第九章 磁敏传感器 第三节 磁敏二极管和磁敏三极管
磁敏元件

3.几种磁阻元件的参数及特性
(1)MR214A/223A,MR413A/414A 它们 是日本电气公司的产品。 MR214A/223A由 两只磁阻元件组成,是由强磁性金属薄膜 制成的磁阻元件,工作在磁性饱和区(约 4000A/m),主要用于汽车、测量仪器上, 可检测旋转、角度、位移等参数。 MR214A/223A由四只磁阻元件组成,有两 相输出,不仅能检出旋转、角度、位移等 参数,还可测出旋转方向。
4.磁敏电阻的应用
磁敏电阻应用时一般采用恒压源驱动, 分压法输出,如下图所示。三端差分型电 路温度特性较好。利用磁敏电阻阻值可变 的特点,可在无触点开关、转速计、磁通 计、编码器、计数器、图形识别、电流计、 电子水表、可变电阻、流量计等多方面得 到应用。
11.2.2 磁敏二极管
磁敏二极管和磁敏三极管是继霍尔元 件和磁敏电阻之后发展起来的磁电转换元 件,具有较高的磁灵敏度(比霍尔元件高 数百倍甚至数千倍),可在较弱的磁场条 件下获得较大的输出,这是霍尔元件和磁 敏电阻所不及的。它不但能测出磁场大小, 还能测出磁场的方向,在许多方面都获得 了应用。磁敏二极管是一种电阻随磁场的 大小和方向均改变的结型二端器件。
(1)长方形磁阻元件
使其长度l小于宽度b,依靠两端电极的 短路作用,使霍尔电场难以建立,可获得 较显著的磁阻效应。如下图(a)所示。
若b<l,尽管两端电极仍有短路作用,由 于半导体电阻的存在,在元件中部仍会建 立起较强的霍尔电场,使得磁阻效应变得 不明显。如下图(b)所示。
(2)科尔宾(科比诺)元件
介绍磁敏三极管的结构和工作原理

介绍磁敏三极管的结构和工作原理
一、磁敏三极管结构
磁敏三极管(Hall-effect transistor)是以磁敏元件的磁特性进行控制的晶体管,它是一种电源有关型的三极管,它由源极、漏极、及基极组成。
在基极的边缘上有一个被称为磁敏片(Hall-plate)的玻璃片,片上有一个磁敏区域,它有能够触发晶体管开关的特性。
二、磁敏三极管的工作原理
当一个外加电磁场接触磁敏片(Hall-plate)时,就会产生一个引起磁敏片两侧源极和漏极之间电势差的电场,从而使三极管开关。
电磁场大小由磁感应强度、半径和磁敏片距离磁体的距离决定。
当磁敏三极管被激发时,源极和漏极之间电压差称为磁敏电压,磁敏电压的大小由电磁场强度决定。
当外加电磁场超过一定程度时,三极管就会被激活,反之,三极管就会断开。
- 1 -。
第9章磁敏式传感器

1. 什么是霍尔效应?为什么半导体材料适合于作霍尔元件? 2. 霍尔元件能够测量哪些物理参数?
3. 简述霍尔传感器的特点。
4. 简述霍尔位移传感器的工作原理。 5. 什么是磁阻效应?
