建筑给排水工程设计外文翻译--水表设置

合集下载

建筑给排水英文文章

建筑给排水英文文章

建筑给排水英文文章一、IntroductionIn the field of architecture, plumbing systems play a crucial role in providing clean water and removing waste from a building. Effective and efficient building plumbing systems are essential for the health and safety of occupants. This article will explore the various aspects of building plumbing systems, including design principles, materials used, installation methods, and maintenance requirements.二、Design PrinciplesA well-designed plumbing system in a building relies on several key principles:1. Water Supply DesignThe design of a water supply system involves determining the source of water, calculating the required flow rate, and sizing the pipes accordingly. Factors such as building size, occupancy, and water demand must be considered. Additionally, backflow prevention devices are installed to prevent contamination of the water supply.2. Drainage System DesignThe drainage system design focuses on removing wastewater from the building and ensuring proper disposal. Gravity is commonly used to move wastewater through a series of pipes and drains. Proper slope, pipe diameter, and venting are important considerations to prevent blockages, odors, and sewer gas leaks.3. Fixture LayoutThe layout of plumbing fixtures, such as sinks, toilets, and showers, should be carefully planned to optimize water usage, convenience, andaccessibility. Adequate space and accessibility for maintenance should be considered during the design phase.三、Materials UsedVarious materials are used in the construction of plumbing systems. The choice of materials depends on factors such as the type of water supply, budget, and local regulations. Common materials used include:1. PipesPipes are typically made of materials such as copper, galvanized steel, PVC (polyvinyl chloride), and PEX (cross-linked polyethylene). Each material has its advantages and disadvantages, such as durability, cost, ease of installation, and resistance to corrosion.2. Fittings and ValvesFittings and valves connect and control the flow of water within the plumbing system. They are available in materials like brass, copper, and plastic. The choice of fittings and valves depends on the specific requirements of the system and its intended use.四、Installation MethodsProper installation of plumbing systems is crucial to ensure their functionality and longevity. Different installation methods are used depending on the building structure and plumbing system design. Some common installation methods include:1. Traditional Open-Cut MethodThis method involves excavating trenches for the placement of pipes. It allows for easy access and repair but can be time-consuming and disruptive, especially in existing buildings.2. Trenchless TechnologyTrenchless technology, such as pipe bursting and pipe lining, is gaining popularity due to its minimal disruption and cost-effectiveness. It involves using specialized equipment to repair or replace pipes without the need for extensive excavation.五、Maintenance RequirementsRegular maintenance is essential to keep building plumbing systems in optimal condition. Neglecting maintenance can lead to leaks, blockages, and water damage. Some important maintenance requirements include:1. Regular InspectionsPeriodic inspections of the plumbing system can help identify any potential issues before they escalate into costly repairs. Inspections should include checking for leaks, proper drainage flow, and functioning of valves and fixtures.2. Clearing BlockagesBlockages in drains and pipes should be promptly cleared to prevent backups and plumbing system failures. This may involve using mechanical tools or chemicals, depending on the nature of the blockage.3. Water Heater MaintenanceWater heaters should be inspected and serviced regularly to ensure efficient and safe operation. This includes checking for leaks, sediment buildup, and testing the pressure relief valve.六、ConclusionBuilding plumbing systems are vital for the functionality and comfort of a building. Proper design, choice of materials, installation methods, and regular maintenance are key factors in ensuring the performance and longevity of these systems. By following the principles discussed inthis article, architects, engineers, and building owners can createreliable and efficient plumbing systems that meet the needs of occupants while adhering to relevant regulations.。

建筑给水排水设计规范(英文版)

建筑给水排水设计规范(英文版)

