最新浙教版九年级数学上册《二次函数》教学设计

合集下载

2024年浙教版数学九年级上册1.1《二次函数》教学设计

2024年浙教版数学九年级上册1.1《二次函数》教学设计

2024年浙教版数学九年级上册1.1《二次函数》教学设计一. 教材分析《二次函数》是2024年浙教版数学九年级上册的教学内容,本节课主要让学生掌握二次函数的定义、性质以及图象。

通过学习,学生能够理解二次函数在实际生活中的应用,提高解决问题的能力。

教材内容安排合理,由浅入深,逐步引导学生掌握二次函数的知识。

二. 学情分析九年级的学生已经具备了一定的函数知识,对一次函数和二次函数有一定的了解。

但学生在学习二次函数时,可能会觉得比较抽象,难以理解。

因此,在教学过程中,需要注重引导学生从实际问题中提炼出二次函数模型,培养学生的抽象思维能力。

三. 教学目标1.了解二次函数的定义及其一般形式;2.掌握二次函数的性质,包括开口方向、对称轴、顶点等;3.能够通过实际问题,建立二次函数模型,并解决相关问题;4.提高学生的抽象思维能力和解决问题的能力。

四. 教学重难点1.二次函数的定义及其一般形式;2.二次函数的性质,特别是开口方向、对称轴、顶点的理解;3.实际问题中二次函数模型的建立和应用。

五. 教学方法1.采用问题驱动法,引导学生从实际问题中发现二次函数的规律;2.利用数形结合法,让学生直观地理解二次函数的图象和性质;3.运用讨论法,鼓励学生积极参与,培养学生的合作意识;4.采用案例分析法,使学生能够将理论知识应用于实际问题。

六. 教学准备1.准备相关的实际问题,用于引入和巩固二次函数的知识;2.制作PPT,展示二次函数的图象和性质;3.准备一些练习题,用于让学生在课堂上练习和巩固所学知识;4.准备一些拓展问题,激发学生的思考。

七. 教学过程1.导入(5分钟)利用一个实际问题,如抛物线运动,引出二次函数的概念。

让学生观察实际问题中的数量关系,引导学生发现二次函数的规律。

2.呈现(10分钟)通过PPT展示二次函数的图象,让学生直观地了解二次函数的性质。

同时,引导学生总结二次函数的一般形式。

3.操练(10分钟)让学生根据二次函数的定义和性质,解决一些相关问题。

1.1二次函数-浙教版九年级数学上册教案

1.1二次函数-浙教版九年级数学上册教案

1.1 二次函数-浙教版九年级数学上册教案一、教学目标1.了解二次函数的概念及其基本性质;2.掌握如何通过表格、图像和解析式表示二次函数;3.学会用解析式求二次函数的零点、顶点、对称轴和图像的开口方向。

