霍尔传感器及磁敏二极管三极管的原理及应用
霍尔传感器的工作原理、分类及应用

霍尔传感器是一种磁传感器。
用它可以检测磁场及其变化,可在各种与磁场有关的场合中使用。
霍尔传感器以霍尔效应为其工作基霍尔传感器是一种磁传感器。
用它可以检测磁场及其变化,可在各种与磁场有关的场合中使用。
霍尔传感器以霍尔效应为其工作基础,是由霍尔元件和它的附属电路组成的集成传感器。
霍尔传感器在工业生产、交通运输和日常生活中有着非常广泛的应用。
一、霍尔效应霍尔元件霍尔传感器霍尔效应如图1 所示,在半导体薄片两端通以控制电流I,并在薄片的垂直方向施加磁感应强度为 B 的匀强磁场,则在垂直于电流和磁场的方向上,将产生电势差为UH 的霍尔电压,它们之间的关系为。
式中d 为薄片的厚度,k 称为霍尔系数,它的大小与薄片的材料有关。
上述效应称为霍尔效应,它是德国物理学家霍尔于1879 年研究载流导体在磁场中受力的性质时发现的。
(二)霍尔元件根据霍尔效应,人们用半导体材料制成的元件叫霍尔元件。
它具有对磁场敏感、结构简单、体积小、频率响应宽、输出电压变化大和使用寿命长等优点,因此,在测量、自动化、计算机和信息技术等领域得到广泛的应用。
(三)霍尔传感器由于霍尔元件产生的电势差很小,故通常将霍尔元件与放大器电路、温度补偿电路及稳压电源电路等集成在一个芯片上,称之为霍尔传感器。
霍尔传感器也称为霍尔集成电路,其外形较小,如图2 所示,是其中一种型号的外形图。
二、霍尔传感器的分类霍尔传感器分为线性型霍尔传感器和开关型霍尔传感器两种。
(一)线性型霍尔传感器由霍尔元件、线性放大器和射极尾随器组成,它输出摹拟量。
(二)开关型霍尔传感器由稳压器、霍尔元件、差分放大器,斯密特触发器和输出级组成,它输出数字量。
三、霍尔传感器的特性(一)线性型霍尔传感器的特性输出电压与外加磁场强度呈线性关系,如图3 所示,可见,在B1~B2 的磁感应强度范围内有较好的线性度,磁感应强度超出此范围时则呈现饱和状态。
(二)开关型霍尔传感器的特性如图4 所示,其中BOP 为工作点“开”的磁感应强度,BRP 为释放点“关”的磁感应强度。
.霍尔门磁传感器的原理与应用

霍尔门磁传感器或称霍尔开关,是一种可以检测磁场变化并转化为电信号的传感器。
它通常被应用于门窗磁控报警系统、电子开关和电机控制等领域。
本文将详细介绍霍尔门磁传感器的原理、结构与应用。
一、霍尔门磁传感器的原理1. 霍尔效应:霍尔效应是指在导电材料中,当有电流通过时,如果受到外部磁场的作用,会在垂直于电流方向上产生电势差。
这种现象是由美国物理学家爱德华·霍尔于1879年首先发现的。
霍尔效应是霍尔门磁传感器能够探测磁场变化的基础。
2. 霍尔元件:霍尔元件是霍尔门磁传感器的核心部件,通常由半导体材料制成。
当磁场作用于霍尔元件时,会在元件两侧产生电势差,这一电势差可以被检测电路所读取,从而转化为相应的信号输出。
3. 灵敏度调节:由于不同的应用场景对磁场的灵敏度要求不同,霍尔门磁传感器通常具有灵敏度调节功能。
用户可以通过调节传感器上的旋钮或设置参数来改变传感器的灵敏度。
二、霍尔门磁传感器的结构1. 外壳:霍尔门磁传感器的外壳通常由耐高温、耐腐蚀的材料制成,以确保其稳定可靠地工作在不同的环境中。
2. 传感元件:传感元件是霍尔门磁传感器的核心部件,它通常为霍尔元件。
传感元件的选择和制造工艺会直接影响传感器的灵敏度和稳定性。
3. 输出端口:霍尔门磁传感器的输出端口通常为开关量输出,常见的有正常开关、NC(Normally Closed)和NO(Normally Open)等类型。
用户可以根据实际需求选择合适的输出类型。
4. 供电接口:霍尔门磁传感器通常需要外部供电,供电电压的稳定性和电流的大小需要符合传感器的工作要求。
5. 灵敏度调节装置:为了适应不同的工作环境和需求,霍尔门磁传感器通常具有灵敏度调节装置,用户可以通过调节该装置来改变传感器的灵敏度。
