且不含三角形的图的最大边数为.定理4图为偶图,当且仅当中不含长度为奇数的圈.定理5若树的顶点数,则中至少有两个树叶.定理6若数有个顶点,则的边数.定理7 设是有个顶点、条边的图,则下列命题等价:⑴ 图是树; ⑵ 图无圈,且; ⑶ 图连通,且.定理8阶连通图中以树的边数最少,且阶连通图必有一个子图是树.定理9〔一笔画定理〕有限图是一条链或圈〔可以一笔画成〕的充要条件是是连通的,且奇顶点的个数为0或2. 当且仅当奇顶点个数为0时,连通图是一个圈.定理10在偶图中,若,则一定无哈密顿圈.若与的差大于1,则一定无哈密顿链.定理11设是阶简单图,且对每一对顶点有,则图有哈密顿链.定理12设是阶简单图,且对每一对不相邻的顶点有,则图有哈密顿圈.定理13设是阶简单图,若每个顶点的度,则图有哈密顿圈.定理14若图有哈密顿圈,从中去掉若干个点与与它们关联的边得到图,则图的连通分支不超过个.定理15〔欧拉公式〕若一个连通的平面图有个顶点、条边、个面,则.定理16一个连通的平面简单图有个顶点、条边,则,对于连通的偶图,则有 .定理17一个图是平面图当且仅当它不包含同胚于或的子图.定理18设阶竞赛图的顶点为,则,且.定理19竞赛图中出度最大的点称为“优点〞,“优点〞到其余各点都有长度不超过2的链.定理20 竞赛图中存在一条长为的哈密顿路.定理21竞赛图中有一个回路是三角形的充要条件是有两个顶点满足.定理22〔Ramsey定理〕任意2色完全图中必存在同色三角形.二、例题选讲例1 、某天晚上21个人之间通了 ,有人发现这21人共通话102次,且每两人至多通话一次.他还发现,存在个人,第1个人与第2个人通了话,第2个人与第3个人通了话,……, 第个人与第个人通了话,第个人又与第1个人通了话,他不肯透露的具体值,只说是奇数.求证: 21个人中必存在3人,他们两两通了话.例2、45个校友聚会,在这些人中,任意两个熟人数目相同的校友互不认识.问在参加校友聚会的所有人中,熟人最多的人的数目最多是多少?1.平面上的n〔≥ 4〕个点中,任何4个点都是凸四边形的顶点。

高中数学排列组合专项练习(后附答案)

高中数学排列组合专项练习(后附答案)