二、教学重点1.二次函数的表格、图像和解析式的表示方法;2.用解析式求二次函数的零点、顶点和对称轴。

三、教学难点用解析式求图像的开口方向。

四、教学方法通过讲解、演示和练习相结合,引导学生深入理解和掌握二次函数的基本性质和求解方法。

五、教学过程5.1 二次函数的概念及其基本性质1.引入:让学生通过实例认识二次函数,并引导学生对二次函数的特点进行探究。

2.概念:引导学生通过实例理解二次函数的概念,即形如y=ax2+bx+c的函数。

3.性质:通过数学公式和图形展示,讲解二次函数的基本性质,包括二次函数的对称轴、顶点、零点和图像的开口方向。

5.2 二次函数的表格、图像和解析式的表示方法1.二次函数的表格:通过实例和练习,教导学生如何通过求解二次函数的值,来绘制二次函数的表格。

2.二次函数的图像:通过实例和练习,教导学生如何通过表格中的数值,来绘制二次函数的图像。

3.二次函数的解析式:引导学生了解如何从二次函数的图像中,推导出其对应的解析式。

5.3 用解析式求二次函数的零点、顶点和对称轴1.二次函数的零点:教导学生通过利用二次函数的解析式,求解二次函数的零点,并讲解零点的物理意义。

2.二次函数的顶点:教导学生如何通过二次函数的解析式,求解二次函数的顶点,并讲解顶点的物理意义。

3.二次函数的对称轴:教导学生如何通过二次函数的解析式,求解二次函数的对称轴,并讲解对称轴的物理意义。

5.4 用解析式求图像的开口方向1.二次函数的开口方向:引导学生通过利用二次函数的解析式,判断二次函数的图像开口方向,并讲解其物理意义。

六、教学反思考虑到九年级学生的数学基础较为薄弱,本节课在引入二次函数概念时,应当尽量遵循“由浅入深”的原则。

浙教版数学九年级上册《1.4 二次函数的应用》教学设计

浙教版数学九年级上册《1.4 二次函数的应用》教学设计

浙教版数学九年级上册《1.4 二次函数的应用》教学设计一. 教材分析《1.4 二次函数的应用》是浙教版数学九年级上册的重要内容,主要介绍了二次函数在实际生活中的应用。

本节课的内容包括:二次函数图像的特点,二次函数的顶点坐标的求法,以及二次函数的增减性、对称性等。

通过本节课的学习,使学生能够掌握二次函数的基本性质,并能应用于解决实际问题。

二. 学情分析九年级的学生已经学习了二次函数的基本知识,对二次函数的图像和性质有一定的了解。

但学生在解决实际问题时,往往不能将理论知识与实际问题相结合。

因此,在教学过程中,教师需要引导学生将所学知识应用于实际问题,提高学生的应用能力。

三. 教学目标1.理解二次函数的图像特点,掌握二次函数的顶点坐标的求法。

2.能够运用二次函数的性质解决实际问题,提高学生的数学应用能力。

3.培养学生的合作交流能力,提高学生的思维品质。

四. 教学重难点1.二次函数的图像特点和性质。

2.二次函数的顶点坐标的求法。

3.如何将二次函数的知识应用于实际问题。

五. 教学方法1.情境教学法:通过生活实例,引导学生了解二次函数在实际生活中的应用。

2.小组合作学习:让学生在合作交流中,共同探讨二次函数的性质和应用。

3.案例教学法:通过分析典型案例,使学生掌握二次函数的顶点坐标的求法。

六. 教学准备1.教学课件:制作课件,展示二次函数的图像和性质。

2.案例材料:准备相关的实际问题,供学生探讨。

3.练习题:准备适量的练习题,巩固所学知识。

七. 教学过程1.导入(5分钟)利用生活实例,如抛物线形操场、跳水板等,引导学生了解二次函数在实际生活中的应用。

激发学生的学习兴趣,引发学生的思考。

2.呈现(10分钟)展示二次函数的图像,引导学生观察图像的特点,如顶点、开口方向等。

讲解二次函数的性质,如增减性、对称性等。

3.操练(10分钟)让学生分组讨论,分析典型案例,引导学生掌握二次函数的顶点坐标的求法。

每组选择一个案例,进行探讨和分析。

2024年浙教版数学九年级上册1.4《二次函数的应用--二次函数与一元二次方程》教学设计

2024年浙教版数学九年级上册1.4《二次函数的应用--二次函数与一元二次方程》教学设计

2024年浙教版数学九年级上册1.4《二次函数的应用–二次函数与一元二次方程》教学设计一. 教材分析《二次函数的应用–二次函数与一元二次方程》是2024年浙教版数学九年级上册第1章第4节的内容。