NATIONAL STANDARDOF THE PEOPLE’S REPUBLIC OF CHINA中华人民共和国国家标准Code for Design of BuildingWater Supply And Drainage建筑给水排水设计规范 GB 50015-2003Edited by: Shanghai Construction and Management CommitteeApproved by: Ministry of Construction of the People’s Republic of China Implemented on: September 1, 20032003 Bei jingNOTICEThis code is written in Chinese and English. The Chinese text shall be taken as the ruling one in the event of any inconsistency between the Chinese text and the English text.Notification of Ministry of Construction of the People’s Republicof ChinaNo. 138Notification of national standard Code for Design of Building Water Supply And Drainage made by the Ministry of Construction of the People’s Republicof ChinaNow “Code for Design of Building Water Supply A nd Drainage” as the national standard, with the No. of GB 50015-2003, and will be implemented from September1,2003. Among which, No.3.2.1,3.2.3,3.2.4,3.2.5,3.2.6,3.2.9,3.2.10,3.2.14,3.5.8,3.9.1,3.9.3,3.9.4,3.9.9,3.9.12,3.9.14,3.9.22,3.9.24,3.9 .27,4.2.6,4.3.5,4.3.6,4.3.13,4.3.19,4.5.9,4.8.4,4.8.8,5.4.5,5.4.20 are mandatory clauses, and should be strictly implemented. At the same time The former Code for Design of Building Water Supply And Drainage GBJ 15-88 shall be abrogated on the same date.This code is published and issued by China Plan Press organized by Standard & Cost Research Institute of the Ministry of Construction.Ministry of Construction of the People’s Republic of ChinaApril. 15, 2003PrefaceThe pre sent code is a revision of the former national standard <Code for Design of Building Water Supply and Drainage> GBJ 15-88 managed by Shanghai Municipal Construction Commission, compiled by Shanghai Xian Dai Architectural Design (Group) Co., Ltd jointly with the China Architecture Design & Research Group and the Architectural Design and Research Institute of Guangdong Province, according to the official document NO.JB [1998] 94 of the Ministry of Construction of the People's Republic of China.In the process of the revision, summed the engineering experience in building water supply and drainage in recent years, developed topic deliberation to major issue, proposed the questionnaire opinion manuscript and worked out by Establishment Group in the foundation of wide suggestions from the units of designing, researching and universities all our country.The major revisions of technology are (1) residential area water supply and drainage design has been added; (2) dwelling and public buildings rated water consumption has been readjusted and added;(3) the measures to prevent pollution in pipe connect have been added;(4) applied technology of new types of pipe has been added;(5) probability formula of calculating second flow of domestic water supply has been adopted;(6) hydraulic calculation of varied types of pipe has been unified;(7) recycle water treatment of aquatic recreation pool has been added;(8) the design for cooling water and recycle water has been added;(9) details of hospital sewage, water supply and drainage for swimming pool expressed in association standards have been deleted, only provisions of principle, safety and sanitation reserved;(10) the provisions on water supply and drainage for production technology have been deleted;(11) the parameter of pressure flow of roof rainwater has been added;(12) applied range for design heat consumption of maximum hour with central hot water supply has been readjusted;(13) calculation of natural cycle hot water pipe system has been deleted;(14) technology essential and parameter of hot water machine set and water heater have been added and (15) relevant contents of fine drinking water pipe system have been added.The information and provisions revised will be published on the magazine “standardization of engineering construction”while the code needs to revise in part.The compulsory provisions in the code that indicated by boldface type must carry out strictly.Ministry of Construction of the People's Republic of China will be responsible for supervision of the present code and explanation about the compulsory provisions,Shanghai Municipal ConstructionCommission for its handled and Shanghai Xian Dai Architectural Design (Group) Co., Ltd. for its specific explanation. If users find, in the course of execution of the present code, any points which need to be modified or supplemented, they are requested to give their suggestions and concerned documents to Shanghai Xian Dai Architectural Design (Group) Co., Ltd. (Shanghai Shi Men second road 258th Modern architectural design edifice, national standard “code for design of building water supply and drainage”Manage Group, ZIP code:200041)for reference during the next revision of the present code.Chief editorial unit, participating units and main drafting staffs of this code.Chief editorial unit:Shanghai Xian Dai Architectural Design (Group) Co., Ltd.Participating units:China Architecture Design & Research GroupArchitectural Design and Research Institute of Guangdong ProvinceMain drafting staffs:Zhang Miao, Liu Zhenyin, He Guanqin, Feng Xudong, Sang LuqingContents1 General (1)2 Terms、Symbols (2)2.1 Terms (2)2.2 Symbols (7)3 Water supply (12)3.1 Rated water consumption and water pressure (12)3.2 Water quality and water quality pollution protection (19)3.3 System selection (20)3.4 Pipe material,fittings and water meter (21)3.6 Design flow and hydraulic calculation of pipe (27)3.7 Water tower, Water tank, Reservoir (32)3.8 Pressurizing equipment, pump house (34)3.9 Swimming pool and aquatic recreation pool (37)3.10 Cooling tower and circulation cooling water (40)3.11 Waterscape (42)4 Water Drainage (44)4.1 Selection of drainage system (44)4.2 Sanitary fixture and water lock (44)4.3 Pipe location and pipelining (45)4.4 Calculation of drainage pipe (49)4.5 Pipe material fittings and inspection well (53)4.6 Vent pipe (56)4.7 Sewage pump and catch pit (58)4.8 Local domestic sewage disposal (59)4.9 Rain Water (62)5 Hot water and drinking water supply (67)5.1 Rated consumption, temperature and quality of hot water (67)5.2 Selection of hot water supply system (70)5.3 Calculation of heat consumption, hot water quantity and heating equipment hot supply (72)5.4 Water heating and storage (75)5.5 Calculation of net work (81)5.6 Pipe, fitting and pipeline laying (83)5.7 Potable water supply (85)Appendix A Residential district underground pipeline (structure) minimum net clearance between lines (87)Appendix B Valves and screw fittings resistance loss converted length of compensation (88)Appendix C Water supply pipe section sanitary fixtures water supply equivalent simultaneously outflowα coefficient values table (89)probability calculated equation,cAppendix D Water supply pipe section designed second flow calculation table (90)Appendix E Drinking water number of taps simultaneously use in the calculated pipe section (104)Explanation of wording in this standard (105)1 General1.0.1 This code has been prepared for the purpose of ensuring the quality of building water supply and drainage design, set the design to meet the basic requirement of safety、hygiene、applicability、economy.1.0.2 This code is applicable to the residential area、civil building water supply and drainage design, and also applicable to the industrial building domestic water and drainage and factory roof rain-fall run-off design.But when design the following projects, current relevant specified code or regulation must be complied:1 Collapsible soil、perennially frozen soil and expansive soil region building.2 Building with anti-seismic intensity more than 9.3 Mineral water cure, civil air defense works.4Industrial production water supply and drainage.5Building reclaimed water.1.0.3 Building water supply and drainage design must meet the application demands and also provide convenience for construction installation、operation management、maintenance inspection and safety protection.1.0.4 Building water supply and drainage engineering design must comply with this code, in addition, must comply current relevant national standard codes requirement.2 Terms、Symbols2.1 Terms2.1.1Potable waterWater quality meets portable water hygienic standard apply to usual drinking and washing water. 2.1.2Non-potable waterWater mot safe for drinking or for personal or culinary use, apply to wash sanitary fixture、vehicle、road sprinkling、irrigate greenbelt、complement air condition circulating water.2.1.3Hourly variation coefficientRatio between maximum daily maximum hourly water consumption and average hourly water consumption.2.1.4Maximum hourly water consumptionWithin maximum daily water consumption day time, the maximum water consumption per hour.2.1.5Backflow pollutionA condition which may occur in the potable water distribution system.1 Due to negative pressure in the pipeline, causing a reversal of flow from water storage tank, plumbing fixture liquid mixture back flow water.2 Due to non-drinking water or other liquid mixture flow into water supply system.2.1.6Air gap1 The vertical space distance between the lowest point of water supply pipeline outlet and the receptor or fixture which water overflows.2 The vertical space distance between the lowest point of indirect drainage facility or storage out let and the receptor or fixture which water overflows.2.1.7Flood-level rimThe edge of the receptor or fixture which water overflows.2.1.8Service pipeThis pipe from the water main in the street or municipal pipeline of supply to the building served area.2.1.9Building unite pipeWater supply and drainage pipeline laying around the building directly connect with building inlet and outlet pipe.2.1.10Inlet pipePipe between water meter in building and out door building unite pipe.2.1.11V ertical division blockThe building water supply system is vertically divided into a certain number of blocks.2.1.12Parallel water supplyWater supply system in vertical division block with parallel distribution pattern.2.1.13Series water supplyWater supply system in vertical division block with series distribution pattern.2.1.14Exposed installationIndoor pipeline with exposed installation.2.1.15Concealed installation, embedded installationIndoor pipeline installed in wall channel/well or pipe duct, or conceded in by architectural decoration.2.1.16 ManifoldA fitting or pipe with many outlets or connections relatively close together. 