Xi’an Jiaotong University
接近开关和无触点开关、计数器;无接触线位移传 感器;力、加速度等参数的测量;精密倾斜角测量等。
R1、R2 线性、角度、旋转位 移传感器,可以测量磁场 强度。
磁敏电阻位移传感器
Xi’an Jiaotong University
磁敏二极管、三极管
磁敏二极管
P型和N型电极由高阻材料制成,I为本征区。I区的r 面粗糙,设置成高复合区(r区),目的是使电子-空穴 对易于在粗糙表面复合而消失;另一面比较光滑。
霍尔式传感器的材料
霍尔元件由霍尔片、四根引线和壳体组成。
霍尔元件多采用N型半导体材料(高的电阻率和载流 子的迁移率)。目前最常用的霍尔元件材料有锗(Ge)、 硅(Si)、锑化铟(InSb)、砷化铟(InAs)等半导体材料。
Xi’an Jiaotong University
霍尔式传感器的测量电路
霍尔元件的转换效率较低,实际应用中,可将几个霍尔 元件的输出串联或采用运算放大器放大,以获得较大的UH。
Xi’an Jiaotong University
磁敏二极管、三极管应用
1-待测物,2-激励线圈,3-铁芯,4-放大器,5-磁敏二极管探头
Xi’an Jiaotong University
作 业
问答题: 1. 什么叫压电晶体的居里点? 2. 什么是正压电效应?什么是逆压电效应? 3. 压电式传感器的测量电路中为什么要加入前置放大器? 电荷放大器有何特点? 4. 试说明为什么不能用压电传感器测量变化比较缓慢的 信号?
磁敏式传感器.课件

详细描述
新型磁敏材料如稀土永磁材料、铁氧体材料等具有更高 的磁导率和磁感应强度,能够提高传感器的灵敏度和响 应速度。同时,新工艺如薄膜制备、纳米刻蚀等技术的 应用,使得传感器尺寸更小、精度更高。
多功能化与集成化
总结词
磁敏式传感器正朝着多功能化和集成化方向发展,以 满足复杂环境下多参数检测和系统集成的需求。
响应时间
总结词
响应时间是磁敏式传感器对磁场变化做出反应所需的时间。
详细描述
响应时间越短,表示传感器对磁场变化的响应速度越快。在动态测量中,需要选择响应时间较短的传 感器,以确保测量的实时性和准确性。
温度稳定性
总结词
温度稳定性是指磁敏式传感器在温度变化下 保持性能稳定的能力。
详细描述
温度稳定性越高,表示传感器受温度影响越 小,能够保证测量的准确性。在高温或温度 变化较大的环境中,选择温度稳定性较高的 磁敏式传感器尤为重要。
详细描述
多功能化传感器不仅可以检测磁场强度,还可以同时检 测温度、压力、湿度等多种参数。集成化则将多个传感 器单元集成在一个芯片上,实现多参数的同时测量和传 输,提高系统的可靠性和稳定性。
网络化与智能化
总结词
网络化和智能化是磁敏式传感器的未来 发展趋势,将推动传感器在物联网、智 能制造等领域的应用。
电子罗盘
磁敏式传感器可以用于电子罗盘的制造,提供方向信息。
要点二
磁场矢量测量
通过多个磁敏式传感器的组合,可以用于磁场矢量的测量, 常用于地球磁场测量、磁场矢量分析等领域。
06
磁敏式传感器的发展趋势与展望
新材料与新工艺的应用
总结词
随着科技的不断进步,新材料与新工艺在磁敏式传感器 中的应用越来越广泛,为传感器性能的提升和功能拓展 提供了更多可能性。
磁敏传感器

5. 霍尔元件温度补偿 霍尔元件是采用半导体材料制成的, 因此它 们的许多参数都具有较大的温度系数。当温度变 化时, 霍尔元件的载流子浓度、迁移率、电阻率及 霍尔系数都将发生变化, 从而使霍尔元件产生温度 误差。 为了减小霍尔元件的温度误差, 除选用温度系 数小的元件或采用恒温措施外, 由UH=KHIB可看出: 采用恒流源供电是个有效措施, 可以使霍尔电势稳 定。 但也只能减小由于输入电阻随温度变化而引 起的激励电流I变化所带来的影响。 霍尔元件的灵敏系数KH也是温度的函数, 它随 温度的变化引起霍尔电势的变化。霍尔元件的灵 敏度系数与温度的关系可写成