排列组合一、知识点讲解1.排列与组合的概念2.排列数与组合数(1)排列数的定义:从n 个不同元素中取出m (m ≤n )个元素的________的个数,叫做从n 个不同元素中取出m 个元素的排列数,用____表示.(2)组合数的定义:从n 个不同元素中取出m (m ≤n )个元素的________的个数,叫做从n 个不同元素中取出m 个元素的组合数,用____表示.3.排列数、组合数的公式及性质)(!n m m −+)m n n n C C =二、课堂练习题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)所有元素完全相同的两个排列为相同排列. ( ) (2)一个组合中取出的元素讲究元素的先后顺序. ( ) (3)两个组合相同的充要条件是其中的元素完全相同. ( ) (4)(n +1)!-n !=n ·n !.( )(5)若组合式C x n =C mn ,则x =m 成立. ( ) (6)k C k n =n C k -1n -1.( )题组二 教材改编2.[P29习题T5]6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为________.3.[P16例7]用数字1,2,3,4,5组成无重复数字的四位数,其中偶数的个数为________.题组三易错自纠4.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有_______种.5.为发展国外孔子学院,教育部选派6名中文教师到泰国、马来西亚、缅甸任教中文,若每个国家至少去一人,则不同的选派方案种数为________.6.寒假里5名同学结伴乘动车外出旅游,实名制购票,每人一座,恰在同一排A,B,C,D,E五个座位(一排共五个座位),上车后五人在这五个座位上随意坐,则恰有一人坐对与自己车票相符座位的坐法有______种. (用数字作答)三、课中讲解题型一排列问题1.某高三毕业班有40人,同学之间两两彼此给对方写一条毕业留言,那么全班共写了_______条毕业留言. (用数字作答)2.用1,2,3,4,5,6组成一个无重复数字的六位数,要求三个奇数1,3,5有且只有两个相邻,则不同的排法种数为________.3.在1,2,3,4,5,6,7的任一排列a1,a2,a3,a4,a5,a6,a7中,使相邻两数都互质的排列种数为________.排列应用问题的分类与解法(1)对于有限制条件的排列问题,分析问题时有位置分析法、元素分析法,在实际进行排列时一般采用特殊元素优先原则,即先安排有限制条件的元素或有限制条件的位置,对于分类过多的问题可以采用间接法.(2)对相邻问题采用捆绑法、不相邻问题采用插空法、定序问题采用倍缩法是解决有限制条件的排列问题的常用方法.题型二组合问题例1.某市工商局对35种商品进行抽样检查,已知其中有15种假货. 现从35种商品中选取3种.(1)其中某一种假货必须在内,不同的取法有多少种?(2)其中某一种假货不能在内,不同的取法有多少种?(3)恰有2种假货在内,不同的取法有多少种?(4)至少有2种假货在内,不同的取法有多少种?(5)至多有2种假货在内,不同的取法有多少种?组合问题常有以下两类题型变化:(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“至多”含有几个元素的组合题型:解这类题必须十分重视“至少”与“至多”这两个关键词的含义,谨防重复与漏解. 用直接法和间接法都可以求解,通常用直接法分类复杂时,考虑逆向思维,用间接法处理.练1.在某校2017年举办的第32届秋季运动会上,甲、乙两位同学从四个不同的运动项目中各选两个项目报名,则甲、乙两位同学所选的项目中至少有1个不相同的选法种数为________.练2.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有________种.题型三排列与组合问题的综合应用命题点1相邻、相间及特殊元素(位置)问题例1.在高三某班进行的演讲比赛中,共有5位选手参加,其中3位女生,2位男生,如果2位男生不能连续出场,且女生甲不能排第一个,那么出场的顺序的排法种数为________.例2.大数据时代出现了滴滴打车服务,二胎政策的放开使得家庭中有两个孩子的现象普遍存在. 某城市关系要好的A,B,C,D四个家庭各有两个孩子共8人,他们准备使用滴滴打车软件,分乘甲、乙两辆汽车出去游玩,每车限坐4名(乘同一辆车的4个孩子不考虑位置),其中A家庭的孪生姐妹需乘同一辆车,则乘坐甲车的4个孩子恰有2个来自于同一个家庭的乘坐方式共有________种.命题点2分组与分配问题例1.国家教育部为了发展贫困地区教育,在全国重点师范大学免费培养教育专业师范生,毕业后要分到相应的地区任教. 现有6个免费培养的教育专业师范毕业生要平均分到3所学校去任教,有_____种不同的分派方法.例2.有4名优秀学生A,B,C,D全部被保送到甲、乙、丙3所学校,每所学校至少去一名,则不同的保送方案共有________种.(1)解排列、组合问题要遵循的两个原则①按元素(位置)的性质进行分类;②按事情发生的过程进行分步. 具体地说,解排列、组合问题常以元素(位置)为主体,即先满足特殊元素(位置),再考虑其他元素(位置).(2)分组、分配问题的求解策略①对不同元素的分配问题a.对于整体均分,解题时要注意分组后,不管它们的顺序如何,都是一种情况,所以分组后一定要除以A n n(n为均分的组数),避免重复计数.b.