2.1.17 compression connectionsPipe connection by compressed the spigot to the bell or a coupling.2.1.18 Coupling connectionsPipe connection by using special pipe clamp and clamp ring-connecting pattern.2.1.19Coefficient of expansionThe increase in unit pipeline length for one degree rise in temperature.2.1.20Plumbing fixtureInstalled receptacles, device or appliance which are supplied with water or which receive liquid or liquid-borne wastes and discharge such wastes into the drainage system to which they may be directly or indirectly connected.2.1.21Fixture unitA quantity in terms of which the load producing effects on the plumbing system of different kinds of plumbing fixture are expressed on some arbitraity chosen scale.2.1.22 Rate of flowThe quantity of water lows out in a unite time of a plumbing fixture.2.1.23Design flowThe average quantity of flow of water supply or water drainage in a certain period, it is the basic design flow of basic of building water supply and drainage pipeline system.2.1.24Head lossThe loss of pressure (or water head) in water supply and drainage pipe system.2.1.25 Pneumatic water supplyWater supply pattern, a composite set of pump and pressure vessel and accessories, water pumps into pressure vessel, the compress air of vessel automatically regulate the amount of eater supply and keep the pressure of water supply.2.1.26Point of distributionPoints of water consumption of water supply system.2.1.27 Circulating periodRatio between circulation capacity per unit of time period and the effective water volume in circulating system structure and the transmission pipeline.2.1.28 Back washWhen filter clogging occurs, flash back with comparative high-pressure water flow.2.1.29Unassured hour for average yearYearly average value of accumulated average year unassured total number of hours.2.1.30 Water quality stabilization treatmentWater treatment process, keep the concentration of calcium carbonate and carbon dioxide in an equilibrium state in the circulating cooling water (neither calcium carbonate deposit nor solution corrosion), and restrain bacteria production.2.1.31Cycle of concentrationRatio of salt concentration between circulating cooling water and the added water.2.1.32Self-primingThe top of centrifugal pump with horizontal axis, 1st stage inlet of centrifugal pump with vertical axis with multistage are set below the lowest design starting elevation, start up by gravity flow of water into the pump body.2.1.33Waterscape, fountainArtificial build up waterscape, foundation.2.1.34 Domestic soilBuilding sewage containing human waste.3.1.35Domestic waste waterBuilding drain from domestic wash water.3.1.36Domestic sewageThe water-borne wastes derived from ordinary living processes.3.1.37Building drain, outlet pipeThat part of the lowest piping of a discharge system which receives the discharge from soil, waste and other drainage pipes inside the walls of the building and conveys it to the outdoor manhole.3.1.38 V ertical pipe, riser, stackAny pipe or fitting which makes an angle of 45°or more with the horizontal.3.1.39Horizontal pipeAny pipe or fitting which makes an angle of less than 45°with the horizontal.2.1.40 CleanoutFitting for inside pipe cleaning installed on horizontal drain pipe.2.1.41Check hole, check pipeWith open cover, set on pipeline system for inspection and cleaning.2.1.42TrapA fitting or device which provides a liquid seal to prevent the emission of sewer gasses without materially affection the flow of sewage or waste water through it.2.1.43Water seal (trop seal)The maximum vertical depth of liquid that a trap will retain, measured between the crown weir and the top of the dip of the trap.2.1.44 H pipeH type fitting for connection vertical drain pipe and vent pipe.2.1.45V ent pipePart of the vent system for drainage system air circulation, stable pressure, prevent the failure of water seal.2.1.46V ent stackVertical vent pipe installed to provide circulation of air to and from the drainage system and which extends through one or more stories.2.1.47Specific vent stackVertical vent stack only connect with vertical drain pipe, for the air circulation of vertical drain pipe.2.1.48V ent headersVent pipe section connect with several vent stacks or vertical drain top vent section and stretch out door into open air.2.1.49Main ventThe principal artery of the venting system to which vent branches may be connected.2.1.50Continuous vent stackVent stack only connect with loop vent, for air circulation of drain horizontal branch.2.1.51Loop ventA circuit vent pipe section which loops back to connect with a stack vent instead of a vent stack.2.1.52Fixture ventPipe section from the outlet of the trap of plumbing fixture to the vent stack..2.1.53Y oke vent, yoke vent pipePipe section connecting the drain vertical pipe to the vent stack.2.1.54Air gap drainage systemThe outlet of waste pipe of fixture and the flood rim of the receptor which is discharging.2.1.55 Buried depthVertical distance between buried pipe top to the ground surface.2.1.56Angle of turning flowAngle between original fl ow direction and turning flow direction.2.1.57Depth ratioDegree of fullness of water flow in the conduit, ratio between water depth in pipe and pipe diameter.2.1.58 Grease interceptorSmall treatment structure for intercept, collect grease from domestic waste water.2.1.59Cooling tankTreatment structure to decrease temperature of drain water.2.1.60Septic tankA receptacle which receives the discharge of a drainage system for ratain solid, digest organic matter through a period of detention and allow the liquid to discharge into the outside soil pipe.2.1.61Reclaimed waterEffluent from a waste water treatment plant that has undergone external treatment to remove harmful pathogens, organic material and heavy metals.2.1.62Hospital sewagePolluted drainage water from hospital.2.1.63Primary treatmentMechanical treatment, waste water primary treated by mechanical measures.2.1.64Secondary treatmentComposite of mechanical treatment and biochemical or chemical treatment for waste water treatment process.2.1.65Air changeRatio between volume of room space and volume of draw in or blow-off the ventilation system within a unit of time.2.1.66Rainfall intensityRainfall in a unit of time, usually expressed as mm/min(or L/s·h).2.1.67Recurrence intervalThrough static analysis of long time observed rainfall record, equal or greater than some storm intensity rainfall occur once average interval time, the expressed unit is usually in year.2.1.68 Duration of rainfallAny continuous time section of rainfall duration, the expressed unit is usually in min.2.1.69 Inlet timeTime of rain water from correspond catchment area farthest spot surface flow into drain pipe inlet, the expressed unit is usually in min., abbreviated inlet time.2.1.70Time of flowTime of rainwater flow in the pipe, the expressed unit is usually in min, abbreviated time of flow. 2.1.71Catchment areaDrain conduit for rainfall catchment area, expressed unit usually in m2 of km2.2.1.72Gravity flow storm drainage systemHydraulic design of storm drainage pipeline is based on gravity flow system.2.1.73Pressure storm systemHydraulic design of storm drainage pipeline is based on pressure flow system.2.1.74Gully trapGround surface rain water inlet well with gully gratings and frames.2.1.75Down pipe, down spoutDown pipe installed on inside or outside building wall applied to drain roof rainwater.2.1.76Hanged pipeHorizontal pipe hang on building floor, beam or roof truss.2.1.77Rain strainerA receptor facility receives roof surface rain water flow into down pipe.2.1.78Runoff coefficientRatio between volume of certain catchment rain water and volume of rainfall water.2.1.79Centralized got water heat-supply systemHot water supply system for one set or many set building.2.1.80Regional hot-water supply systemA small hot water supply system used only to supply single or several point of distribution.2.1.81Open-type hot-water supply systemHot water pipe system is open to the air in the hot water supply system.2.1.82Closed-type hot-water supplyHot water pipe system is closed to the air in the hot water supply system.2.1.83One pipeline hot water systemHot water system with one pipe supply, one temperature, no water temperature regulation of the rater use spot.2.1.84Heat sourceEnergy for heating hot water.2.1.85Heating mediumHeat transmission carrier for heat-supply system. Usually is hot water, steam, smoke.2.1.86Waste heatDischarge from industrial production with heated waste such as waste steam, high temperature waste water, high temperature smoke.2.1.87Design maximum heat consumption of one hourMaximum heat consumption per hour in the hot water supply system installation.2.1.88Reversed return hot water systemThe length of supply and return pipeline is nearly equal in a hot water supply system.2.1.89Heat medium circulation systemThe heat medium circulating system between steam boiler and water heater or hot water boiler and hot water storage tank in the central hot water supply system.2.1.90Upper pipe water supply systemWater supply horizontal pipe is installed at the upper part of distribution pipe system, water flows downward through vertical pipe.2.1.91Lower pipe water supply systemWater supply horizontal pipe is installed at the lower part of distribution pipe system, water flows upward through vertical pipe.2.1.92Water return pipePart of a hot water circulation system in which the restoration to the point of heating source is accomplished.2.1.93Fine drinking waterRaw water confirms to drink standard quality through thorough purification can drink directly.2.2 Symbols2.2.1Flow rate, flow velocityq-Water supply flowgq-Flow rate of water supply or drain of plumbing fixtureoq-Drain flowpq-Rated hot water supplyrq-Designed hourly hot water supplyrhq-Hourly rated hot water supply of plumbing fixturehq-Circulation flowxq-Maximum flowmaxq-Replenishing waterbcq-Designed rain water flowyq-Designed rain fall intensityjq-Loss of water due to windage in cooling towerfq-Loss of water due leakage in cooling towersq-Loss of water due evaporation in cooling towerzq-Pump out flowbv-A verage water flow velocity in the pipe2.2.2Water pressure, loss of water headR-Hydraulic radiusI-Hydraulic gradientP-Pressurei-Loss of head of unit length pipelineh-Loss of head of circulation flow pass through distribution pipe net work ph-Loss of head of circulation flow pass through return pipe/net workxH-Natural pressure of the first circulation pipexrH-Pump headb2.2.3 Geometrical characteristicsF-Heating areajrF-Catchment areawh、H-HeightV-Total volume of air pressure water tankqV-Rater volume of air pressure water tank1qV-Regulated volume of air pressure water tankq2V-V olume of heat storagerV-Effective volume of expansion water tankpV-V olume of expansion water tankeV-Water volume of hot water pipeline systemsd-Calculated pipe interior diameterj2.2.4Calculation coefficientk、α-Coefficient determination based on the use of buildingb-Percentage of plumbing fixture for water supply and drainage simultaneously and percentage of plumbing fixture work simultaneouslyN-Concentration multiplenn-Coefficient of pipe roughnessK-Coefficient of heat conductionK-Hourly variable coefficienthU-Probability of simultaneous out flow of water supply of plumbing fixtureU-Probability of average out flow of water supply of plumbing fixture during maximum water ousageα-Factor of safetyaα-Working pressure ratio of air pressure water tankbc α-Coefficient correspond to o Uβ-V olume coefficient of air pressure water tankΨ-Run off coefficientM -Discounted coefficientη-Effective heat storage volume coefficientε-Coefficient of heat transmission effectiveness due to scale deposit and uneven distribution of heat mediar C -Heat loss coefficient of hot water supply systemh C -Hayen Williams roughness coefficient2.2.5 Heat, temperature, specific gravity and timeg Q -Designed hour heat supplyh Q -Designed hour heat consumptionz Q -Heat demand for heating hot waters Q -Hot loss of distribution pipelinet -Rain fall duration1t -Time of ground surface water catchment2t -Time of storm water flow in pipeT -Time of durationr t -Temperature of hot raterl t -Temperature of cold waterc t -Initial temperature of heated waterz t -Final temperature of heated waterj t ∆-Calculated temperature differencemc t -Initial temperature of heat mediamz t -Final temperature of heat media。