本节课主要介绍了二次函数与一元二次方程之间的关系,以及如何利用二次函数图象解决一元二次方程的问题。

教材通过实例引导学生探究二次函数图象与一元二次方程解之间的关系,培养学生的数形结合思想,提高解决问题的能力。

二. 学情分析九年级的学生已经学习了二次函数的图象和性质,对二次函数有一定的认识。

但部分学生可能对一元二次方程的解法还不够熟练,对数形结合的思想还缺乏深刻的理解。

因此,在教学过程中,教师需要关注学生的认知差异,引导他们通过观察、操作、思考、探究等活动,掌握二次函数与一元二次方程之间的关系,提高解决问题的能力。

三. 教学目标1.理解二次函数与一元二次方程之间的关系,掌握利用二次函数图象解决一元二次方程问题的方法。

2.培养学生的数形结合思想,提高解决问题的能力。

3.激发学生的学习兴趣,培养合作、探究的精神。

四. 教学重难点1.重点:二次函数与一元二次方程之间的关系,利用二次函数图象解决一元二次方程问题。

2.难点:对二次函数与一元二次方程关系的深入理解,以及数形结合思想的运用。

五. 教学方法1.情境教学法:通过生活实例,引导学生发现数学问题,激发学习兴趣。

2.启发式教学法:引导学生观察、思考、探究,培养学生的独立思考能力。

3.合作学习法:学生进行小组讨论,培养学生的团队协作能力。

4.数形结合法:利用二次函数图象,直观地展示一元二次方程的解法。

六. 教学准备1.准备相关的生活实例和问题,以便引导学生探究。

2.制作课件,展示二次函数图象和一元二次方程的解法。

3.准备黑板、粉笔等教学工具。

七. 教学过程1.导入(5分钟)教师通过一个生活实例引入二次函数与一元二次方程的关系,激发学生的学习兴趣。

例如,假设一个物体从地面上抛,其高度与时间之间的关系可以表示为一个二次函数。

浙教版数学九年级上册《1.1 二次函数》教学设计

浙教版数学九年级上册《1.1 二次函数》教学设计

浙教版数学九年级上册《1.1 二次函数》教学设计一. 教材分析浙教版数学九年级上册《1.1 二次函数》是整个初中数学的重要内容,为学生提供了研究函数的一种重要方法。

本节课的主要内容是二次函数的定义、性质和图象。

通过学习,学生可以掌握二次函数的基本概念,了解二次函数的图象特征,为后续学习解析几何、概率论等知识打下基础。

二. 学情分析九年级的学生已经具备了一定的函数知识,掌握了函数的基本概念和一次函数的性质。

但在理解和应用二次函数方面,学生还存在一定的困难。

因此,在教学过程中,要注重引导学生运用已有的知识去探究和解决问题,激发学生的学习兴趣,提高学生的自主学习能力。

三. 教学目标1.了解二次函数的定义,掌握二次函数的表示方法。

2.理解二次函数的图象特征,会分析二次函数的性质。

3.能够运用二次函数解决实际问题,提高学生的应用能力。

4.培养学生的团队协作精神,提高学生的表达能力和思维能力。

四. 教学重难点1.二次函数的定义及表示方法。

2.二次函数的图象特征和性质。

3.二次函数在实际问题中的应用。

五. 教学方法1.采用问题驱动法,引导学生主动探究二次函数的定义和性质。

2.利用多媒体辅助教学,展示二次函数的图象,增强学生的直观感受。

3.采用案例分析法,让学生通过解决实际问题,掌握二次函数的应用。

4.小组讨论,培养学生的团队协作能力和表达能力。

六. 教学准备1.准备相关的多媒体课件,展示二次函数的图象。

2.准备一些实际问题,让学生进行案例分析。

3.准备小组讨论的主题,引导学生进行深入探讨。

七. 教学过程1.导入(5分钟)通过复习一次函数的知识,引导学生思考一次函数与二次函数的关系,激发学生的学习兴趣。

2.呈现(15分钟)利用多媒体课件,呈现二次函数的图象,引导学生观察和分析二次函数的性质。

同时,给出二次函数的定义及表示方法。

3.操练(20分钟)让学生通过解决一些实际问题,运用二次函数的知识进行计算和分析。

教师在这个过程中给予学生指导,帮助学生掌握二次函数的应用。

最新浙教版九年级数学上册《二次函数的应用》教学设计(精品教案).docx

最新浙教版九年级数学上册《二次函数的应用》教学设计(精品教案).docx

《二次函数的应用》教学设计一、教学背景分析:1.教学内容分析:二次函数的知识是七到九年级数学学习的重要内容之一,它的应用是本章的教学重点也是难点。

因为它是从生活实际问题中抽象出的数学知识,又是在解决实际问题时广泛应用的数学工具,因此这部分的教学内容具有重要意义;同时学好二次函数的应用,可又为高中进一步学习各类初等函数作好准备。