对于部分均分,解题时注意重复的次数是均匀分组的阶乘数,即若有m组元素个数相等,则分组时应除以m!,分组过程中有几个这样的均匀分组,就要除以几个这样的全排列数.c.对于不等分组,只需先分组,后排列,注意分组时任何组中元素的个数都不相等,所以不需要除以全排列数.②对于相同元素的“分配”问题,常用方法是采用“隔板法”.练1.(2017·全国Ⅱ改编)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有________种.练2.(2017·浙江)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,则共有________种不同的选法. (用数字作答)练3.把5件不同的产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有________种.四、课后练习1.从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lg a-lg b的不同值的个数是________.2.有5本不同的书,其中语文书3本,数学书2本,若将它们随机并排摆放到书架的同一层上,则同一科目的书都不相邻的摆放方法数为________.3.某小区有排成一排的7个车位,现有3辆不同型号的车需要停放,如果要求剩余的4个车位连在一起,那么不同的停放方法的种数为________.4.方程ay=b2x2+c中的a,b,c∈{-3,-2,0,1,2,3},且a,b,c互不相同. 在所有这些方程所表示的曲线中,不同的抛物线共有________条.5.有A,B,C,D,E五位学生参加网页设计比赛,决出了第一到第五的名次. A,B两位学生去问成绩,老师对A说:你的名次不知道,但肯定没得第一名;又对B说:你是第三名. 请你分析一下,这五位学生的名次排列的种数为________.6.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为________.7.若把英语单词“good”的字母顺序写错了,则可能出现的错误方法共有________种. (用数字作答)8. 在8张奖券中有一、二、三等奖各1张,其余5张无奖. 将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种. (用数字作答)9. 某医院拟派2名内科医生,3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生,外科医生和护士,则不同的分配方案有______种.10. 用数字0,1,2,3,4组成的五位数中,中间三位数字各不相同,但首末两位数字相同的共有_____个.11. 某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是________.12. 某宾馆安排A,B,C,D,E五人入住3个房间,每个房间至少住1人,且A,B不能住同一房间,则共有________种不同的安排方法. (用数字作答)13. 7人站成两排队列,前排3人,后排4人,现将甲、乙、丙三人加入队列,前排加一人,后排加两人,其他人保持相对位置不变,则不同的加入方法的种数为________.14. 将标号为1,2,3,4,5的五个球放入3个不同的盒子中,每个盒子至少有一个球,则一共有________种放法.15. 在第二届乌镇互联网大会中,为了提高安保的级别同时又为了方便接待,现为其中的五个参会国的人员安排酒店,这五个参会国的人员要在a,b,c三家酒店中任选一家,且这三家都至少有一个参会国的人员入住,则这样的安排方法共有________种.16. 设三位数n=abc,若以a,b,c为三条边的长可以构成一个等腰(含等边)三角形,则这样的三位数n有多少个?排列组合一、知识点讲解1.排列与组合的概念2.排列数与组合数(1)排列数的定义:从n 个不同元素中取出m (m ≤n )个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用.(2)组合数的定义:从n 个不同元素中取出m (m ≤n )个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用.3.排列数、组合数的公式及性质)(!n m m −+C m -1n__ 二、课堂练习题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)所有元素完全相同的两个排列为相同排列. ()(2)一个组合中取出的元素讲究元素的先后顺序. ( ) (3)两个组合相同的充要条件是其中的元素完全相同. ( )(4)(n +1)!-n !=n ·n !.( )(5)若组合式C x n =C mn ,则x =m 成立. ( ) (6)k C k n =n C k -1n -1.( )【答案】×;×;√;√;×;√题组二教材改编2. [P29习题T5]6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为________.【答案】24“插空法”,先排3个空位,形成4个空隙供3人选择就座,因此任何两人不相邻的坐法种数为A34=4×3×2=24.3. [P16例7]用数字1,2,3,4,5组成无重复数字的四位数,其中偶数的个数为________.【答案】48末位数字排法有A12种,其他位置排法有A34种,共有A12A34=48(种)排法,所以偶数的个数为48.题组三易错自纠4. 