给排水工程外文翻译

给排水工程外文翻译

给排水工程外文翻译 Final approval draft on November 22, 2020Short and Long Term Advantage roof drainage design performanceDecade has witnessed great changes in the design of the roof drainage system recently, particularly, siphon rainwater drainage system has been gradually improved, and there is likely to be the key application. At the same time these changes, urban drainage system design has undergone tremendous changes, because the scope of a wider urban drainage system design for sustainable development, as well as people for climate change flooding more attention. The main contents of this article is how to design roof drainage systems and make a good performance. Special attention is how to get rid of bad habits already formed the design, but also need to consider innovative roof drainage system, such as green roofs and rainwater harvesting systems.Practical application: In the past few years, the design of the roof rainwater drainage system has undergone tremendous changes. On large buildings, siphon rainwater drainage technology has been very common, as well as green roofs because it is conducive to green development, being more and more applications. Taking into account the ongoing research, this article focuses on how to effectively design a variety of roof rainwater drainage system, and make it achieve the desired design effect.1. IntroductionIn the past decade, the city and the water drainage system design has been widely accepted thinking about sustainable urban drainage system, or the optimal management direction. The main principles of the design of these systems is both a local level in line with the quality of development, but also to create some economic benefits for the investors. This principle has led to the development of new changes in the sump. Although the application of such a device is gradually reduced, but the urban environment relatively high demand areas still require 100% waterproof and rapid drainage, such as the roof. Typically roof drainage system in the design, construction and maintenance has not been given due attention. Although the drainage system investment costs account for only a small portion of the total construction investment, but not able to judge the loss caused by poor design.There are two different forms of roof drainage system design methods, namely the traditional and siphon method. Traditional systems rely on atmospheric pressure work, the drive ram affectedsink flow depth. Therefore, the conventional roof drainage systems require a relatively large diameter vertical drop tube, prior to discharge, all devices must be connected to the groundwatercollection pipe network. In contrast, siphonic roof drainage pipe systems are generally designed to full flow (turbulent flow meansthat require less exhaust pipe), which will form a negative pressure, the larger the higher flow rate and pressure head. Typically siphon system requires less down pipe work under negative pressure to the water distribution network can mean higher altitude work, thereby reducing the amount of underground pipe network.Both systems consists of three parts: the roof, rainwater collection pipes, pipe network.All of these elements are able to change the water pressure distribution system. This section focuses on the role and performance of each part. Due to the principle of siphon system has not been well understood, resulting argument is relatively small, this article will highlight siphon system.2. RoofThe roof is usually designed by the architect, designer and not by the drainage design. There are three main roof.2.1 Flat roofFlat roofs are used in industrial buildings less rainfall regions and countries. This roof is not completely flat, but lower than the minimum roof slope may require. For example, the United Kingdom require maximum slope of 10 °. Setting minimum slope in order to avoid any unnecessary water.Despite the flat roof if it is not properly maintained will have more problems, but it will reduce the dead zone within the building, and the ratio of sloping roofs in favor of indoor air.2.2 sloping roofsMost residential and commercial buildings are pitched roof, inclined roof is the biggest advantage can quickly drain, thereby reducing leakage. In temperate regions, we need to consider carrying roof snow load. Once it rains, rainfall through the sloping roofs can be determined by calculation. When rainfall data can be used, you can use the kinematic theory to solve such problems.2.3 green roof (flat or inclined)It can prove roof is the oldest green roofs, including rainfall can reduce or disperse roof planted with plants. It can be planted with trees and shrubs roof garden, it can also be a vegetated roof light carpet. Wherein the latter technique has been widely used. Some of these applications tend to focus on aesthetic requirements and are often used in green development. Since the aesthetic requirements and pressure requirements, as well as green roofs thermal insulation function, reduce the heat island effect, silencer effect, extend the life of the roof.Green roofs in Germany, the most widely used, followed in North America, but to consider the impact on the aesthetics. Germany is by far the most experienced countries in the 19th century have practical application, then as an alternative to reduce the risk of fire tarroof an option in urban areas. Germany is currently the main research question on the cultivation of other issues to consider smaller cities. A study from 1987 to 1989, was found packed with 70 mm thick green roof can be reduced by 60% -80% of heat loss. In a Canadianwork computer model based on the roof indicates that as long as the sump, the area can reach 70% of the roof area can be reduced by 60 percent in one year, the same model was also used for artificial rainfall, which the results indicate that rainfall in the catchment season helps to drain away rainwater.However, none of these studies show that green roofs can play a useful role in the rainfall season, or how high collection efficiency of water supply. The United States did some tests, as long as the green roofs regular watering, can reduce 65 percent of the runoff ina rainfall. America's most authoritative green roof guidelines by the New Jersey state environmental agencies promulgated. The mainprinciple is to solve the structural problems of light, and how can the normal drainage after two years.Rainfall period is based on the probability of failure is determined. The system is typically based on rainfall during rainstorms two minutes, two minutes, have a choice. Although this model will get more traffic, but there is no other better alternative. Studies have shown that the traditional model is applied to study green roofs are premature.Loss factor than traditional roof records should be small, about 98.7%.Peak flow will be reduced, although not penetrate, the surface roughness but also have a significant impact.Concentrated rainfall than two minutes for a long time,especially for large roof areas, such as public buildings, commercial buildings, industrial buildings.Urban drainage design should also consider other factors, for a complex system, a green roof in a rain is not enough. Water flow duration curve shows a longer than traditional systems. And two independent and will affect between is possible, which requires a more precise time period.3. Rainwater CollectorBasic requirements rainwater collector is designed to be able to accommodate rainfall rainstorms. Although it is possible to make a slightly inclined roof drainage purposes, but the nature of the construction industry and building settlement will become flat roofTypically, the tank is placed in a horizontal, sectional view of the water is outwardly inclined, which the role of hydrostatic.3.1 drain outletAnalyzing rainwater collector has sufficient volume is the key to the sump outlet external setting conditions. Also affect the flow rate into the storm water drainage system piping, but also affect the depth of the water catchment. Although the depth of the sump will not bring any particular problems, but too deep can cause excessive sump.Numerous studies in the 1980s showed that the flow of conventional roof drainage system outlet can be divided into two cases. It depends on the size of the depth and size of the outlet. When the water depth is less than half the diameter of the outlet, the flow of the first type, and the outlet of the flow can be calculated by an appropriate equation; water depth increases, exports are slowly clogging the flow will become another form forms, at the same time, the flow of exports can be obtained through other equations. While conventional roof drainage systems are designed to be free-draining, but may cause limitations encountered in the design of the flow is not free. In this case, it will require additional depth.Siphon roof drainage systems, the outlet is designed to be submerged stream. In this case, the depth of the outlet of the decision is more complicated, because the design of the sump depends on the flow. Recent studies have shown that conventional roof drainage systems use a variety of non-standard catchment, their depth and height, bigger than the diameter of the outlet. This will eventually result in a siphon effect. For a given catchment, the flow depends on the starting end of the drop tube diameter. A similar phenomenon has also been used to study the standard catchment, in these circumstances, only limited siphon action occurs within relatively close distance from the exit.3.2 tank flow classificationIn the complex flow sump outlet flow classification, can be seen from Table 2a, the flow will be uniform layering, regardless of whether the same inlet flow. Table 2b and 2c show, exportdistribution will greatly influence the flow.When the outlet is not a free jet, sump outlet complex flow classification is difficult to describe. Because each catchment tank pressures are likely to be merged. For example, the siphon tube system design point is at near full jet outlet flow classification depends on the energy loss of each branch.3.3 hydrostatic sectionalSump shape of the water surface in the canal can be classified according to the flow equation. In most cases, a low flow rate meansthat there is less friction loss, if exports are free jet, thefriction loss is negligible cross-section through the hydrostatic equation 1 to determine the horizontal distance.Where Q-- flow (m3 / s)T- surface width (m)g- acceleration of gravity (m / s2)F- flow area (m2)Equation 1 can not be ignored when the friction required to correct (or very long pipe velocity is large), or not a free jet.3.4 The current design methodsThe previous discussion has highlighted the main factors that should be considered with sink design. However, without the help of a certain number of models, computing hydrostatic sectional roof drainage system, the volume of the sump is possible. This large commercial and manufacturing industry, is a development opportunity, you can merge several kilometers of water routes. Thus, the conventional drainage system sump design methods are mainly based on experience, and assume that exports are free jet.Sump location in the building, it may cause the example to fail. Different interface sumpExcept in the case cited above, but also allows designers to use empirical data.3.5 Digital ModelLarge number of digital models can be used to accurately describe the flow of any form of catchment tank, regardless of whether the roof flows stable. An example of this model is a combination of roof space model. This model enables users to classify different aspects of the data indicated, includes: details of the rains, the roof surface drainage and other details. Kinematics have also been used to study rainwater tank to flow from the research collection. A typical method is based on open system to solve a basic problem of spatial mobility. This model automatically resolve the sump outlet flow situation, but also to deal with the case of free jet can also be simulated space limited mobility and submerged discharge. Output values include depth and flow rate.Currently, the model is essentially just a variety of research tools, but also through practical engineering test. However, we should face up to the various role models.4 pipe systems groupComposition in the form and scope of the tube group determinesthe roof drainage system relies mainly on the traditional system or siphon action.4.1 Traditional stormwater systemsConventional roof drainage systems, the ground plane is generally vertical pipe-line network, connected to the sump outlet and underground drainage systems, critical systems as well as compensating tube. It should be emphasized that the angle between the ground and the compensating tube is less than 10 °. Capacity of the entire system relies mainly on the outlet tube instead of down.Flow vertical tube is usually free-flowing, full of only 33%, the efficiency depends on the excess length of the tube. If the drop tube long enough (typically greater than 5m), there may be an annular flow. Similarly, under normal circumstances flow compensation pipe is free-flowing, full of up to 70%. Such designed process both for the design, various equations can also be used.4.2 Siphon roof drainage systemIn contrast with the traditional drainage systems, Siphon roof drainage system relies on air flow outside the system, and the tubeis full pipe flow stream.The designs are usually made on the assumption that the design of heavy rain, the system can quickly siphon discharge rainwater. This assumption allows the application of hydrostatic siphon system theory. Often used steady flow energy equation. While this approach ignores the small amount of energy loss at the entrance, but after the experiment showed that there are still conducive to practical use.However, steady-state design methods in the siphon system is exposed to rain when the system does not meet the standard requirements or changes in rainfall intensity is large is not applied. In the first case, there will be some mixing of air quality, annular flow occurs. These problems are not integrated in the system when more serious. Because usually designed rains are common, it is clear now design methodology over time may not apply to siphon system. This is a major disadvantage, because the design of the main problem isthe noise and vibration problems.Despite the disadvantages of the prior design approach, but a lot of the world's very few engineering failure reports. When a failure occurs, most likely for the following reasons:An incorrect understanding of the operation pointsSubstandard materials listInstallation defectsMaintenance mismanagementTo overcome these disadvantages, we have recently launched aseries of research projects, to discuss the siphon system, and the development of digital models. From this work we learn a lot.In contrast with conventional design methods of some assumptions, siphon system mainly has the following aspects:1) non-flow system of full flow2) levels of certain pipe-flowing full pipe flow3) full pipe flow downstream propagation through a vertical pipe, riser, etc.4) the inner tube flow occurs over the vertical section, the system to reduce the pressure5) downward tube is full pipe flow, there will be air lock6) appears completely siphon action until well into the air system is lower than a certain levelTable 4a column data indicate that below the design point, the system will siphon unstable flow, depth of the water collecting tank is insufficient to maintain the siphon action. Table 4b show that the unsteady flow in siphon system when it will appear.Table 5 lists the data output of a digital model. It can be seen that the model can accurately describe the siphon action, siphon and steady state, the data also show that the model can accurately describe the complex siphon action.5 ConclusionThis article has illustrated the critical roof drainage systems, but these are often overlooked in the urban drainage system design. This article also shows that the design process is a complex process, rely mainly on the performance of exports. The following conclusions are based on the design summed up:1) Run depend on three interacting parts: the roof, sump, water pipes2) Green roofs can reduce traffic and beautify the city3) the export performance of the system is essential4) siphon drainage system have a greater advantage in large-scale projects, but must be considered high maintenance costs5) Design siphon drainage system should consider additional capacity and operational issuesAlthough the green roof is a more attractive option, but the traditional roof of a building in the country will continue to dominate. Green roofs will be gradually developed, and gradually been widely accepted. Similarly, the roof drainage system shown effective that it will continue to play a huge role in the commercial building drainage systems.Roof drainage system of the greatest threats from climate change, existing systems tend to be not simply aging; rainfall patterns of change will result in inefficient operation, self-cleaning rate will be reduced. Changes in wind speed and the roof will also accelerate the aging of the roof, it is necessary to carry out maintenance. Taking into account the climate change, the increase in materials, roof collected rainwater will be more extensive. Currently, the amount of rain around the globe per person per day 7-300 liters in the UK, with an average consumption of 145L / h / d, of which onlyabout one liter is used by people, about 30 per cent of the toilet, study shows If water shortage, rainwater collected on the roof of developed and developing countries are recommended approach.屋顶排水设计性能的近期与远期优势最近十年见证了屋顶排水系统设计方面的巨大变化,特别的是,虹吸雨水排水系统已经得到逐步改善,并且有可能得到重点应用。

建筑给水排水基本术语中英对照翻译

建筑给水排水基本术语中英对照翻译

建筑给水排水基本术语中英对照翻译建筑给水排水基本术语中英对照翻译中德工程建筑设施智能技术093132 张伟)1、给水工程water supply engineering 原水取集和处理以及成品水输配工程。

2、排水工程sewerage ,wastewater engineering 收集、输送、处理和处置废水工程。

3、给水系统water supply system 给水取水、输水、水质处理和配水等设施以一定方式组合成总体。

4、排水系统sewerage system 排水收集、输送、水质处理和排放等设施以一定方式组合成总体。

5、给水水源water source 给水工程所取用原水水体。

6、原水raw water 由水源地取来原料水。

7、地表水surface water 存在于地壳表面,暴露于大气水。

8、地下水ground water 存在于地壳岩石裂缝或土壤空隙中水。

9、苦咸水(碱性水) brackish water ,alkaline water 碱度大于硬度水,并含大量中性盐,PH 值大于7。

10、淡水fresh water 含盐量小于500mg/L 水。

11、冷却水cooling water 用以降低被冷却对象温度水。

12、废水wastewater 居民活动过程中排出水及径流雨水总称。

它包括生活污水、工业废水和初雨径流以及流入排水管渠其它水。

13、污水sewage ,wastewater 受一定污染来自生活和生产排出水。

14、用水量water consumption 用水对象实际使用水量。

15、污水量wastewater flow ,sewage flow 排水对象排入污水系统水量。

16、用水定额water flow norm 对不同排水对象,在一定时期内制订相对合理单位排水量数值。

17、排水定额wastewater flow norm 对不同排水对象,在一定时期内制订相对合理单位排水量数值。

毕业设计---某18层商住楼建筑给排水(含外文翻译)

毕业设计---某18层商住楼建筑给排水(含外文翻译)

前言如今,我国国民经济实力的不断增强,建筑业的迅速发展,建筑物的总体建设水平不断提高。

建筑内部的给水排水工程是建筑设备中的重要组成部分,其技术水平及先进性直接影响建筑物的使用功能,与人们生活,环境,安全息息相关,涉及到千家万户,与社会的环境保护,水资源的合理利用,可持续性发展紧密相连。

建筑给水排水工程发展迅速,在理论和实践上都将不断地完善和发展,对建筑给水排水专业的人员,在数量和质量上都提出了更高的要求,应具有更先进的设计理念和更高的设计水平,不断引进先进技术,要切实把理论和实践相结合。

为了巩固和掌握建筑给水排水工程的理论知识和实践能力,本次毕业设计的是深圳市某高层建筑给水排水系统。

其中包括建筑给水系统,建筑排水系统,建筑消防系统的设计。

只有用科学的方法和实践的结合,才能保证给水排水的系统的安全可靠运行,保证用户的用水需求,又可以最大限度的降低建设投资和运行成本。

在平时的学习中已经积累了一定的理论基础知识,再加上这次的建筑给水排水工程的设计实践,又加深了对理论基础知识的理解和系统化,更锻炼了动手能力,也为以后的设计奠定了坚实的基础。