三、霍尔门磁传感器的应用1. 门窗磁控报警系统:霍尔门磁传感器可以应用于门窗磁控报警系统中,通过安装在门窗上,当门窗打开时,磁场的变化会被传感器检测到,并触发报警器发出警报。
霍尔传感器及磁敏二极管三极管的原理及应用word资料17页

霍尔传感器·磁敏二极管·磁敏三极管的原理及应用物理与电子技术学院电子信息工程霍尔传感器的原理及应用一、传感器的概述信息处理技术取得的进展以及微处理器和计算机技术的高速发展,都需要在传感器的开发方面有相应的进展。
微处理器现在已经在测量和控制系统中得到了广泛的应用。
随着这些系统能力的增强,作为信息采集系统的前端单元,传感器的作用越来越重要。
传感器已成为自动化系统和机器人技术中的关键部件,作为系统中的一个结构组成,其重要性变得越来越明显。
二、霍尔传感器1、霍尔传感器的定义霍尔元件是一种基于霍尔效应的磁传感器,已发展成一个品种多样的磁传感器产品族,并已得到广泛的应用。
霍尔器件是一种磁传感器。
用它们可以检测磁场及其变化,可在各种与磁场有关的场合中使用。
霍尔器件以霍尔效应为其工作基础。
2、霍尔传感器的分类按照霍尔器件的功能可将它们分为:霍尔线性器件和霍尔开关器件。
前者输出模拟量,后者输出数字量。
(1)线形电路:它由霍尔元件、差分放大器和射极跟随器组成。
其输出电压和加在霍尔元件上的磁感强度B成比例,它的功能框图和输出特性示于图1。
这类电路有很高的灵敏度和优良的线性度,适用于各种磁场检测。
图1 霍尔线性电路的功能框图(2)开关电路:霍尔开关电路由稳压器、霍尔片、差分放大器,斯密特触发器和输出级组成。
在外磁场的作用下,当磁感应强度超过导通阈值BOP 时,霍尔电路输出管导通,输出低电平。
之后,B 再增加,仍保持导通态。
若外加磁场的B 值降低到BRP 时,输出管截止,输出高电平。
我们称BOP 为工作点,BRP 为释放点,BOP -BRP=BH 称为回差。
回差的存在使开关电路的抗干扰能力增强。
霍尔开关电路的功能框见图2。
图2(a)表示集电极开路(OC)输出,(b)表示双输出。
它们的输出特性见图5,图5(a)表示普通霍尔开关,(b)表示锁定型霍尔开关的输出特性。
(a) 单OC 输出 (b)双OC 输出图2 霍尔开关电路的功能框图3、原理霍尔效应原理:将一块半导体或导体材料,沿Z 方向加以磁场B ,沿X 方向通以工作电流I ,则在Y 方向产生出电动势H V ,如图1所示,这现象称为霍尔效应。
霍尔传感器原理以及应用

霍尔传感元器件及其应用1 引言 (2)2 霍尔效应和霍尔器件 (2)2.1 霍尔效应 (2)2.2 霍尔器件 (3)2.2.1 霍尔元件 (4)2.2.2 霍尔电路 (5)3 霍尔器件的应用 (8)3.1 应用的一般问题 (8)3.1.1 测量磁场 (8)3.1.2 工作磁体的设置 (9)3.1.3 与外电路的接口 (10)3.2 应用实例 (11)3.2.1检测磁场 (11)3.2.2 检测铁磁物体 (12)3.2.3 用在直流无刷电机中 (13)3.2.4 无损探伤 (15)3.2.5 磁记录信息读出 (15)3.2.6 霍尔接近传感器和接近开关 (16)3.2.8 霍尔齿轮传感器 (18)3.2.9 旋转传感器 (19)3.2.10 霍尔位移传感器 (21)3.2.11实现电-磁-电的转换 (25)3.2.14霍尔隔离放大器 (37)3.2.15用作电磁隔离耦合器 (37)4.结束语 (38)1 引言霍尔器件是一种磁传感器。
用它们可以检测磁场及其变化,可在各种与磁场有关的场合中使用。
霍尔器件以霍尔效应为其工作基础。
霍尔器件具有许多优点,它们的结构牢固,体积小,重量轻,寿命长,安装方便,功耗小,频率高(可达1MHZ),耐震动,不怕灰尘、油污、水汽及盐雾等的污染或腐蚀。