而经历从实际问题情景入手,抽象出解决问题的数学模型和相关知识的过程中不仅可以让学生体会数学的价值和建模的意义,更能提高学生应用数学知识解决问题的意识。

2.学生情况分析:本节课的授课对象是九年级的学生。

在此之前,学生已经掌握了求二次函数解析式的方法并理解图象上的点和图象的关系,并且学习了一元一次方程、一元一次不等式、一元二次方程、一次函数的应用,以及初步的二次函数的应用,经历了多次从实际问题抽象出数学知识再运用相关知识解决实际问题的过程;因此他们有解决简单实际问题的基础知识和基本能力。

但是,由于函数知识的抽象性,多数学生在学习时应用函数的意识并不强;同时,他们从实际问题中抽象出数学问题的能力以及利用已有的数学知识去解决的能力也是比较弱的。

二、教学重点:建立适当的坐标系解决实际问题.三、教学难点:正确理解实际问题中的量与坐标系中的点的对应关系.四、教学目标:1.能把实际问题归结为数学知识来解决,并能运用二次函数的知识解决实际问题.2.经历在具体情境中抽象出数学知识的过程,体验解决问题方法的多样性,体会建模思想,渗透转化思想、数形结合思想,提高数学知识的应用意识.3.在运用数学知识解决问题的过程中,体会数学的价值、感受数学的简捷美,并勇于表达自己的看法.五、教学方式:引导发现、合作探究六、教学手段:多媒体、学案七、教学过程:教学环节师生活动设计意图一、情境引入教师用多媒体展示颐和园图片:从学生熟悉的生活情境同学们知道这是哪儿吗?颐和园是目前中国最大、现存最完整的皇家园林。

在颐和园的湖区景点中,有一座非常著名的桥就是——十七孔桥,它是乾隆年间修建的,全长150米,宽8米,全长150米,宽8米;因有十七个桥洞而得名,是圆内最大的一座石桥。

浙教版九年级上册 1.4.2 二次函数的应用 教学设计

浙教版九年级上册 1.4.2 二次函数的应用 教学设计

《1.4.2二次函数的应用》教学设计一、教学目标(1)情感态度与价值观目标发展应用数学解决问题的能力,体会数学与生活的密切联系和数学的应用价值. (2)能力目标会综合运用二次函数和其他数学知识解决如有关距离、利润等的函数最值问题. (3)知识目标继续经历利用二次函数解决实际最值问题的过程. 二、教学重点利用二次函数的知识对现实问题进行数学地分析,即用数学的方式表示问题以及用数学的方法解决问题. 三、教学难点将现实问题的数学化,情景比较复杂. 四、教学方法自主探究、合作交流,采用多媒体问题引领 五、教学过程设计 问题引入,回顾旧知问题1:利用函数解决实际问题的基本思想方法?【设计意图】借助一次函数的实际应用,回忆函数解决实际问题的基本思想方法.问题2:求函数的最值问题,应注意什么? 图中所示的二次函数图象的解析式为:13822++=x x y⑴若-3≤ x ≤3,该函数的最大值、最小值分别为( )、( ). ⑵又若0≤ x ≤3,该函数的最大值、最小值分别为( )、( ). 预设:归纳出二次函数取最值时应考虑自变量的范围.【设计意图】通过辨析两个例子,归纳出二次函数取最值时应考虑自变量的范围. 问题2:如何求下列函数的最小值?y x x 2=2+4+5预设:体会问题的本质是求二次函数的最小值. 【设计意图】本问题是二次函数的优化模型的深入研究和发展,使学生进一步感受二次函数是探索自然现象、社会现象的重要工具.例1如图,B船位于A船正东26km处,现在A、B两船同时出发,A船以12 km/h的速度朝正北方向行驶,B船以5km/h的速度朝正西方向行驶,何时两船相距最近?最近距离是多少?预设:【设计意图】由实际问题先提炼几何图形,并类比问题3采用化归方法求二次函数最小值.例2 某超市销售一种饮料,每瓶进价为9元,经市场调查表明,当售价在10元到14元之间(含10元,14元)浮动时,每瓶售价每增加0.5元,日销售量减少40瓶;当售价为每瓶12元时,日均销售量为400瓶,问销售价格定为每瓶多少元时,所得日均毛利润(每瓶毛利润=每瓶售价-每瓶进价)最大?最大日均毛利润为多少元?预设:等量关系单件利润=售价-进价;总利润=单件利润×销售数量列表分析如下:单价单利数量降价前123400降价后X x-91360-80xy=(x-9)(1360-80x)=-80x²+2080x-12240-ba2=13,在x10≤≤14的范围内.所以当x=13时,maxy=1280元.【设计意图】感受列表格的优势,并经历二次函数求最值应先确定自变量的取值范围.练1某大棚内种植西红柿,其单位面积的产量与这个单位面积种植的株树构成一种函数关系,每平方米种植4株时,平均单株产量为2kg ,以同样的栽培条件,每平方米种植的株树每增加1株,单株产量减少 kg ,问:每平方米种植多少株时,能获得最大的产量?最大产量为多少?预设:列表分析如下:x x x y x x x 2-4⎛⎫⎛⎫=2-=3-=-+3 ⎪ ⎪444⎝⎭⎝⎭ ()x 21=--6+94(x >0,且x 为正整数) ∴ 当x =6时,获得最大产量,最大产量为9kg .练2 上午8点,某台风中心在A 城正南方向的200km 处,以25km /h 的速度向A 城移动,此时有一辆卡车从A 城以100km /h 的速度向正西方向行驶,问何时这辆卡车与台风中心的距离最近?当距离最近时台风中心与这辆卡车分别位于何处? 题目分析:设经过的时间为t (h ) ,卡车与台风中心的 距离CB 为s (km ) .则AC =100t ,AB =200-25t.s ==(t >0)∴当t 8=17时,s 有最小值,即在8:28,台风中心与卡车分别离A 城约188km 和47km . 小结新课,梳理新知。