只有把理论和实践相结合才能发现问题,解决问题,加深记忆。

在这次设计中参考了大量书目,其中主要参考书目附于其后。

由于高层建筑给水排水系统涉及内容和知识领域广泛,加之本人缺乏实际的工程经验,在设计中难免出现一些不太合理之处,恳请各位老师提出宝贵意见。

李小龙2012.6摘要在综合对比分析的基础上,设计了深圳某高层商住楼建筑给水系统、建筑排水系统、建筑消防系统(消火栓给水系统及自动喷水灭火系统)、建筑屋面雨水排水系统设计。

给水系统采用分区供水,低区一到六层,由市政管网直接供水;中区七到十二层,高区十三到十八层,均采用无负压变频供水。

排水系统采用污、废水合流制,底层单独排放,排水立管设伸顶通气管,污水直接排向市政污水管网。

消防系统分消火栓给水系统和自动喷水灭火系统,其中消火栓系统采用水泵供水。

中英文对照的建筑给排水设计说明

中英文对照的建筑给排水设计说明

中英文对照的建筑给排水设计说明MECHANICAL PRELIMINARY DESIGN REPORTSTADIUM1.给排水设计饮用水和污水1.Sanitary DesignWater and sewage water.设计基础- 甲方提供的设计任务书和市政管网综合图- 建筑专业提供的条件图- 国家现行的设计规范及有关规定设计简章.Design basesDesign Brief and Municipal integrated network drawing offered by the client. Condition drawings from architectural discipline.Current national design codes and related stipulations2. 给水系统通过一根DN200的进水管将水引入.水表安装在进水管上,离红线1米处.供水管在红线内连成环路管网,并接到供应楼的消防水池和给排水水池.由环路管网向必需的室外消火栓和绿化带的喷淋器供水.2. Water supply systemFor water supply of this project, DN200 water intake pipes are led in. Water meters are installed on the intake pipes 1.0 m away from the red line. The water supply pipes are connected into loop networks in the red line and then led to the fire pool and sanitary water pool in the supply buildings respectively. Necessary number of outdoor hydrants and sprinklers for green area will be provided on the loop networks. 设计范围包括红线内的饮用水,污水,雨水,建筑消防.Design scopeDesign scope of this project includes water, sewage water, rainwater, fire-protection in the building, and water and sewage water within the red line. 给排水水池与消防水池分开,容量为100m3 .体操馆供水管埋地敷设.Sanitary water pool is separated from fire water pool, volume of sanitary water pool is 100m3. Water supply pipes for the stadium will be laid in the earth.3.用水量标准- 体育馆: 15升/顾客·日 K=2.0- 宾馆: 150升/人·日 K=2.0- 餐厅: 50升/顾客·日 K=2.0- 工作人员: 25升/人·日 K=2.0- 地面冲洗用水: 3升/m2日- 冷却塔补水量:按用水量的2%计- 未预见水量: 按日用水量20%计- 消防用水:消火栓:室内40升/秒,室外30升/秒,火灾延续时间为3小时;自动喷洒按22升/秒,火灾延续时间为1小时卷帘水幕用水0.5升/秒·米,火灾延续时间为3小时;Water consumption standard- Stadium: 15L/visitor·day K=2.0- Hotel: 150L/visitor·day K=2.0- Restaurant: 50L/customer·day K=2.0- Staff 25L/perso n·day K=2.0- Floor cleaning: 3L/m2·dayMake-up water for cooling tower: 2% of theactual cold water consumption.Unforeseen water consumption: 20% of the dailywater consumption.Water for fire protectionHydrant: 40L/s indoor, 30L/s outdoor, fireduration time is 3h;Sprinkler: 22L/s, fire duration time is 1h;Drencher for rolling shutter: 0.5L/s·m, fire duration time is 3h;在适当的位置设置饮用水机,在主进口为残障人设置两个饮用水机.为此饮用水系统安装循环泵.机房设在地下室的水除了机房.当饮用水机不被使用时,应排空,以免水质腐败.在客房和餐厅内设置电热水器,同时亦为热水供应设置循环泵.在更衣间旁设置电热水器,为淋浴和洗盥供应热水.为楼板清洁安装一定数量的水龙头.Some suitable places are supplied with portable water drinking units, two drinking units for disable people are provided at main entrances, for this portable water system, circulating pumps are adopted, the equipment room is located in water treatment center in the basement. When there is no use, portable water will be drained completely to avoid deterioration.Electric water heaters are installed in guest rooms and restaurant, also hot watercirculating pumps will be provided for supplying hot water.Electric water heaters are installed near the changing and clothing rooms for supplying hot water for shower and washing.Certain number of water taps are installed for floor-cleaning.4.用水量最大日用水量:2.200m3/日最大时用水量:220m3/时Water consumption demandMaximum daily water consumption: 2.200m3/dayMaximum hourly water consumption: 220m3/hour却循环系统冷却水循环系统采用机械循环系统.总冷却水用量为460m3/h.在供应楼顶设置三台超低噪音冷却塔(230 m3/h, 2x 115 m3/h).进水温度37Co,出水温度32Co .补充水量9,6 m3/h.补充水由市政供水网直接提供.Cooling water circulation systemThere are cooling water circulation system in this project, cooling water for the refrigerators adopts mechanical circulation system. Total water consumption of cooling towers is 460m3/h. On roof of the supply building there are 3 ultra-low noise cooling towers (230 m3/h, 2x 115 m3/h), inlet temperature of 37Co, outlet temperature of 32Co, with make-up water of 9,6 m3/h. Make-up water of the cooling towers will be supplied directly by the municipal network.在消防泵房内有消火栓泵(一个运行,一个备用),喷淋泵(一个运行,一个备用),卷帘雨淋泵(一个运行,一个备用).用于地下车库的泡沫喷淋设备,如报警阀,泡沫压缩罐,化学药剂泵安装在消防设备中心.30.0m3 消防水箱和消防稳压装置分别安装在车库的四面墙.In the fire water pump room, there are hydrant pumps (one operation, one standby), sprinkler pumps (one operation, one standby) and rolling shutter drencher pumps (one operation, one standby).Fire equipment, which are used for the foam sprinkler system in underground garage, such as fire alarm valves, foam concentrated tank and chemical dosing pump, etc. are provided in fire equipment centers. Four 30.0m3 fire water tanks and fire protection stabilized pressure devices are respectively located at four sides next to the garages.消防用水消火栓:室内按40升/秒,室外按30升/秒,火灾延续时间按3个小时计自动喷洒按22升/秒,火灾延续时间按1小时计卷帘水幕用水量 0.5升/秒·米,火灾延续时间按3个小时计消火栓:室内,室外用水量皆为756m3;自动喷洒用水量为79.2 m3;卷帘水幕用水量为 270m3;一次火灾用水量为1.861,2;Water for fire protectionWater consumption standard for fire protectionHydrant: 40L/s indoor, 30L/s outdoor, fire duration is 3hSprinkler: 22L/s, fire duration is 1hDrencher for rolling shutter: 0.5L/s·m, fire duration is 3hWater consumption for fire protectionHydrant: indoor and outdoor water consumptions are 756m3 respectively Sprinkler: 79.2 m3Drencher for rolling shutter: 270m3Water consumption for one fire: 1.105,2 m3消火栓的布置在整个建筑物内沿墙,沿柱,沿走廊,风塔上及楼梯附近设有必要数量的室内消火栓,消火栓间距小于30米.消火栓管网水平,竖向皆成环状布置,消火栓箱内配有DN65消火栓一支,25米衬胶水龙带一条,φ19毫米喷咀水枪一支,并配消防卷盘(DN25消火栓一支,30米胶管,φ9毫米喷咀水枪一支)且设有可直接启动消火栓泵的按钮;在室内消火栓箱下设有磷酸铵盐手提式灭火器箱.室内消火栓系统在室外设有三组水泵接合器.Hydrant arrangementNecessary number of hydrants are installed indoors along the wall, columns, corridors, and staircases, at intervals of less than 30m. Hydrant networks are connected as a loop both horizontally and vertically. Inside each hydrant box, a DN65 hydrant, a 25m long rubber lined hose, a water nozzle of φ19mm, hose reel (a DN25 hydrant, a 30m long rubber lined hose and a water nozzle ofφ9mm), and a direct starting button for the hydrant pump are provided.Under each indoor hydrant box, a portable ammonium phosphate powder extinguisher box is installed. There are three sets of pump adopters being installed outdoors for the indoor hydrant system.消防系统防水泵房及消防水池供水管DN200在红线内连成环路管网,管网上安装一定数量的消火栓.两根DN200供水管分别引入供应楼内两个消防泵房内的消防水池.消防水池总容量不应小于4000m3, 每个为2.000m3.Fire protection systemWater pump room and water pool for fire protectionThe lead-in pipes (DN200) are connected as a loop inside the red line, on the loop, certain number of hydrants are installed.Two water supply pipes (DN200) are led into the fire water pools at each fire water pump room in supplybuilding. In consideration of the importance of the project, the volume of the fire water pools should be not less than 4000m3, each is 2.000m3.自动喷淋系统自动喷淋系统安装在全建筑范围,除了室外和高于10 米的房间.喷淋泵安装在地下的消防泵房内.报警阀设置在地下的消防泵房内和中间的消防设备中心内,水流显示器设在每个防火分区内.Sprinkler systemSprinkler systems will be provided inside the whole building except outside areas and roomshigher than 10m, with sprinkler pumps installed in the underground fire water pump rooms. Alarming valves installed in underground fire water pump rooms and four fire equipment centers in the middle, water flow indicators are installed by fire compartments.除了安装一个封闭喷淋系统,将为地下车库设置一个泡沫喷淋系统.餐厅内安装93oC启动的自动喷淋头,但在其它房间,仅安装93oC启动的普通和快速反应自动喷淋头.三组泵接合器安装在室外.Besides an enclosed sprinkler system, a foam sprinkler system composed of a proportioning mixer and a foam concentrated tank is provided for the underground garage. Sprinkler actuated at 93oC are provided in the restaurants, but in other rooms, only ordinary sprinklers and fast response sprinklers actuated at 68oC are provided.Three sets of pump adaptors for this system will be installed outdoors.排水系统为排水系统设置污水主立管和特别垂直排气管.排气管与污水管在每层连接,污水排出体操馆.餐厅的污水首先在油脂分离池中处理,然后排入室外排水网.给排水污水将被在化粪池收集和处理,然后排入市政排水管网.化粪池在输送区旁.最大天排水量为870m3/天.9. Drainage systemMain vertical sewage pipes and special vertical vent pipes are provided for the drainage system. The vent pipes are connected with sewage pipe at each floor; sewage water is drained out of stadium. Sewage water in the restaurants and garage are treated in the grease and oil separation tank, and then discharged into the outdoor drainage networks. Sanitary sewage water is collected and treated in the septic tank,then drained into the municipal drainage. The septic tanks are located besides the deliverycircle. Maximum daily drainage amount is 870m3/day.卷帘水幕系统地下车库设置有卷帘水幕系统.水幕泵安装在消防水泵房内,采用开式雨淋头,电动或手动控制.