六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有_______种. 【答案】216第一类:甲在左端,有A55=5×4×3×2×1=120(种)排法;第二类:乙在最左端,甲不在最右端,有4A44=4×4×3×2×1=96(种)排法.所以共有120+96=216(种)排法.5. 为发展国外孔子学院,教育部选派6名中文教师到泰国、马来西亚、缅甸任教中文,若每个国家至少去一人,则不同的选派方案种数为________.【答案】540②一个国家派3名,一个国家派2名,一个国家派1名,有C36C23C11A33=360(种);③每个国家各派6. 寒假里5名同学结伴乘动车外出旅游,实名制购票,每人一座,恰在同一排A,B,C,D,E五个座位(一排共五个座位),上车后五人在这五个座位上随意坐,则恰有一人坐对与自己车票相符座位的坐法有______种. (用数字作答)【答案】45设5名同学也用A,B,C,D,E来表示,若恰有一人坐对与自己车票相符的坐法,设E同学坐在自己的座位上,则其他四位都不坐自己的座位,则有BADC,BDAC,BCDA,CADB,CDAB,CDBA,DABC,DCAB,DCBA,共9种坐法,则恰有一人坐对与自己车票相符座位的坐法有9×5=45(种).三、课中讲解题型一排列问题1. 某高三毕业班有40人,同学之间两两彼此给对方写一条毕业留言,那么全班共写了_______条毕业留言. (用数字作答)【答案】1 560由题意知两两彼此给对方写一条毕业留言相当于从40人中任选两人的排列数,所以全班共写了A240=40×39=1 560(条)留言.2. 用1,2,3,4,5,6组成一个无重复数字的六位数,要求三个奇数1,3,5有且只有两个相邻,则不同的排法种数为________.【答案】432根据题意,分三步进行:第一步,先将1,3,5分成两组,共C23A22种排法;第二步,将2,4,6排成一排,共A33种排法;第三步,将两组奇数插入三个偶数形成的四个空位,共A24种排法. 综上,共有C23A22A33 A24=3×2×6×12=432(种)排法.3. 在1,2,3,4,5,6,7的任一排列a1,a2,a3,a4,a5,a6,a7中,使相邻两数都互质的排列种数为________. 【答案】864解析先把数字1,3,5,7作全排列,有A44=24种排法,再排数字6,由于数字6不与3相邻,在排好的排列中,除去3的左、右2个空隙,还有3个空隙可排数字6,故数字6有3种排法,最后排数字2,4,又数字2,4不与6相邻,故在剩下的4个空隙中排上2,4,有A24种排法,故共有A44×3×A24=864(种)排法.排列应用问题的分类与解法(1)对于有限制条件的排列问题,分析问题时有位置分析法、元素分析法,在实际进行排列时一般采用特殊元素优先原则,即先安排有限制条件的元素或有限制条件的位置,对于分类过多的问题可以采用间接法.(2)对相邻问题采用捆绑法、不相邻问题采用插空法、定序问题采用倍缩法是解决有限制条件的排列问题的常用方法.题型二组合问题例1.某市工商局对35种商品进行抽样检查,已知其中有15种假货. 现从35种商品中选取3种.(1)其中某一种假货必须在内,不同的取法有多少种?(2)其中某一种假货不能在内,不同的取法有多少种?(3)恰有2种假货在内,不同的取法有多少种?(4)至少有2种假货在内,不同的取法有多少种?(5)至多有2种假货在内,不同的取法有多少种?【答案】(1)从余下的34种商品中,选取2种有C234=561种取法,∴某一种假货必须在内的不同取法有561种.(2)从34种可选商品中,选取3种,有C334种或者C335-C234=C334=5 984种取法.∴某一种假货不能在内的不同取法有5 984种.(3)从20种真货中选取1种,从15种假货中选取2种有C120C215=2 100种取法.∴恰有2种假货在内的不同的取法有2 100种.(4)选取2种假货有C120C215种,选取3种假货有C315种,共有选取方式C120C215+C315=2 100+455=2 555(种).∴至少有2种假货在内的不同的取法有2 555种.(5)方法一(间接法)选取3种的总数为C335,因此共有选取方式C335-C315=6 545-455=6 090(种).∴至多有2种假货在内的不同的取法有6 090种.方法二(直接法)选取3种真货有C320种,选取2种真货有C220C115种,选取1种真货有C120C215种,因此共有选取方式C320+C220C115+C120C215=6 090(种).∴至多有2种假货在内的不同的取法有6 090种.组合问题常有以下两类题型变化:(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“至多”含有几个元素的组合题型:解这类题必须十分重视“至少”与“至多”这两个关键词的含义,谨防重复与漏解. 用直接法和间接法都可以求解,通常用直接法分类复杂时,考虑逆向思维,用间接法处理.练1.在某校2017年举办的第32届秋季运动会上,甲、乙两位同学从四个不同的运动项目中各选两个项目报名,则甲、乙两位同学所选的项目中至少有1个不相同的选法种数为________.【答案】30因为甲、乙两位同学从四个不同的项目中各选两个项目的选法有C24C24种.其中甲、乙所选的项目完全相同的选法有C24种,所以甲、乙所选的项目中至少有1个不相同的选法共有C24C24-C24=30(种).练2.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有________种. 