最新浙教版九年级数学上册《二次函数一》教学设计

最新浙教版九年级数学上册《二次函数一》教学设计

1.1二次函数教学目标:1、从实际情景中让学生经历探索分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法去描述变量之间的数量关系。

2、理解二次函数的概念,掌握二次函数的形式。

3、会建立简单的二次函数的模型,并能根据实际问题确定自变量的取值范围。

4、会用待定系数法求二次函数的解析式。

教学重点:二次函数的概念和解析式教学难点:本节“合作学习”涉及的实际问题有的较为复杂,要求学生有较强的概括能力。

教学设计:一、创设情境,导入新课问题1、现有一根12m长的绳子,用它围成一个矩形,如何围法,才使举行的面积最大?小明同学认为当围成的矩形是正方形时,它的面积最大,他说的有道理吗?问题2、很多同学都喜欢打篮球,你知道吗:投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度?这些问题都可以通过学习俄二次函数的数学模型来解决,今天我们学习“二次函数”(板书课题)二、合作学习,探索新知请用适当的函数解析式表示下列问题中情景中的两个变量y与x之间的关系:(1)面积y (cm2)与圆的半径 x ( Cm )(2)王先生存人银行2万元,先存一个一年定期,一年后银行将本息自动转存为又一个一年定期,设一年定期的年存款利率为文 x 两年后王先生共得本息y元;(3)拟建中的一个温室的平面图如图,如果温室外围是一个矩形,周长为12Om , 室内通道的尺寸如图,设一条边长为 x (cm), 种植面积为 y (m2)(一)教师组织合作学习活动:1、先个体探求,尝试写出y与x之间的函数解析式。