十组泵接合器安装在室外Drencher system for rolling shuttersRolling shutter protected by drenchers are provided for the underground garage, the drencher pumps are installed in the fire water pump rooms, open drencher heads are selected, and are controlled both by electrically and manually. Ten pump adapters will be installed outdoors for this system.地下室内污水设有污水坑,废水设有废水坑,生活污水,废水经潜污泵提升排至室外排水管网,潜污泵的启停皆由磁性浮球控制器的控制.地下汽车库废水设有废水坑,废水经潜污泵提升排至室外,经隔油池处理后排入室外雨水管网.There are cesspits for sewage water and wastewater pits for wastewater in the basement, the sewage and wastewater is sucked up and drained to the outdoor drainage networks by submerged sewage pumps.Operation of the pumps is controlled by the magnetic floating ball controllers. Wastewater pits are provided for the underground garage, wastewater is sucked up and drained to outdoor oil separation tank by submerged sewage pumps, after treated, wastewater is drained to the outdoors rainwater networks.在柴油发电机房,变配电房和通讯设备机房设低压二氧化碳气体灭火系统.Low pressure CO2 extinguisher systems are provided in diesel generator rooms, transformer substations and telecommunication equipment rooms.在本建筑内按"建筑灭火器配置设计规范"在每个消火栓箱下设手提式灭火器箱,箱内设有必要数量的磷酸铵盐手提式灭火器.According to the Code for Design of Extinguisher Disposition in Buildings, portable fire extinguisher box, in which there are necessary number of portable ammonium phosphate powder extinguishers, will be installed under every hydrant box.在每个消防电梯井底旁设有消防排水坑,废水经潜污泵提升排至室外.Fire water drain pit is provided at side of bottom of each fire elevator well, waste water will be sucked up and drained out by the pumps.雨水系统雨水排水屋顶采用压力流排水.雨水设计重现期按P=10年计算,降雨历时为5分钟,暴雨强度公式按Q=998.002(1+0.568lgP)/(t+1.983)0.465计算.沿柱在屋面设置雨水沟.雨水通过雨水沟收集,然后进入雨水头和下排管,然后到室外雨水观察井.10. Rainwater systemPressurized drainage system is adopted for roof rainwater drainage system. Here, return period P=10 years, rainfall duration is 5 minutes, stormwater amount is calculated by the following formula:Q=998.002(1+0.568lgT)/(t+1.983)0.465Rainwater gutters are provided on roof along columns, skylight. Rainwater is collected in the gutter, then to rainwater heads and downpipes, and to the outdoors rainwater inspection wells.11.管材- 生活给水管,冷却塔补水管采用铜管,氩弧焊接.- 直饮水管采用不锈管.- 消火栓管,冷却循环管,水幕管,水泵吸水管采用焊接钢管,焊接.- 自动喷洒水管,雨淋水管采用热镀锌钢管,丝扣连接或卡压连接.-二氧化碳管采用无缝钢管焊接.- 地下车库泡沫喷淋水管采用不锈钢管,卡压连接.Pipe materialCopper pipes connected by argon arc welding are adopted for the sanitary water pipes, make-up water pipes for cooling towers.Stainless stell pipes are adopted for portable water pipes.Welded steel pipes connected by welding are selected for hydrant pipes, cooling circulating pipes, drencher pipes, pump suction pipes.Hot-galvanized steel pipes connected by threads or compression-seizing are selected for sprinkler and deluge sprinler pipes.Seamless steel pipes connected by welding are selected for CO2 pipes. Stainless steel pipes connected by pressed clamp is selected for the pipes of foam sprinklers in the underground garage.当雨水两超出雨水沟设计量时,雨水可沿屋檐自由排放.雨水被收集,然后排入市政集水池. When the amount of rainwater is more than the design value of the gutters, water is discharged naturally along the eaves. Rainwater is collected, and then drained to the municipal catch basins.围绕体育馆的循环池将用于喷洒运动场和作为室外绿化带的储水池.此池将作为一个循环过滤设施,可容水约7.500 m .喷洒压力设备和其它必须的过滤设备安装在供应楼里.The circular senic pool surround stadium will be used for spraying sportsfield andas reservoir for outdoor greening.The pool will be used as a circular filtering facility and will be adopted with a water volume of about 7.500 m .The spray water pressurizing equipment as well as further necessary filtering equipment will be adopted in the supply building.2.0 制冷2.0 Cooling冷源:空调冷负荷(估算):本工程建筑面积共50.000平方米,包括观众区,休息室,更衣室,小会议室,餐厅,办公室和其它附属房.空调设计日峰值冷负荷为2.4MW,设计日总冷负荷为3 kW.Refrigerating sourceCooling load of air conditioning systemTotal floor area for this building is 50,000sqm, which includes spectator areas, lounges, Clothing and changing rooms small meeting rooms, restaurant, office and other auxiliary rooms. Designed dayly peak cooling load is 2,4MW, designed total dayly cooling load is 3kW.每台1200kW制冷机配一台流量为206m3/h离心泵.各配一台备用泵一次泵采用压差旁路控制.通过埋地敷管,向游泳体操馆供应冷冻水.A centrifugal pump with a flow rate of 103m3/h is provided for each 1200kW chiller. One operation pump with a standby corresponds to one chiller.Pressure difference branch control is adopted for primary pumpVia earth laid pipes from supply building to gymnasium chilled water supply will be deliverded.冷源的选择:根据建筑的实际情况,3台制冷机将安装在供应楼内的冷冻机房.设计容量为4800kW. 为了实现能量的效率化使用,设计方案为,1台制冷机的出力为总设计容量的50%.而另2 台.每台出力为总设计容量的25%.冷冻水系统的主要设备包括3台电动制冷机,一级冷冻泵,二级冷冻泵,自动控制阀等等.冷冻水的供/回水温度为-7/ 12°C.Selection of refrigerating sourceAccording to the real condition of the building, 3 chillers are located in the refrigerating plant rooms in the supply building, designed capacity is 2400kW. For actuing in an energy efficient way one chiller about 50% of total capacity (1.200 kW) and two chillers with 25% of total (600 kW each)capacity each are adopted.Main equipment of chilled water system includes 3 electrical chiller, primary cool water pump, secondary chilled water pump and automatic controlled valve, etc. supply/return temperature of the chiller is-7/ 12°C.二次泵系统:根据使用功能,各制冷机房又分成不同的循环支路.二次泵采用变频调速控制.根据负荷侧供回水管的压差,控制水泵的转速.二次泵循环支路的管道采用异程式.Secondary pump system:Each refrigerating plant room is subdivided into different circulation branch loops according to use functions.Variable-frequency speed-regulating control is adopted for secondary pumps. The rotating speed of a water pump is controlled according to the pressure difference between water supply and return pipes.Direct return system is adopted for the pipes of circulating branch of secondary pumps空调冷冻水系统由于本工程占地面积大,功能复杂,有连续使用,也有间歇使用,为了达到运行灵活,节能的目的,空调冷冻水系统采用两管制二次泵系统.Chilled water systemDue to the large occupied area of this project, the complicated functions and the combination of continuous utilization and intermittent utilization, in order to accomplish the purpose of flexible operation and energy saving, the chilled water system is of two-pipe secondary pump system.管材:水管采用焊接钢管及无缝钢管.本工程的风管除土建风道外,均采用镀锌铁皮咬口制作.每节风管之间用法兰连接.Pipe and duct materialsThe water pipes adopt welded steel pipes and seamless steel pipes.Air ducts for this project are made of galvanized sheet steel by seaming except ducts by civil construction. Air ducts are connected together by flanges.一次泵系统:供应楼冷冻机房2400kW制冷机配一台离心泵, 流量为412m3/h.配一台备用泵.Primary pump system:Chiller room supply buildingA centrifugal pump with a flow rate of 412m3/h is provided for 1200kW chiller. Oneoperation pump with a standby corresponds to one chiller.保温材料:空调供,回水管,冷凝水管采用酚醛管壳保温.空调送,回风管以及处理后的新风管采用外贴铝箔的离心玻璃棉板保温.- 管道穿防火墙的空隙处采用岩棉材料等非燃材料填充.Thermal materialsphenolic pipes are adopted for thermal insulation of water supply and return pipes for air conditioning, as well as air-conditioning condensate pipes.Aluminum foil faced glass fiber boards are adopted for thermal insulation of air-conditioning air supply and return ducts as well as fresh air ducts after chillers.Non-flammable material will be selected to fill the interspace in the fire protection wall where the ducts go through.消声与隔振:冷水机组,水泵等设备采用减振台座,弹簧减振器或橡胶减振垫减振降噪.在空调机组,新风机组,通风机的进出口采用涂胶帆布软管连接.- 水泵进出水管上采用可曲挠橡胶接头,使设备振动与配管隔离.Noise reduction and vibration isolationShock absorption bases, spring shock absorbers on rubber shock absorption pads are adopted for equipment, such as water chiller units, pumps, etc to reduce vibration and lower noise.Flexible rubber-coated canvas hoses are adopted far connections of inlets and outlets of air-conditioning units, fresh air handling units and ventilators. Flexible rubber couplings are adopted for the water intake and delivery pipes of the pumps to isolate equipment vibration from their pipes.3.0空调和通风系统3.0 Air Conditioning and Ventilation Systems方案设计范围Scope of schematic design空调设计Air Conditioning Design在体育馆内,一些区域设置空调系统.这些区域划分为:西侧地下二层的贵宾休息室东侧地下二层酒店门廊地下一层的输送区,技术机房,运动员更衣间,医务服务,热身区,裁判区,健身中心,酒店大堂,会议室,厨房,特许区和贵宾大堂混合区.首层的酒店大堂,酒店区,贵宾门廊,急救In the stadium, in some ranges air conditioning systems are used. These ranges subdividethemselves as follows:VIP – Lobby in West of levelel -2Hotel lobby in the east of level –2Delivary Circle, technical Plantrooms, Changingrooms for the athletes, Medical Service and warm up area, Judges Area, Fitness Center, Hotel Lobby, Conferenz, Kitchen and Concession, Vip lobby- Mixed Zone in level -1Hotel lobby, Hotel area, Vip lobby, Vip Area, First aid in 0空调和通风机组设置于靠近地下一层楼梯底部的机防.新风从楼梯底的风室被引入机房而被空调处理器吸入.从此,通过水平和垂直风道送至使用区.