【答案】66共有4个不同的偶数和5个不同的奇数,要使和为偶数,则4个数全为奇数,或全为偶数,或2个奇数和2个偶数,故不同的取法有C45+C44+C25C24=66(种).题型三排列与组合问题的综合应用命题点1相邻、相间及特殊元素(位置)问题例1.在高三某班进行的演讲比赛中,共有5位选手参加,其中3位女生,2位男生,如果2位男生不能连续出场,且女生甲不能排第一个,那么出场的顺序的排法种数为________.【答案】602位男生不能连续出场的排法共有N1=A33×A24=72(种),女生甲排第一个且2位男生不连续出场的排法共有N2=A22×A23=12(种),所以出场顺序的排法种数为N=N1-N2=60.例2.大数据时代出现了滴滴打车服务,二胎政策的放开使得家庭中有两个孩子的现象普遍存在. 某城市关系要好的A,B,C,D四个家庭各有两个孩子共8人,他们准备使用滴滴打车软件,分乘甲、乙两辆汽车出去游玩,每车限坐4名(乘同一辆车的4个孩子不考虑位置),其中A家庭的孪生姐妹需乘同一辆车,则乘坐甲车的4个孩子恰有2个来自于同一个家庭的乘坐方式共有________种.【答案】24根据题意,分两种情况讨论:①A家庭的孪生姐妹在甲车上,甲车上另外的两个孩子要来自不同的家庭,可以在剩下的三个家庭中任选2个,再从每个家庭的2个孩子中任选一个来乘坐甲车,有C23×C12×C12=12(种)乘坐方式;②A家庭的孪生姐妹不在甲车上,需要在剩下的三个家庭中任选1个,让其2个孩子都在甲车上,对于剩余的两个家庭,从每个家庭的2个孩子中任选一个来乘坐甲车,有C13×C12×C12=12(种)乘坐方式,故共有12+12=24(种)乘坐方式.命题点2分组与分配问题例1.国家教育部为了发展贫困地区教育,在全国重点师范大学免费培养教育专业师范生,毕业后要分到相应的地区任教. 现有6个免费培养的教育专业师范毕业生要平均分到3所学校去任教,有________种不同的分派方法.【答案】90例2.有4名优秀学生A,B,C,D全部被保送到甲、乙、丙3所学校,每所学校至少去一名,则不同的保送方案共有________种.【答案】36则共有6×6=36(种)不同的保送方案.(1)解排列、组合问题要遵循的两个原则①按元素(位置)的性质进行分类;②按事情发生的过程进行分步. 具体地说,解排列、组合问题常以元素(位置)为主体,即先满足特殊元素(位置),再考虑其他元素(位置).(2)分组、分配问题的求解策略①对不同元素的分配问题a. 对于整体均分,解题时要注意分组后,不管它们的顺序如何,都是一种情况,所以分组后一定要除以A n n(n为均分的组数),避免重复计数.b. 对于部分均分,解题时注意重复的次数是均匀分组的阶乘数,即若有m组元素个数相等,则分组时应除以m!,分组过程中有几个这样的均匀分组,就要除以几个这样的全排列数.c. 对于不等分组,只需先分组,后排列,注意分组时任何组中元素的个数都不相等,所以不需要除以全排列数.②对于相同元素的“分配”问题,常用方法是采用“隔板法”.练1.(2017·全国Ⅱ改编)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有________种.【答案】36由题意可知,其中1人必须完成2项工作,其他2人各完成1项工作,可得安排方式为C13·C24·A22=练2.(2017·浙江)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,则共有________种不同的选法. (用数字作答)【答案】660方法一只有1名女生时,先选1名女生,有C12种方法;再选3名男生,有C36种方法;然后排队长、副队长位置,有A24种方法. 由分步计数原理知,共有C12C36A24=480(种)选法.有2名女生时,再选2名男生,有C26种方法;然后排队长、副队长位置,有A24种方法. 由分步计数原理知,共有C26A24=180(种)选法. 所以依据分类计数原理知,共有480+180=660(种)不同的选法.方法二不考虑限制条件,共有A28C26种不同的选法,而没有女生的选法有A26C24种,故至少有1名女生的选法有A28C26-A26C24=840-180=660(种).练3.把5件不同的产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有________种.【答案】36将产品A与B捆绑在一起,然后与其他三种产品进行全排列,共有A22A44种方法,将产品A,B,C 捆绑在一起,且A在中间,然后与其他两种产品进行全排列,共有A22A33种方法. 于是符合题意的摆法共有A22A44-A22A33=36(种).四、课后练习1.从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lg a-lg b的不同值的个数是________.【答案】18为A25-2=18.2. 有5本不同的书,其中语文书3本,数学书2本,若将它们随机并排摆放到书架的同一层上,则同一科目的书都不相邻的摆放方法数为________.【答案】12A33A22=12.3. 某小区有排成一排的7个车位,现有3辆不同型号的车需要停放,如果要求剩余的4个车位连在一起,那么不同的停放方法的种数为________.【答案】24将4个车位捆绑在一起,看成一个元素,先排3辆不同型号的车,在3个车位上任意排列,有A33=6种排法,再将捆绑在一起的4个车位插入4个空档中,有4种方法,故共有4×6=24(种)方法.4. 方程ay=b2x2+c中的a,b,c∈{-3,-2,0,1,2,3},且a,b,c互不相同. 