不等位电势也可用不等位电阻表示
U0 r 0 IH
式中: U0——不等位电势; r0——不等位电阻; IH——激励电流。 由上式可以看出, 不等位电势就是激励电流流 经不等位电阻r0所产生的电压。
5)寄生直流电势 在外加磁场为零, 霍尔元件通以交流激 励时, 霍尔电极输出除了交流不等位电势外, 还有一直流电势, 称寄生直流电势。 其产生 的原因有: ① 激励电极与霍尔电极接触不良, 形成非欧 姆接触, 造成整流效果; ② 两个霍尔电极大小不对称, 则两个电极点 的热容不同, 散热状态不同形成极向温差电 势。寄生直流电势一般在 1mV以下, 它是 影响霍尔片温漂的原因之一。
3)额定激励电流和最大允许激励电流 当霍尔元件自身温升10℃时所流过的激 励电流称为额定激励电流。 以元件允许最大 温升为限制所对应的激励电流称为最大允许 激励电流。因霍尔电势随激励电流增加而增 加, 所以, 使用时希望选用尽可能大的激励电 流, 因而需要知道元件的最大允许激励电流, 改善霍尔元件的散热条件, 可以使激励电流增 加。
L wd newd
磁敏传感器的工作原理

磁敏传感器的工作原理
磁敏传感器(Magnetic Sensors)是物理传感器中最为重要的一种,用来检测某一事物的磁场强度。
它可以测量磁场相对于一个特定标准的强度,以及磁场的方向。
磁敏传感器可以用来检测永久磁体、自发磁体、非永久磁体以及其它磁性物质的磁场。
磁敏传感器的工作原理是:当检测到的磁场变化时,传感器的电容变化,或者变化传感器内部的负载电阻,从而改变传感器电路的输出电流,从而获得磁场的数据。
磁敏传感器可以分为三类:磁敏电阻传感器、磁敏半导体传感器和磁敏磁芯传感器。
它们的工作原理都大体相同,只是在实现技术上有所不同。
磁敏电阻传感器是由一个特殊的磁敏半导体电阻片和一个可变
电阻器构成的电路。
当检测到的磁场变化时,电路中的磁敏电阻片会产生变化,而可变电阻器则会做出准确的调节,从而提供准确的测量数据。
磁敏半导体传感器是由磁敏半导体构成的一个电路。
当检测到的磁场变化时,磁敏半导体会产生变化,从而改变电路的输出电压,从而获得磁场的准确数据。
磁敏磁芯传感器是由一个特殊的磁芯和一个电阻构成的电路。
当检测到的磁场变化时,磁芯会对电阻产生感应,通过测量电阻对外界磁场的反应来获得磁场的数据。
磁敏传感器的应用非常广泛,目前已经应用在工业自动化、家用
电器、航空、航天等方面。
未来,磁敏传感器在更多领域得到应用,并可以为社会带来更多的好处。
磁敏二极管传感器的应用课件

稳定性好
磁敏二极管传感器具有较好的 温度稳定性和长期稳定性,能 够在较宽的温度范围内工作。
小型化
磁敏二极管传感器体积小、重 量轻,便于集成和安装。
磁敏二极管传感器的发展历程
01
02
03
Hale Waihona Puke 起源磁敏二极管传感器最早起 源于20世纪50年代,随着 半导体技术的发展而逐步 发展起来。
技术进步
自动化生产线
在自动化生产线上,磁敏二极管传感器可以用于检测传送带上的物体位 置,从而实现物体的精确分拣和运输。
03
机器人导航
在机器人导航中,磁敏二极管传感器可以用于检测机器人周围磁场的变
化,从而确定机器人的位置和方向。这有助于实现机器人的自主导航和
控制。
06
磁敏二极管传感器在速度检测中 的应用
速度检测原理
为了提高测量的准确性和稳定性,通常需要对磁敏二极管进行温度补偿和线性校准 。