用于以上区域的空调机组分为12 台暖通空调机组,具有以下特点The air conditioning and ventilation units for the using ranges are placed in die mechanical plantroom nearby the stairs in the bottom of the stadium in Level -1. The outside air will be brought into the Plantrooms from fresh air chambers under these stairs and let to the air handling units. From here, the will be led via horizontal an vertical duct to the using ranges.The air conditioning units for the ranges specified above will be devided into 12 HV AC- units (drawings) with the following characteristics:以下区域仅设置排风系统:地下二层停车区域地下二层电气机房地下一层卫生间首层卫生间一层卫生间宾馆客房设置分散式风机盘管加新风系统.贵宾室设置风机盘管.For the following ranges, only exhaust air systems are planed:Parking area in Level –2Electrical Plantrooms in Level –2Toilets in Level –1Toilets in Level 0Toilets in Level +1For the guestrooms of the Hotel decentralized Fancoil Units with ourside air connection are planed. The VIP- boxes will be equiped with Fancoil Units.AC1, AC6, AC7, AC12地下一层的附属用房(储存,机房,楼层,观众区 )换气次数 2 – 6 次/小时; 新风100%, 通过螺旋风口送出双风机,全空气系统排风机同时作为机械排烟用AC1, AC6, AC7, AC12Siderooms ( Storage, Plantrooms, Floors, Spectaors area) in Level -1Air Changing rate 2- 4 times/ h; supply via spiral outlets, outdoor air 100% Dual- fan- all- air system.Exhaust air fan is also be used for mechanical removal of smoke.AC 2地下一层的医务服务,热身区,运动员更衣间,裁判区换气次数 2 – 4 次/小时; 新风100%, 通过螺旋风口送出夏季最高室内温度29°C, 相对湿度 65 %冬季最高室内温度 22 –24°C室内发热量:- 照明 20 W/m- 机器 10 W/ m- 人员 50 W/ m双风机,全空气系统排风机同时作为机械排烟用AC 2Medival Service Area, Warm up Area, Changing rooms Athletes, Judges Are in Level- 1Air Changing rate 2- 4 times/ h; supply via spiral outlets, outdoor air 100% Room temperature 29°C max, 65 % humidityin SummerRoomtemperatur 22 –24 °C in WinterIndoor heat loadLighting 20 W/mMachines 10 W/ mPersonnel 50 W/ mDual- fan- all- air system.Exhaust air fan is also be used for mechanical removal of smoke.AC 4地下一层的医务中心,办公室换气次数 4 次/小时; 新风100%, 通过螺旋风口送出最高室内温度29°C, 相对湿度 65 %室内发热量:- 照明 35 W/m- 机器 30 W/ m- 人员 50 W/ m双风机,全空气系统排风机同时作为机械排烟用AC 4Media Center, Offices in Level –1Air Changing rate 4 times/ h; supply via spiral outlets, outdoor air 100% Room temperature 29°C max, 65 % humidityIndoor heat loadLighting 35 W/mMachines 30 W/ mPersonnel 50 W/ mDual- fan- all- air system.Exhaust air fan is also be used for mechanical removal of smoke.AC 3地下二层的贵宾休息室,地下一层的贵宾大堂,混合区,首层的贵宾办公室和贵宾区换气次数 4 次/小时; 新风100%, 通过螺旋风口送出最高室内温度29°C, 相对湿度 65 %室内发热量:- 照明 20 W/m- 机器 10 W/ m- 人员 50 W/ m双风机,全空气系统排风机同时作为机械排烟用AC 3VIP Lobby in Level –2, VIP Lobby, Mixed zone in Level –1, VIP Offices and VIP area in Level 0Air Changing rate 4 times/ h; supply via spiral outlets, outdoor air 100% Room temperature 29°C max, 65 % humidityIndoor heat loadLighting 20 W/mMachines 10 W/ mPersonnel 50 W/ mDual- fan- all- air system.Exhaust air fan is also be used for mechanical removal of smoke.AC 5地下一层的厨房,服务和特许区厨房的换气次数 100m /m 小时,新风100%, 通过螺旋风口送出服务和特许区的换气次2-4数次/小时, 新风100%, 通过螺旋风口送出双风机,全空气系统最高室内温度29°C, 相对湿度 65 %室内发热量:- 照明 35 W/m- 机器 30 W/ m- 人员 80 W/ m双风机,全空气系统排风机同时作为机械排烟用AC 5Kitchen, Service and Concession area in Level -1Air Changing rate 100 m /m h for the Kitchen; supply via spiral outlets, outdoor air 100%Air Changing rate 2-4 times/h for the Service and Concession area; supply via spiral outlets, outdoor air 100%Room temperature 29°C max, 65 % humidityIndoor heat loadLighting 35 W/mMachines 30 W/ mPersonnel 80 W/ mDual- fan- all- air system.Exhaust air fan is also be used for mechanical removal of smokeAC 8地下一层的健身中心,员工更衣间,特许区换气次数 2 – 4 次/小时; 新风100%, 通过螺旋风口送出最高室内温度29°C, 相对湿度 65 %室内发热量:- 照明 35 W/m- 机器 30 W/ m- 人员 80 W/ m双风机,全空气系统排风机同时作为机械排烟用AC 8Fitness Center, Changingrooms Staff, Concessio in Level -1Air Changing rate 2-4 times/h; Fitness Center 6 times/ h; supply via spiral outlets, outdoor air 100%Room temperature 29°C max, 65 % humidityIndoor heat loadLighting 35 W/mMachines 30 W/ mPersonnel 80 W/ mDual- fan- all- air system.Exhaust air fan is also be used for mechanical removal of smokeAC 10地下二层地的宾馆走廊,地下一层的宾馆走廊和餐厅,首层的宾馆区换气次数 4 次/小时; 新风100%, 通过螺旋风口送出最高室内温度29°C, 相对湿度 65 %室内发热量:- 照明 35 W/m- 机器 30 W/ m- 人员 50 W/ m双风机,全空气系统排风机同时作为机械排烟用AC 10可能亦用于人防区的送风.此部分的设计由人防技术设备设计工程师审核.AC 10Hotel Lobby in Level- 2, Hotel Lobby and Restaurant in Level -1, Hotel area in Level 0Air Changing rate 4 times/h; Restaurant 8 times/h;supply via spiral outlets, outdoor air 100%Room temperature 29°C max, 65 % humidityIndoor heat loadLighting 35 W/mMachines 30 W/ mPersonnel 50 W/ mDual- fan- all- air system.Exhaust air fan is also be used for mechanical removal of smoke.The AC- unit No. 10 might also be used as a supply air unit for the shelter. This has to be checked by the engeneers who will plan the technical equipment for the shelter.AC 9通风地下车库:设计一个换气次数 6次/小时的排气排烟通风系统.由地下一层的空调机组送风,送风经过车库顶棚的垂直风口进入水平风道,然后送至各处.输送区:输送区设置一个隧道通风系统.空气通过北侧被吸入建筑物,然后通过轴流风机输送到输送区.空气通过南侧的就近道路排出.VentilationUnderground Garage:For the underground garage an air exhaust an smoke exhaust ventilation system with an air exchange rate of 6 times/h is provided. The supply air for the garage will be delivered from the AC- Units in Level- 1 an brougt into the garage via vertical openings in the ceiling of the garage and distributed over horizontal ducts. Delivery Circle:For the delivery circle a tunnel ventilation system is installed. Air is sucked at the south side of the stadium into the building and transported by axial jet fan through the delivery zone.各功能区的规划包括水平管道和竖井.各区域无异味和污染物的排风将被作为送风送入车库. 剩余的排风和排烟将通过一个地下风道送到供应楼,并通过屋顶排出.排烟内部区域均设置机械排烟.通风系统的管道亦即排烟道. 在空调机房内,烟气通过一条旁通风道送至车库排风机,亦为排烟机(300°/ 30 分).The development of the functional areas is made by horizontal ducts and vertical pits. The exhaust air from ranges which are not smell-loaded or contained pollutants are brought as supply air into the garage.The remaining exhaust air and the removal of smoke exhaust air are led over an underground channel to the supplying building and blown out there over roof. Smoke ExhaustionAll ranges on the inside are exhaustet from smoke mechanically.The duct system of the existing ventilation systems is used. In the HVAC plant rooms, the flue gases are led over a bypass channel to the exhaust air fan for the garage, which have to be designed to be used as smoke- exhaust fan (300°/ 30 min).室内储存和技术房:此区内,设置简单的送排通风系统.卫生间:地下一层和首层的卫生间由临近区域的通风系统供应新风.一层卫生间通过向外开口进风.地下一层卫生间排气排入输送区.首层和一层卫生间将通过独立的排气扇将废气排入在看台下部.Indoor storing and technical plant rooms:For this ranges simple supply- and exhaust ventilationsystem will be installed Toilets:The WCs in level -1 and level 0 are supplied with fresh air by the ventilation systems of the adjacent ranges.The WCs in level +1 receive the fresh air over opening to the outside.The WC in level -1 is aired out separately into the range of the delivary circle. The exhaust air of the WC ranges in level 0 and level +1 will be led by separate exhaust fans into the ranges underneath the grandstand.车库的排气和烟气被加压,通过地下风道送至供应楼,而通过其屋顶排出.停车场有烟雾时,空调机组的送风量是不足的.在这种情况下,新风将通过阀门从新风室(在体育馆底层楼梯下)直接向车库进风.The exhaust air of the garage and the smoke will be pressed through the circularly air duct and then through the underground channel to the supplying building and will there be led over roof into the free.In case that smoke is detected in Parking garage, the supply air from the AC- Units which is normaly used for the supply of the garage is not sufficient.In this case the fresh air will be brought directly into the garage via dampers from the freshair chamber, placed underneath the stairs in the bottom of the stadium. 主送风和回风道均设防火阀. 当温度超过70°C, 防火阀将自动关闭,同时风机停止运行,关闭信号将被传送.自动转换防火阀安装于排风排烟共用系统.Both, the main air supply and return ducts of all AHUs are provided with fire dampers. Then a temperature over 70°C happens, the fire dampers wil l be closed automatically and at the same time the fan stops operation and cut-off signal is transmitted. Automatic changeover fire damper is provided for the system used both return air and smoke exhaust.空调和通风系统的电力供应控制与消防控制中心相连. 当某个防火分区火灾报警, 而且消防中心对此信号经过分析确认后,此防火分区内的通风系统停止运行,而同时排烟系统和加压送风系统启动.The power supply controls for the air conditioning and ventilation systems are connected to the fire control center. When fire alarm occurs in a certain fire compartment, the ventilation system in this fire compartment stops operation and at the same time the smoke exhaust system and pressurized air supply system are started after judgement and confirmation by the fire control center.被其它房间包围的楼梯间将设置有加压通风系统.The staircases that are surounded by other rooms will be provided with overpressure ventilation systems.空调机组的详细技术参数集合在被报告末的技术数据报告.The exact technical datas of the AC- units are summarized in the " Technivcal Data Report at the end of the Report.。