在所有这些方程所表示的曲线中,不同的抛物线共有________条.【答案】62a,b均不为0,且b取互为相反数的两数时抛物线相同,故分a取1与a不取1两类:①a取1时,b2取值为4,9两类,当b2=4和b2=9时,c都有5种情况,此时有2×5=10(种);②a不取1时有C14种,不妨设a取2,则b2取值有1,4,9三类,当b2=1时,c有4种,当b2=4时,c有4种,当b2=9时,c有5种,此时有C14(4+4+5)=52(条)不同的抛物线.故共有10+52=62(种)不同的抛物线.5. 有A,B,C,D,E五位学生参加网页设计比赛,决出了第一到第五的名次. A,B两位学生去问成绩,老师对A说:你的名次不知道,但肯定没得第一名;又对B说:你是第三名. 请你分析一下,这五位学生的名次排列的种数为________.【答案】18由题意知,名次排列的种数为C13A33=18.6. 用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为________.【答案】72由题可知,五位数要为奇数,则个位数只能是1,3,5.分为两步:先从1,3,5三个数中选一个作为个位数有C13种选法,再将剩下的4个数字排列有A44种排法,则满足条件的五位数有C13·A44=72(个).7. 若把英语单词“good”的字母顺序写错了,则可能出现的错误方法共有________种. (用数字作答)【答案】11把g,o,o,d 4个字母排一列,可分两步进行,第一步:排g和d,共有A24种排法;第二步:排两个o,共1种排法,所以总的排法种数为A24=12.其中正确的有一种,所以错误的共有A24-1=12-1=11(种).8. 在8张奖券中有一、二、三等奖各1张,其余5张无奖. 将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种. (用数字作答)【答案】60分两类:第一类:3张中奖奖券分给3个人,共A34种分法;第二类:3张中奖奖券分给2个人相当于把3张中奖奖券分两组再分给4人中的2人,共有C23A24种分法.总获奖情况共有A34+C23A24=60(种).9. 某医院拟派2名内科医生,3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生,外科医生和护士,则不同的分配方案有______种.【答案】362名内科医生的分法为A22,3名外科医生与3名护士的分法为C23C13+C13C23,共有A22(C23C13+C13C23)=36(种)不同的分法.10. 用数字0,1,2,3,4组成的五位数中,中间三位数字各不相同,但首末两位数字相同的共有________个.【答案】240由题意,知本题是一个分步计数问题,从1,2,3,4四个数中选取一个有四种选法,接着从这五个数中选取3个在中间三个位置排列,共有A35=60个,根据分步计数原理知,有60×4=240(个).11. 某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是________.【答案】120先安排小品节目和相声节目,然后让歌舞节目去插空. 安排小品节目和相声节目的顺序有三种:“小品1,小品2,相声”,“小品1,相声,小品2”和“相声,小品1,小品2”. 对于第一种情况,形式为“□小品1歌舞1小品2□相声□”,有A22C13A23=36(种)安排方法;同理,第三种情况也有36种安排方法,对于第二种情况,三个节目形成4个空,其形式为“□小品1□相声□小品2□”,有A22A34=48(种)安排方法. 由分类计数原理知,共有36+36+48=120(种)安排方法.12. 某宾馆安排A,B,C,D,E五人入住3个房间,每个房间至少住1人,且A,B不能住同一房间,则共有________种不同的安排方法. (用数字作答)【答案】1145个人住3个房间,每个房间至少住1人,则有(3,1,1)和(2,2,1)两种,当为(3,1,1)时,有C35·A33=90种,A,B住同一房间有C23·A33=18种,故有90-18=72(种),根据分类计数原理可知,共有42+72=114(种).13. 7人站成两排队列,前排3人,后排4人,现将甲、乙、丙三人加入队列,前排加一人,后排加两人,其他人保持相对位置不变,则不同的加入方法的种数为________.【答案】360前排3人有4个空,从甲、乙、丙3人中选1人插入,有C14C13种方法,对于后排,若插入的2人不相邻,有A25种方法;若相邻,有C15A22种,故共有C14C13(A25+C15A22)=360(种).14. 将标号为1,2,3,4,5的五个球放入3个不同的盒子中,每个盒子至少有一个球,则一共有________种放法.【答案】150标号为1,2,3,4,5的五个球放入3个不同的盒子中,每个盒子至少有一个球,故可分成(3,1,1)和(2,2,1)15. 在第二届乌镇互联网大会中,为了提高安保的级别同时又为了方便接待,现为其中的五个参会国的人员安排酒店,这五个参会国的人员要在a,b,c三家酒店中任选一家,且这三家都至少有一个参会国的人员入住,则这样的安排方法共有________种.【答案】150这三家酒店入住的参会国数目有以下两种可能:满足题意的安排方法共有90+60=150(种).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程简介:全国高中数学联赛是中国高中数学学科的最高等级的数学竞赛,其地位远高于各省自行组织的数学竞赛。