电流测量应用实例
在电力系统中,磁敏二极管传感器可 用于监测输电线路和变压器的电流, 以确保电力传输的稳定性和安全性。
在实验室和科研领域,磁敏二极管传 感器可用于搭建各种电磁学实验装置 ,以研究电磁场和电流的相互作用关 系。
振动检测
振动分析
通过检测磁场变化与振动的关系,磁 敏二极管传感器可以用于分析机械结 构的振动特性。
故障诊断
在机械设备中,磁敏二极管传感器可 以用于监测振动情况,及时发现设备 故障并进行预警。
03
磁敏二极管传感器在磁场测量中 的应用
磁场测量原理
磁敏二极管传感器基于霍尔效应工作 ,当电流通过半导体材料时,会在垂 直于电流的方向上产生一个横向电压 ,这个电压与磁场强度成正比。
传感器课后答案

传感器课后答案第一章1、何为传感器及传感技术人们通常将能把被测物理量或化学量转换为与之有对应关系的电量输出的装置称为传感器,这种技术被称为传感技术。
2、传感器通常由哪几部分组成通常传感器可以分为哪几类若按转换原理分类,可以分成几类传感器通常由敏感元件、传感元件和其他辅助元件组成,有时也把信号调节和转换电路、辅助电源作为传感器的组成部分。
传感器一般按测定量和转换原理两种方法进行分类。
.按转换原理分类可以分为能量转换型传感器和能量控制型传感器。
3、传感器的特性参数主要有哪些选用传感器应注意什么问题传感器的特性参数:1 静态参数:精密度,表示测量结果中随机误差大小的程度。
正确度,表示测量结果中系统误差大小程度。
准确度,表示测量结果与被测量的真值之间的一致程度。
稳定度、鉴别度、分辨力、死区、回程误差、线性误差、零位误差等。
动态参数:时间常数t:在恒定激励理—第二章1、光电效应有哪几种与之对应的光电器件和有哪些光电传感器的工作原理基于光电效应。
光电效应总共有三类:外光电效应(光电原件有:光电管、光电倍增管等、内光电效应(光敏电阻)、光生伏特效应(光电池、光敏二极管和光敏三极管)2、什么是光生伏特效应光生伏特效应:在光线的作用下能使物体产生一定方向电动势的现象。
3、试比较光敏电阻、光电池、光敏二极管和光敏三极管的性能差异,并简述在不同的场和下应选用哪种器,件最为合适。
光敏二极管:非线性器件,具有单向导电性。
(PN 结装在管壳的顶部,可以直接爱到光的照射)通常处于反向偏置状态,当没有交照射时,其反向电阻很大反向,反向电流很小,这种电流称为暗电流。
当有光照射时,PN 结及附近产生电子-空穴对,它们的反向电压作用下参与导电,形成比无光照时大得多的反向电流,该反向电流称为光电流。
不管硅管还是锗管,当入射光波长增加时,相对灵敏度都下降。
,因为光子能量太小不足以激发电子-空穴对,而不能达到PN 结,因此灵敏度下降。
探测可见光和赤热物时,硅管。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、磁敏二极管的结构和工作原理
2、工作原理
利用半导体中载流子的复合作用为机理制成。
① 未加磁场 当磁敏二极管未受到 外界磁场作用时,外加 正偏压,则有大量的空
穴从P区通过I区进入N 区,同时也有大量电子注入P区,形成电流。 只有少量电子和空穴在I区复合掉。
一、磁敏二极管的结构和工作原理
2、工作原理
2、磁敏三极管的工作原理
② 加B+磁场 由于磁场的作用,洛仑兹力使载流子偏向发 射结的一侧,导致集电极电流显著下降。
③ 加B-磁场 当反向磁场作用时,在其作用下,载流子向 集电极一侧偏转,使集电极电流增大。
磁敏三极管在正、反向磁场作用下,其集电 极电流出现明显变化,这样就可以利用磁敏三极 管来测量弱磁场、电流、转速、位移等物理量。
复合速率的r区和本征I区。
长基区分为输运基区和复 合基区。