霍尔线性器件的精度高、线性度好;霍尔开关器件无触点、无磨损、输出波形清晰、无抖动、无回跳、位置重复精度高(可达µm级)。
取用了各种补偿和保护措施的霍尔器件的工作温度范围宽,可达-55℃~1 50℃。
按照霍尔器件的功能可将它们分为:霍尔线性器件和霍尔开关器件。
前者输出模拟量,后者输出数字量。
按被检测的对象的性质可将它们的应用分为:直接应用和间接应用。
前者是直接检测出受检测对象本身的磁场或磁特性,后者是检测受检对象上人为设置的磁场,用这个磁场来作被检测的信息的载体,通过它,将许多非电、非磁的物理量例如力、力矩、压力、应力、位置、位移、速度、加速度、角度、角速度、转数、转速以及工作状态发生变化的时间等,转变成电量来进行检测和控制。
汽车霍尔传感器的原理和应用

汽车霍尔传感器的原理和应用1前言霍尔传感器是全世界排名第三的传感器产品,它被宽泛应用到工业、汽车业、电脑、手机以及新兴花费电子领域。
将来几年,跟着愈来愈多的汽车电子和工业设计公司转移到中国,霍尔传感器在中国市场的年销售额将保持 20%到 30%的高速增添。
与此同时,霍尔传感器的有关技术仍在不停完美中,可编程霍尔传感器、智能化霍尔传感器以及微型霍尔传感器将有更好的市场远景。
隨着霍尔传感器愈来愈宽泛地应用在汽车电子等领域,关怀它的人也愈来愈多,这里我们将介绍汽车霍尔传感器的原理和应用。
2霍尔效应原理和霍尔元件图 1图 1 中在一块半导体薄片 H 上 A+,A- 两电极之间通电,加上和片子表面垂直的磁场B,在薄片的横向双侧电极C1,C2 之间会出现一个电压VH,这种现象就是霍尔效应,是由美国科学家爱德文·霍尔在 1879 年发现的。
VH称为霍尔电压。
这种现象的产生,是因为通电半导体片中的载流子在磁场产生的洛仑兹力的作用下,分别向片子横向双侧偏转和聚集,因此形成一个电场,称作霍尔电场。
霍尔电场产生的电场力和洛仑兹力相反,它阻挡载流子持续聚积,直到霍尔电场力和洛仑兹力相等。
这时,片子双侧成立起一个稳固的电压VH,这就是霍尔电压,这个半导体薄片称为霍尔元件。
霍尔元件可用多种半导体资料制作,如Ge、 Si 、InSb 、GaAs、InAs 、InAsP 等等。
3.霍尔集成电路霍尔集成电路是汽车霍尔传感器的中心部分,它将很多非电、非磁的物理量比如力、力矩、压力、应力、地点、位移、速度、加快度、角度、角速度、转数、转速以及工作状态发生变化的时间等,转变为电量来进行检测和控制。
霍尔集成电路是由霍尔元件、差分放大器等电子元器件集成到同一块半导体芯片上构成,是一种磁敏传感器。
能够检测磁场及其变化,可在各样与磁场有关的场合中使用。
霍尔集成电路是以霍尔效应原理为基础工作的。
霍尔集成电路拥有很多长处,它们的构造坚固,体积小,重量轻,寿命长,安装方便,功耗小,频次高,耐震动,不怕尘埃、油污、水汽及盐雾等的污染或腐化。
霍尔传感器原理及其应用ppt课件

▪ 5.霍尔式汽车无触点点火装置
➢ 在与发动机主轴连接的磁轮鼓上装有与汽缸数相应的四 块磁钢。
➢ 当发动机主轴带动磁轮鼓转动时,每当磁钢转动到霍尔 传感器处时,传பைடு நூலகம்器即输出一个与汽缸活塞运动同步的 脉冲信号,
➢ 并用此脉冲信号去触发晶体管功率开关,使点火线圈二 次侧产生很高的感应电压,火花塞产生火花放电。
图7-4 霍尔元件的基本测量电路
9
▪ 7.2.2霍尔传感器的误差分析
➢ 霍尔元件对温度的变化很敏感,因此,霍尔元件的输入 电阻、输出电阻、乘积灵敏度等将受到温度变化的影响, 从而给测量带来较大的误差。
➢ 为了减少测量中的温度误差,除了选用温度系数小的霍 尔元件或采取一些恒温措施外,也可使用以下的温度补 偿方法。
图7-14 霍尔式转速传感器
20
▪ 4. 电动机停转报警器 ➢ 电动机停转报警电路如图7-15所示,该电路主要由霍尔