在这项竞赛中取得优异成绩的全国约90名学生有资格参加由中国数学会主办的“中国数学奥林匹克(CMO)暨全国中学生数学冬令营”。

优胜者可以自动获得各重点大学的保送资格。

各省赛区一等奖前6名可参加中国数学奥林匹克,获得进入国家集训队的机会。

中小学教育网重磅推出“全国高中数学联赛”辅导课程,无论是有意向参加竞赛的初学者,还是已入围二试的竞赛选手,都有适合的课程提供。

本套课程由中国数学奥林匹克高级教练熊斌、人大附中数学教师李秋生等名师主讲,轻松突破你的数学极限!
课程招生简章:/webhtml/project/liansaigz.shtml
选课中心地址:
/selectcourse/commonCourse.shtm?courseeduid=170037#_170037_
第二章组合专题
一、重要的概念与定理
1、完全图:每两个顶点之间均有边相连的简单图称为完全图,有个顶点的完全图(阶完全图)记为.
2、顶点的度:图中与顶点相关联的边数(环按2条边计算)称为顶点的度(或次数),
记为.与分别表示图的顶点的最小度与最大度.度为奇数的顶点称为奇顶点,度
为偶数的顶点称为偶顶点.
3、树:没有圈的连通图称为树,用表示,其中度为1的顶点称为树叶(或悬挂点).阶树常表示为.
4、部图:若图的顶点集可以分解为个两两不相交的非空子集的并,即
并且同一子集内任何两个顶点没有边相连,则称这样的图为部图,记作
. 2部图又叫做偶图,记为.
5、完全部图:在一个部图中, ,若对任意
均有边连接和,则称图为完全部图,记为.
6、欧拉迹:包含图中所有边的迹称为欧拉迹.起点与终点重合的欧拉迹称为闭欧拉迹.
欧拉图:包含欧拉迹的图为欧拉图. 欧拉图必是连通图.
哈密顿链(圈):经过图上各顶点一次并且仅仅一次的链(圈)称为哈密顿链(圈).包含哈密顿圈的图称为哈密顿图.
7、平面图:若一个图可画在平面上,即可作一个与同构的图,使的顶点与边在同一
平面内,且任意两边仅在端点相交,则图称为平面图.
一个平面图的顶点和边把一个平面分成若干个互相隔开的区域,称为平面图的一个面,在所有边的外面的面称为外部面,其余的称为内部面.
8、竞赛图:有向完全简单图称为竞赛图.有个顶点的竞赛图记作.
9、有向路:在有向图中,一个由不同的弧组成的序列,其中的起点为
,终点为,称这个序列为从到的有向路(简称路),为这个路的长,为路的起点,为路的终点.若,则称这个路为回路.
定理1设是阶图,则中个顶点的度之和为边数的2倍.
定理2对于任意图,奇顶点的个数一定是偶数.
定理3(Turan定理)有个顶点且不含三角形的图的最大边数为.
定理4图为偶图,当且仅当中不含长度为奇数的圈.
定理5若树的顶点数,则中至少有两个树叶.
定理6若数有个顶点,则的边数.
定理7 设是有个顶点、条边的图,则下列命题等价:
⑴ 图是树; ⑵ 图无圈,且; ⑶ 图连通,且.
定理8阶连通图中以树的边数最少,且阶连通图必有一个子图是树.
定理9(一笔画定理)有限图是一条链或圈(可以一笔画成)的充要条件是是连通的,且奇顶点的个数为0或2. 当且仅当奇顶点个数为0时,连通图是一个圈.
定理10在偶图中,若,则一定无哈密顿圈.若与的差大于1,则一定无哈密顿链.
定理11设是阶简单图,且对每一对顶点有,则图有哈密顿链.
定理12设是阶简单图,且对每一对不相邻的顶点有,则图
有哈密顿圈.
定理13设是阶简单图,若每个顶点的度,则图有哈密顿圈.
定理14若图有哈密顿圈,从中去掉若干个点及与它们关联的边得到图,则图的连通分支不超过个.
定理15(欧拉公式)若一个连通的平面图有个顶点、条边、个面,则.
定理16一个连通的平面简单图有个顶点、条边,则,对于连通的偶图,则有 .
定理17一个图是平面图当且仅当它不包含同胚于或的子图.
定理18设阶竞赛图的顶点为,则,且
.
定理19竞赛图中出度最大的点称为“优点”,“优点”到其余各点都有长度不超过2的链.
定理20 竞赛图中存在一条长为的哈密顿路.
定理21竞赛图中有一个回路是三角形的充要条件是有两个顶点满足
.
定理22(Ramsey定理)任意2色完全图中必存在同色三角形.
二、例题选讲
例1 、某天晚上21个人之间通了电话,有人发现这21人共通话102次,且每两人至多通话一次.他还发现,存在个人,第1个人与第2个人通了话,第2个人与第3个人通了话,……, 第个
人与第个人通了话,第个人又与第1个人通了话,他不肯透露的具体值,只说是奇数.求证: 21个人中必存在3人,他们两两通了话.
例2、45个校友聚会,在这些人中,任意两个熟人数目相同的校友互不认识.问在参加校友聚会的所有人中,熟人最多的人的数目最多是多少?
1.平面上的n(≥ 4)个点中,任何4个点都是凸四边形的顶点。

证明这n个点是一个凸n边形的顶点。

2.平面上有两条线段AB和CD使得ABDC是平行四边形。

我想把AB在平面上(连续地)移动直到A与C重合,B与D重合。

证明:不管这两条线段多长,也不管它们相距多远,我总可以使得在平移的过程中AB扫过的总面积小于1。

3.证明:平面上任意n(正整数)个点能被满足下列条件的有限个圆盘(圆盘包含边界)覆盖:它们直径之和小于n,而且任何两个圆盘之间的距离(指这两个圆盘上各取一点的最小距离)都大于1。