三、磁敏三极管的结构和工作原理
2、磁敏三极管的工作原理
① 未加磁场 由于基区宽度大于载流子有效扩散长度,大
部分载流子通过e-I-b,形成基极电流;少数 载流子输入到c极。因而形成了基极电流大于集
电极电流的情况,使 Ic 1
Ib
三、磁敏三极管的结构和工作原理
3、磁敏二极管的主要特性
(3)温度特性
一般情况下,磁 敏二极管受温度影 响较大,在实际使 用时,必须对其进 行温度补偿。
常用的温度补偿电路有互补式、差分式、 全桥式和热敏电阻四种补偿电路。
3、磁敏二极管的主要特性
(3)温度特性
①互补式
选择两只性能相 近的磁敏二极管, 按相反极性组合, 即将它们面对面 (或者背对背)。
洛仑兹力作用而向I区偏
移,由于电子与空穴的 复合率明显变小,则电 流变大。
利用磁敏二极管在磁场强度的变化下,其电流 发生变化,于是就实现磁电转换。
一、磁敏二极管的结构和工作原理
3、磁敏二极管的主要特性
(1)磁电特性(灵敏度) 在给定条件下,磁敏二极管输出的电压变化与 外加磁场的关系称为磁敏二极管的磁电特性。
3、磁敏二极管的主要特性
(3)温度特性
互补式电路的补偿原理
3、磁敏二极管的主要特性
(3)温度特性
②差分式
差分电路不仅能很好地实现温度补偿、提高灵 敏度,而且,还可以弥补互补电路的不足(具有负 阻现象的磁敏二极管不能用作互补电路)。
3、磁敏二极管的主要特性
(3)温度特性
③全桥式
全桥电路是将两个互补电路并联而成。输出电 压是差分电路的两倍。由于要选择四只性能相同 的磁敏二极管,因此,给使用带来一定困难。
3、磁敏二极管的主要特性
(3)温度特性
④热敏电阻补偿
利用热敏电阻随温度的变化,使分压系数不变, 成本较低,常用。
§9-3 磁敏二极管和磁敏三极管
三、磁敏三极管的结构和工作原理
1、磁敏三极管的结构
磁敏三极管是在弱P型或弱 N型本征半导体上用合金
法或扩散法形成发射极、 基极和集电极。其最大特 点是基区较长,基区结构 类似磁敏二极管,也有高
三、磁敏三极管的结构和工作原理
3、磁敏三极管的主要特性
(1) 磁电特性 (2) 伏安特性 (3) 温度特性及补偿 (4) 频率特性
第九章 磁敏传感器
§9-1 霍尔传感器 §9-2 磁敏电阻器 §9-3 磁敏二极管和磁敏三极管 §9-4 磁敏式传感器应用举例
§9-3 磁敏二极管和磁敏三极管 ——磁敏二/三极管是PN结型的磁电转换元件
一、磁敏二极管的结构和工作原理 1、结构
磁敏二极管的P型和N型电极由高阻材料制成; 在PN之间有一个较长的本征区I,本征区的一面磨 成光滑的复合表面(为I区),另一面打毛,设置成高 复合区(为r区),其目的是因为电子—空穴对易于在 粗糙表面复合而消失。当通以正向电流后就会在P 、I、N结之间形成电流。由此可知,磁敏二极管是 PIN型的。
3、磁敏二极管的主要特性
(1)磁电特性(灵敏度)
磁敏二极管通常有单只使用和互补使用两种 方式。单只使用时,正向磁灵敏度大于反向。 互补使用时,正、反向磁灵敏度曲线对称,且 在弱磁场下有较好的线性。
3、磁敏二极管的主要特性
(2)伏安特性
磁敏二极管正向偏压和通过其上电流的关系被 称为磁敏二极管的伏安特性。磁敏二极管在不同 磁场强度H下的作用,其伏安特性将不一样。
② 加磁场B +
当磁敏二极管受到外界 磁场B+(正向磁场)作 用时,则电子和空穴受 到洛仑兹力的作用而向
r区偏转,由于r区的电
子和空穴复合速度比
光滑面I区快,因此,形成的电流因复合速度
增快而减小。
一、磁敏二极管的结构和工作原理2 Nhomakorabea工作原理
③ 加磁场B -
当磁敏二极管受到外界 磁场B-(反向磁场)作 用时,电子、空穴受到