检测、报警电路两个部分组成。 ➢ 当电动机转动时,安装在电动机转轴上的磁铁以一定的
频率经过霍尔传感器,霍尔传感器不断地输出脉冲信号, 使扬声器发出声音。
21
图7-15 电动机停转报警电路
可用于补偿不等位电势,使不等位电势为零。
图7-8 电势的补偿电路
13
(1)基本补偿电路
➢ 霍尔元件的不等位电势补偿电路有很多形式,图7-9为 两种常见电路,图7-9(a)是在造成电桥不平衡的电阻
值平较衡大状的 态一 ,个 称桥 为臂不上对并称联补偿RP电,路通;过调节 RP使电桥达到
➢ 图7-9(b)则相当于在两个电桥臂上并联调用电阻,称 为对称补偿电路。
弹性元件,如弹簧管或膜盒等,用它感受压力,并把它 转换成位移量;另一部分是霍尔元件和磁路系统。 ➢ 图7-13所示为霍尔式压力传感器的结构示意图。其中, 弹性元件是弹簧管,当被测压力发生变化时,弹簧管端 部发生位移,带动霍尔片在均匀梯度磁场中移动,作用 在霍尔片的磁场发生变化,输出的霍尔电势随之改变。
霍尔传感器及磁敏二极管三极管的原理及应用.

一、H all霍尔传感器1、霍尔传感器的定义霍尔元件是一种基于霍尔效应的磁传感器,已发展成一个品种多样的磁传感器产品族,并已得到广泛的应用。
霍尔器件是一种磁传感器。
用它们可以检测磁场及其变化,可在各种与磁场有关的场合中使用。
霍尔器件以霍尔效应为其工作基础。
2、霍尔传感器的分类按照霍尔器件的功能可将它们分为:霍尔线性器件和霍尔开关器件。
前者输出模拟量,后者输出数字量。
(1)线性电路:它由霍尔元件、差分放大器和射极跟随器组成。
其输出电压和加在霍尔元件上的磁感强度B成比例。
这类电路有很高的灵敏度和优良的线性度,适用于各种磁场检测。
霍尔线性电路的功能框图(2)开关电路:霍尔开关电路由稳压器、霍尔片、差分放大器、施密特触发器和输出级组成。
在外磁场的作用下,当磁感应强度超过导通阈值BOP时,霍尔电路输出管导通,输出低电平。
之后,B再增加,仍保持导通态。
若外加磁场的B值降低到BRP时,输出管截止,输出高电平。
我们称BOP为工作点,BRP 为释放点,BOP-BRP=BH称为回差。
回差的存在使开关电路的抗干扰能力增强。
霍尔开关电路的功能框见图2。
图2(a)表示集电极开路(OC)输出,(b)表示双输出。
(a) 单OC 输出 (b)双OC 输出图2 霍尔开关电路的功能框图3、原理霍尔效应原理:将一块半导体或导体材料,沿Z 方向加以磁场B ,沿X 方向通以工作电流I ,则在Y 方向产生出电动势H V ,如图1所示,这现象称为霍尔效应。
H V 称为霍尔电压。
++++++------V HE H eF mF b I d BA B Y++++++------V H E H F m F e B b I d A B(a) (b)图3 霍尔效应原理图实验表明,在磁场不太强时,电位差H V 与电流强度I 和磁感应强度B 成正比,与板的厚度d 成反比,即d IB R V H H (1)或 IB K V H H (2) 式(1)中H R 称为霍尔系数,式(2)中H K 称为霍尔元件的灵敏度,单位为mv / (mA ·T)。
第九章 磁敏传感器 第三节 磁敏二极管和磁敏三极管

② 加B+磁场 由于磁场的作用,洛仑兹力使载流子偏向发 射结的一侧,导致集电极电流显著下降。
③ 加B-磁场 当反向磁场作用时,在其作用下,载流子向 集电极一侧偏转,使集电极电流增大。
磁敏三极管在正、反向磁场作用下,其集电 极电流出现明显变化,这样就可以利用磁敏三极 管来测量弱磁场、电流、转速、位移等物理量。
复合速率的r区和本征I区。
长基区分为输运基区和复 合基区。
三、磁敏三极管的结构和工作原理
2、磁敏三极管的工作原理
① 未加磁场 由于基区宽度大于载流子有效扩散长度,大
部分载流子通过e-I-b,形成基极电流;少数 载流子输入到c极。因而形成了基极电流大于集