4.在平面直角坐标系中,求所有满足下列条件的过原点的直线l:对于任意实数a,b以及d > 0,都存在整数m,n和l上的点P使得(a + m,b + n)和P的距离小于d。

5.证明:任给正整数n,总存在正整数K使得下面的结论成立:如果平面上K个点中没有三点共线,那么这些点中必定存在n个点是一个凸n边形的顶点。

6.一个矩形R被切成了若干个(内部不相交的而且拼起来恰好是整个R的)小矩形,这些小矩形的边都与R的边平行或垂直,而且每个小矩形至少有一条边长为整数。

证明:R也至少有一条边长为整数。

7.平面上的点集S中有有限个不全共线的点,它们被染成红和蓝两种颜色。

证明:存在一条直线使得它过S中至少两个点,而且S中在这条直线上的所有点都是同一种颜色。

1.试求n项的没有两个或以上连续的0的0,1序列的个数。

2.m,n是正整数.证明:每个由mn+1个不同实数组成的数列一定有一个(m+1)项递增子序列或者一个(n+1)项递减子序列。

3.正整数n的一个分拆是指把n分成若干个正整数(不计次序)之和.证明对于任意正整数n,n 的分成每部分都是奇数的分拆个数等于n的分成每部分互不相同的分拆个数。

4.n是给定正整数.将n个黑子和n个白子任意放在一个圆周上.从某个白子起,按顺时针方向依次将全体白子标上1,2,…,n,再从某个黑子起,按逆时针方向依次将全体黑子标上1,2,…,n.证明:在圆周上必可以找到连续n个棋子,使得它们标号所成的集合恰好为{1,2,…,n}。

5.设n和k是正整数,且(k - n)是非负偶数.有2n盏灯依次编号为1,2,…,2n,每一盏灯可以开和关.开始时所有的灯都是关的, 现在要对这些灯进行k次操作,每次操作改变且只改变一盏灯的开关状态.用N表示满足“k次操作以后灯1,2,…,n是开的,其它灯都是关的”的不同操作序列总数,用M表示满足“k次操作以后灯1,2,…,n是开的,其它灯都是关的而且从来没有被开
过”的不同操作序列总数.试求比值。

6.给定n,k是正整数,.假设F是{1,2,…,n}的子集族,如果F中的每个集合都有k 个元素,而且F中任何两个集合都相交非空,那么∣F∣的最大可能值是多少?
7.有12个人,其中任何9人中都有5人两两认识.证明:这12人中必有6人两两认识。

【知识储备】
【例题精讲】
1.p≥1是实数,n是正整数.证明闵可夫斯基不等式:任给实数a1,a
2....,b1,b2,....,b n,必有:
2.如果函数f:Z→R满足:存在正数M使得对于任意正数a和正整数d,
(这里I=[a-d,a+d],表示f在I上的平均值),那么就称f是BMO的,M则称为f的一个BMO模长.证明存在正的常数C,使得对于任何BMO的函数f,只要M是f的一个BMO模
长,就有对任何正数a和正整数d,
3.设n是给定的正整数.S={1,2,…,n}.求|A△S|+|B△S|+|C△S|的最小值.这里A,B是非空有限实数集合,C=A+B={x+y|x∈A,y∈B}.X△Y表示由恰好属于X,Y中一个的元素组成的集合.
4.证明存在正的常数C,使得平面直角坐标系中的任意有限个(边平行于坐标轴的)正方形中必能挑出一些正方形两两内部无公共点,而且他们覆盖的总面积不小于全体正方形覆盖总面积的C 倍.
5.设A是一个有限实数集.A1,A2,…,A n是A的非空子集,且满足:(i)A中所有元素之和为0;(ii)对任意x i∈A i(i=1,2,…,n),都成立.证明:存在1≤i1<i2<…<i k≤n使得
6.设m和n是给定的正整数,4<m<n.A1A2…A2n+1是一个正(2n+1)边形,P={A1, A2,…,A2n+1}.求顶点属于P且恰有两个内角是锐角的凸m边形个数.
7.将全体正整数用红或蓝进行二染色.证明:存在一列无穷个递增正整数a1,a2,a3,…使得
全都是同色的正整数.
8.如果平面上的有限(≥1)个非零向量形成的集合R满足下列三个条件就称R为一个根系:(i)
任两个向量a,b∈R,是整数;(ii)任两个向量a,b∈R,∈R;(iii)如果R中两个向量共线,那么他们或者相等或者和为0.试求平面上所有可能的根系.。

相关文档
最新文档