2、上述三个问题先易后难,在个体探求的基础上,小组进行合作交流,共同探讨。

(1)y =πx 2 (2)y = 2000(1+x)2 = 20000x 2+40000x+20000(3) y = (60-x-4)(x-2)=-x 2+58x-112(二)上述三个函数解析式具有哪些共同特征?让学生充分发表意见,提出各自看法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《二次函数》教案
教学目标
1、从实际情景中让学生经历探索分析和建立两个变量之间的二次函数关系的过程,进
一步体验如何用数学的方法去描述变量之间的数量关系.
2、理解二次函数的概念,掌握二次函数的形式.
3、会建立简单的二次函数的模型,并能根据实际问题确定自变量的取值范围.
4、会用待定系数法求二次函数的解析式.
教学重点
二次函数的概念和解析式.
教学难点
本节“合作学习”涉及的实际问题有的较为复杂,要求学生有较强的概括能力.
教学设计
一、创设情境,导入新课.
问题1、现有一根12m长的绳子,用它围成一个矩形,如何围法,才使举行的面积最大?小明同学认为当围成的矩形是正方形时,它的面积最大,他说的有道理吗?
问题2、很多同学都喜欢打篮球,你知道吗:投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度?
这些问题都可以通过学习俄二次函数的数学模型来解决,今天我们学习“二次函数”(板书课题)
合作学习,探索新知.
请用适当的函数解析式表示下列问题中情景中的两个变量y与x之间的关系:
(1)面积y (cm2)与圆的半径 x ( cm ) .
(2)王先生存人银行2万元,先存一个一年定期,一年后银行将本息自动转存为又一个一年定期,设一年定期的年存款利率为文 x 两年后王先生共得本息y元;
(3)拟建中的一个温室的平面图如图,如果温室外围是一个矩形,周长为12cm , 室内通道的尺寸如图,设一条边长为 x (cm), 种植面积为 y (cm2) .
教师组织合作学习活动: 1、 先个体探求,尝试写出y 与x 之间的函数解析式.
2、 上述三个问题先易后难,在个体探求的基础上,小组进行合作交流,共同探讨.
(1)y =πx 2
(2)y = 2000(1+x)2 = 20000x 2+40000x+20000
(3)y = (60-x-4)(x-2)=-x 2+58x-112
上述三个函数解析式具有哪些共同特征?
让学生充分发表意见,提出各自看法.
教师归纳总结:上述三个函数解析式经化简后都具y=ax ²+bx+c (a,b,c 是常数, a ≠0)的形式.
板书:我们把形如y=ax ²+bx+c(其中a,b,C 是常数,a ≠0)的函数叫做二次函数(quadratic funcion)
称a 为二次项系数, b 为一次项系数,c 为常数项.
请讲出上述三个函数解析式中的二次项系数、一次项系数和常数项
做一做
1、下列函数中,哪些是二次函数?
(1)2x y = (2)21x y -
= (3)122--=x x y (4))1(x x y -= (5))1)(1()1(2-+--=x x x y
2、分别说出下列二次函数的二次项系数、一次项系数和常数项:
(1)12+=x y (2)12732-+=x x y (3))1(2x x y -=
3、若函数m m x m y --=2)1(2为二次函数,则m 的值为 .
三、例题示范,了解规律.
1
1
1 3 x
例、已知二次函数 q px x y ++=2当x=1时,函数值是4;当x=2时,函数值是-5.求这个二次函数的解析式.
此题难度较小,但却反映了求二次函数解析式的一般方法,可让学生一边说,教师一边板书示范,强调书写格式和思考方法.
练习:已知二次函数c bx ax y ++=2 ,当x=2时,函数值是3;当x=-2时,函数值是2.求这个二次函数的解析式.
例、如图,一张正方形纸板的边长为2cm ,将它剪去4个全等的直角三角形(图中阴影部分).设AE=BF=CG=DH=x(cm) ,四边形EFGH 的面积为y(cm 2),求:
(1)y 关于x 的函数解析式和自变量x 的取值范围.
(2)当x 分别为0.25,0.5,1.5,1.75时,对应的四边形EFGH 的面积,并列表表示.
方法:
(1)学生独立分析思考,尝试写出y 关于x 的函数解析式,教师巡回辅导,适时点拨.
(2)对于第一个问题可以用多种方法解答,比如:
求差法:四边形EFGH 的面积=正方形ABCD 的面积-直角三角形AEH 的面积DE4倍. 直接法:先证明四边形EFGH 是正方形,再由勾股定理求出EH 2
(3)对于自变量的取值范围,要求学生要根据实际问题中自变量的实际意义来确定.
(4)对于第(2)小题,在求解并列表表示后,重点让学生看清x 与y 之间数值的对应关系和内在的规律性:随着x 的取值的增大,y 的值先减后增;y 的值具有对称性.
练习:
用20米的篱笆围一个矩形的花圃(如图),设连墙的一边为x,矩形的面积为y,求: A
B E F
C
G D
H
(1)写出y关于x的函数关系式.
(2)当x=3时,矩形的面积为多少?
x
四、归纳小结,反思提高.
本节课你有什么收获?
五、布置作业.
课本作业题.。

相关文档
最新文档