电极电流的情况,使 Ic 1
Ib
三、磁敏三极管的结构和工作原理
一、磁敏二极管的结构和工作原理
2、工作原理
利用半导体中载流子的复合作用为机理制成。
① 未加磁场 当磁敏二极管未受到 外界磁场作用时,外加 正偏压,则有大量的空
穴从P区通过I区进入N 区,同时也有大量电子注入P区,形成电流。 只有少量电子和空穴在I区复合掉。
一、磁敏二极管的结构和工作原理2、工作原理来自3、磁敏二极管的主要特性
(3)温度特性
互补式电路的补偿原理
3、磁敏二极管的主要特性
(3)温度特性
②差分式
差分电路不仅能很好地实现温度补偿、提高灵 敏度,而且,还可以弥补互补电路的不足(具有负 阻现象的磁敏二极管不能用作互补电路)。
3、磁敏二极管的主要特性
(3)温度特性
③全桥式
全桥电路是将两个互补电路并联而成。输出电 压是差分电路的两倍。由于要选择四只性能相同 的磁敏二极管,因此,给使用带来一定困难。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
霍尔传感器·磁敏二极管·磁敏三极管的原理及应用物理与电子技术学院电子信息工程霍尔传感器的原理及应用一、传感器的概述信息处理技术取得的进展以及微处理器和计算机技术的高速发展,都需要在传感器的开发方面有相应的进展。
微处理器现在已经在测量和控制系统中得到了广泛的应用。
随着这些系统能力的增强,作为信息采集系统的前端单元,传感器的作用越来越重要。
传感器已成为自动化系统和机器人技术中的关键部件,作为系统中的一个结构组成,其重要性变得越来越明显。
二、霍尔传感器1、霍尔传感器的定义霍尔元件是一种基于霍尔效应的磁传感器,已发展成一个品种多样的磁传感器产品族,并已得到广泛的应用。
霍尔器件是一种磁传感器。
用它们可以检测磁场及其变化,可在各种与磁场有关的场合中使用。
霍尔器件以霍尔效应为其工作基础。
2、霍尔传感器的分类按照霍尔器件的功能可将它们分为:霍尔线性器件和霍尔开关器件。
前者输出模拟量,后者输出数字量。
(1)线形电路:它由霍尔元件、差分放大器和射极跟随器组成。
其输出电压和加在霍尔元件上的磁感强度B成比例,它的功能框图和输出特性示于图1。
这类电路有很高的灵敏度和优良的线性度,适用于各种磁场检测。
图1 霍尔线性电路的功能框图(2)开关电路:霍尔开关电路由稳压器、霍尔片、差分放大器,斯密特触发器和输出级组成。
在外磁场的作用下,当磁感应强度超过导通阈值BOP 时,霍尔电路输出管导通,输出低电平。
之后,B 再增加,仍保持导通态。
若外加磁场的B 值降低到BRP 时,输出管截止,输出高电平。
我们称BOP 为工作点,BRP 为释放点,BOP -BRP=BH 称为回差。
回差的存在使开关电路的抗干扰能力增强。
霍尔开关电路的功能框见图2。
图2(a)表示集电极开路(OC)输出,(b)表示双输出。
它们的输出特性见图5,图5(a)表示普通霍尔开关,(b)表示锁定型霍尔开关的输出特性。
(a) 单OC 输出 (b)双OC 输出图2 霍尔开关电路的功能框图3、原理霍尔效应原理:将一块半导体或导体材料,沿Z 方向加以磁场B ,沿X 方向通以工作电流I ,则在Y 方向产生出电动势H V ,如图1所示,这现象称为霍尔效应。
H V 称为霍尔电压。
++++++------V HE H eF mF b I d BA B Y++++++------V H E H F m F e B b I d A B(a) (b)图3 霍尔效应原理图实验表明,在磁场不太强时,电位差H V 与电流强度I 和磁感应强度B 成正比,与板的厚度d 成反比,即 d IB R V H H = (1) 或 IB K V H H = (2) 式(1)中H R 称为霍尔系数,式(2)中H K 称为霍尔元件的灵敏度,单位为mv / (mA ·T)。
产生霍尔效应的原因是形成电流的作定向运动的带电粒子即载流子(N 型半导体中的载流子是带负电荷的电子,P 型半导体中的载流子是带正电荷的空穴)在磁场中所受到的洛仑兹力作用而产生的。
如图3(a )所示,一快长为l 、宽为b 、厚为d 的N 型单晶薄片,置于沿Z轴方向的磁场B 中,在X 轴方向通以电流I ,则其中的载流子——电子所受到的洛仑兹力为j eVB B V e B V q F m-=⨯-=⨯= (3) 式中V 为电子的漂移运动速度,其方向沿X 轴的负方向。
e 为电子的电荷量。
m F 指向Y 轴的负方向。
自由电子受力偏转的结果,向A 侧面积聚,同时在B 侧面上出现同数量的正电荷,在两侧面间形成一个沿Y 轴负方向上的横向电场HE (即霍尔电场),使运动电子受到一个沿Y 轴正方向的电场力eF ,A 、B 面之间的电位差为H V (即霍尔电压),则 j b V e j eE E e E q F H H H H e ==-==(4)将阻碍电荷的积聚,最后达稳定状态时有0=+e m F F0=+-j b V e j eVB H即b V e eVB H= 得 VBb V H = (5) 此时B 端电位高于A 端电位。
若N 型单晶中的电子浓度为n ,则流过样片横截面的电流I =nebdV得 nebd I V =(6) 将(6)式代入(5)式得IB K d IB R IB ned V H H H ===1 (7)4.霍尔效应的副效应在测量霍尔电压时,会伴随产生一些副效应,影响到测量的精确度,这些副效应是:(1). 不等位效应由于制造工艺技术的限制,霍尔元件的电位极不可能接在同一等位面上,因此,当电流IH 流过霍尔元件时,即使不加磁场,两电极间也会产生一电位差,称不等位电位差U 。
显然,U0只与电流IC 有关,而与磁场无关。
(2). 埃廷豪森效应(Etinghausen effect )由于霍尔片内部的载流子速度服从统计分布,有快有慢,由于它们在磁场中受的洛伦兹力不同,则轨道偏转也不相同。
动能大的载流子趋向霍尔片的一侧,而动能小的载流子趋向另一侧,随着载流子的动能转化为热能,使两侧的温升不同,形成一个横向温度梯度,引起温差电压UE,UE的正负与IH、B的方向有关。
(3). 能斯特效应(Nernst effect)由于两个电流电极与霍尔片的接触电阻不等,当有电流通过时,在两电流电极上有温度差存在,出现热扩散电流,在磁场的作用下,建立一个横向电场EN,因而产生附加电压UN。
UN的正负仅取决于磁场的方向。
(4). 里纪-勒杜克效应(Righi-Leduc effect)由于热扩散电流的载流子的迁移率不同,类似于埃廷豪森效应中载流子速度不同一样,也将形成一个横向的温度梯度而产生相应的温度电压URL,URL的正、负只与B的方向有关,和电流IH的方向无关。
5.霍尔效应的副效应的消除方法由于附加电压的存在,实测的电压,既包括霍尔电压UH,也包括U0、UE、UN和URL等这些附加电压,形成测量中的系统误差来源。
但我们利用这些附加电压与电流IH和磁感应强度B的方向有关,测量时改变IH和B的方向基本上可以消除这些附加误差的影响。
具体方法如下:当(+B,+IH)时测量,U1=UH+U0+UE+UN+URL (1)当(+B,-IH)时测量,U2=-UH-U0-UE+UN+URL(2)当(-B,-IH)时测量,U3=UH-U0+UE-UN-URL (3)当(-B,+IH)时测量,U4=-UH+U0-UE-UN-URL(4)式(1)-(2)+(3)-(4)并取平均值,则得)这样处理后,除埃廷豪森效应引起的附加电压外,其它几个主要的附加电压全部被消除了。
但因UE<<UH,故可将上式写为三 .技术性能分析1电流传感器特性参数(1)、标准额定值IPN和额定输出电流ISNIPN指电流传感器所能测试的标准额定值,用有效值表示(A.r.m.s),IPN 的大小与传感器产品的型号有关。
ISN指电流传感器额定输出电流,一般为100~400mA,某些型号可能会有所不同。
(2)、传感器供电电压VAVA指电流传感器的供电电压,它必须在传感器所规定的范围内。
超过此范围,传感器不能正常工作或可靠性降低,另外,传感器的供电电压VA又分为正极供电电压VA+和负极供电电压VA-。
(3)、测量范围Ipmax(1)测量范围指电流传感器可测量的最大电流值,测量范围一般高于标准额定值IPN。
(2)要注意单相供电的传感器,其供电电压VAmin是双相供电电压VAmin的2倍,所以其测量范围要高于双相供电的传感器。
(4)、过载发生电流过载时,在测量范围之外,原边电流仍会增加,而且过载电流的持续时间可能很短,而过载值有可能超过传感器的允许值,过载电流值传感器一般测量不出来,但不会对传感器造成损坏。
(5)、精度霍尔效应传感器的精度取决于标准额定电流IPN。
在+25℃时,传感器测量精度受原边电流影响。
计算精度时必须考虑偏移电流、线性度、温度漂移的影响。
(1 .偏移电流ISO偏移电流也叫残余电流或剩余电流,它主要是由霍尔元件或电子电路中运算放大器工作状态不稳造成的。
电流传感器在生产时,在25℃,IP=0时的情况下,偏移电流已调至最小,但传感器在离开生产线时,都会产生一定大小的偏移电流。
产品技术文档中提到的精度已考虑了偏移电流增加的影响。
(2. 线性度线性度决定了传感器输出信号(副边电流IS)与输入信号(原边电流IP)在测量范围内成正比的程度,(3.温度漂移偏移电流ISO是在25℃时计算出来的,当霍尔电极周边环境温度变化时,ISO 会产生变化。
因此,考虑偏移电流ISO的最大变化是很重要的。
(6)、抗干扰性(1.电磁场闭环霍尔效应电流传感器,利用了原边导线的电磁场原理。
因此下列因素直接影响传感是否受外部电磁场干扰。
<1>传感器附近的外部电流大小及电流频率是否变化;<2>外部导线与传感器的距离、外部导线的形状、位置和传感器内霍尔电极的位置;<3>安装传感器所使用的材料有无磁性;<4>所使用的电流传感器是否屏蔽;为了尽量减小外部电磁场的干扰,最好按安装指南安装传感器。
(2.电磁兼容性电磁兼容性EMC,(Electro -Magnetic Compatibility )是研究电气及电子设备在共同的电磁环境中能执行各自功能的共存状态,即要求在同一电磁环境中的上述各种设备都能正常工作而又互不干扰,达到“兼容”状态的一门学科。
空间电磁环境的恶化越来越容易使电子元器件之间因互不兼容而引发系统的误动作,因此电工、电子设备电磁兼容性检测极有必要。
由于实际生产、科研及市场推广的迫切需要,采用已通过电磁兼容性检测的电流和电压传感器已形成共识,并已成为一个强制性标准。
四.霍尔传感器的应用霍尔电动势是关于I、B、θ三个变量的函数,即E H=K H IB cosθ,使其中两个量不变,将第三个量作为变量,或者固定其中一个量、其余两个量都作为变量,三个变量的多种组合等。
1)维持I、θ不变,则E H=f(B),这方面的应用有:测量磁场强度的高斯计、测量转速的霍尔转速表、磁性产品计数器、霍尔角编码器以及基于微小位移测量原理的霍尔加速度计、微压力计等。
2)维持I、B不变,则E H=f(θ),这方面的应用有角位移测量仪等。
3)维持θ不变,则E H=f(IB),即传感器的输出E H与I、B的乘积成正比,这方面的应用有模拟乘法器、霍尔功率计、电能表等。
1.角位移测量仪角位移测量仪结构示意图如图4所示。
霍尔器件与被测物连动,而霍尔器件又在一个恒定的磁场中转动,于是霍尔电动势E H就反映了转角θ的变化。
图4 角位移测量仪结构示意图1-极靴 2-霍尔器件 3-励磁线圈发生性思维:将图4的铁芯气隙减小到夹紧霍尔IC的厚度。
则B正比于U i,霍尔IC的U o正比于B,可以改造为霍尔电压传感器。