给排水外文翻译

给排水外文翻译

给排水外文翻译【概述】外文名称:Water Supply and Drainage【引言】给排水是指人类为了满足生活、生产和环境需求,采集、利用和排放水资源的活动和系统。

随着城市化进程的加速和人们对舒适生活品质的要求不断提高,给排水工程在城市规划和建设中起到至关重要的作用。

本文将介绍给排水外文翻译的重要性、翻译技巧和注意事项,为给排水工程相关专业人员提供参考。

【翻译重要性】给排水工程涉及大量外文文献和技术资料,而国内外水利工程界的发展迅猛,相关外文文献的翻译对于我国的给排水工程建设具有重要意义。

通过翻译,我们可以了解国外先进的给排水技术和管理经验,为我国的工程建设提供参考和借鉴。

同时,翻译还有助于加强国际间的交流合作,促进我国在给排水领域的影响力和地位的进一步提升。

【翻译技巧】1. 理解专业术语:给排水领域涉及大量专业术语,翻译者应对这些术语进行准确理解。

可以通过查阅外文词典或专业词汇表对其进行翻译,避免出现术语误译的情况。

2. 深入研究上下文:在翻译过程中,翻译者应该深入研究原文上下文,理解全文的语境和主旨,以确保翻译结果的准确性和一致性。

3.注意句子结构:外文论文的句子结构和汉语差异较大,翻译者应根据汉语表达习惯进行适当调整,保证译文通顺。

【注意事项】1. 外文翻译要准确传达论文内容,不得随意增删原文内容。

2. 翻译过程中应注意句子结构的转换,确保译文的准确性和流畅性。

3. 注意专业术语翻译的准确性,可以参考国内外相关词汇表和标准进行翻译。

4. 翻译过程中应注意时间和质量的把握,提前制定翻译计划,并进行分段、分步翻译,以确保高质量的翻译成果。

【结论】给排水外文翻译对于我国给排水工程建设和国际交流具有重要意义。

翻译者需要具备扎实的专业知识和翻译技巧,通过深入研究与准确翻译,为我国的工程建设和国际交流贡献力量。

同时,加强对外文文献和技术的翻译工作,不断提高我国在给排水领域的创新能力和核心竞争力,助力我国以科技创新引领未来社会发展的目标实现。

建筑给排水外文翻译外文文献英文文献多层住宅建筑给排水设计的几个问题

建筑给排水外文翻译外文文献英文文献多层住宅建筑给排水设计的几个问题

建筑给排水外文翻译外文文献英文文献多层住宅建筑给排水设计的几个问题建筑给排水外文翻译外文文献英文文献多层住宅建筑给排水设计的几个问题译文来源:美国PE杂志建筑给排水工程师2010年第10期The multilevel residential housing is given and drains off water several questions designedSummary : This text give and drain off water on multilevelresidential housing design supply water the exertion of the tubular product , Way of laying of pipeline, water gauge produce family set up, establishment and air conditioner condensation water of pot-type boiler discharge issue goes on the discussion , And put forward some concrete views.Keyword: Skyscraper, supply water the tubular product , the pipeline is laid, The water gauge, the solar water heater The skyscraper is simple with its auxiliary facility, thefabrication cost is low, the characteristic such as being convenient of estate management, Receive the welcomes of the real estate developer and vast resident of small and medium-sized cities very much. How project planning and design of inhabited region, scientific and technological industry of comfortable house, lead the request according to 2000, Improve the design level of the house, build out a comfortable living space for each household, It is each designers duty. As the heart of the house --The kitchen, bathroom, is that the function is complicated, hygiene, safe and comfortable degree are expected much, It ismiscellaneous to build, the space expecting much in technology. So, the designer must consider synthetically with theidea and method of global design that the kitchen, bathroom give installation of the drainage pipeline and equipment,etc. . Give and drain off water on skyscraper design supply water exertion, to lay pipeline of tubular product, water gauge produce family set up, establishment and empty of pot-type boiler now Transfer condensation water discharge issue discuss together with colleagues.( 1)supply water tubular product select problem for use Traditional watersupply tubular product adopt zinc-plated steel tube generally, because zinc-plated steel tube exchange the corrosion, Use short-lived , use for and send domestic water can satisfied with water qualitysanitary standard shortcoming, Ministry of Construction is popularizing the application of the feed pipe of plastics energetically . A lot of districts and cities have already expressed regulations: Forbiddesigning and using the zinc-plated steel tube , use widely the feedpipe of plastics. The plastics supply water In charge of compared with metal pipeline, light, it is fine to able to bear the intensity of keeping, Send obstruction little liquid , able to bear chemistry better to corrode performance, it is convenient to install, The steel energy-conservation of the province, merit of having long performance life etc.. Supply water and use plastics pipeline: Hard polyvinyl chloride( PVC-U), high density polyethylene( HDPE), pay and unite polyethylene( PEX) , modify the polypropylene( PP-R, PP-C), gather butene( PB),aluminium mould and compound and in charge of and the steel is moulded and compound and is managed etc.. Choice of tubular product economic comparative course of technology,technology should from pressure, temperature, environment for use, install method,etc. go on and consider, Combine owners at the same time request and the house of grade,carry on and fix after being consider synthetically technology not economic. The above plastics supply water tubular product can supply water tubular product as house life. The economic and functional house conciliating Strand room in the face of the masses of with low- and medium-level incomes resident, can select for use hygiene grades of hard polyvinyl chloride in charge of as feed pipe mainly, In order to reduce the fabrication cost; Medium-to-high grade commodity apartment available aluminium Mould and compound and in charge of or other plastics supply water the tubular product as the feed pipe. House mix hot water temperature that water order exceed 600 C, so above-mentioned tubular product in charge of except hard polyvinyl chloride and aluminium plastics compound and in charge of( PE-AL-PE), Mostly the tubular product can be regarded as the hot water pipeline of the house.( 2) pipeline lay problem 1. give and drain off water it set up there arent one that in charge of1)Will install it in the corner place of the kitchen, bathroom tomorrow. Adopting this kind of way of laying more in the design of house in the past, it is convenient for it to construct, But will reveal the pipeline and hinder the room beautifully tomorrow Watch, thehouseholds will mostly be hidden with the light quality material in the equipment two times.2)Will install it in the overcast angle place of the outer wall of the building tomorrow. Way this suitable for southern weather warm district only, the minimum temperature in winter cant belower than zero degrees Centigrade, In case water pipe water-logging freeze ice is bloated to split pipeline, influence household use. Pipeline lay in outer wall, influence building to be beautiful, too inconvenient on manage and maintain in the future.3)Lay it in the pipeline well. This way makes the room clean and beautiful , but the pipeline well has taken up the area of the bathroom, And pipeline construct, maintain relatively more difficult. Bathroom set up concentrate pipeline well, concentrate pipeline on assign in the well feed pipe, drain pipe, This is that the civilized importance lives in the kitchen of comfortable house, bathroom Embodiment. I think : Should consider the establishment of the pipeline well of the bathroom in the medium-to-high grade building conceptual design of commodity apartment, Improve quality of using of bathroom promptly so , can solve hard polyvinyl chloride drain pipe rivers noise heavy problem, Improve the environmental quality level of the room; Whether for bathroom in the areas for little economic and functional house and Overcome difficulties room, warm area give and drain off water and set up and in charge of and can consider and lay in the outer wall in the South, In order to increase using the space of the bathroom; Pipeline install and in theroom, should influence kitchen, bathroom every sanitary equipment use of function tomorrow2. supply water and prop up there arent tube House supply water prop up and in1charge of pipe diameter one ? 32mm, de of battle,, little plastics feed pipe of pipe diameter is the crooked state, So the house supplies water and is propped up and in charge of beingrecommended and adopted and set up secretly. Supply water to prop up to manage darkly There are thes way had:1)Set up in the brick wall secretly. Wall turn on and in charge of trough in brick when constructing, in charge of trough width tube +20 mm, de of external diameter,, degree of depth tube external diameter de, The pipeline is imbedded and managed directly Trough, and with in charge of card fix in trough of inning charge of son.2)Whether pipe diameter supply water and prop up and last de ?20mm,can setup at floor secretly piece make level by layer. Turn on and in charge of trough in floor( ground) the board when constructing, it wides trough have to be de +10 mm deeply 1/2 of the de, Half pipeline imbedand in charge of trough, and with in charge of card fix in trough of inning charge of tube. Aluminium mould compound and in charge of and pay and unite polypropylene in charge of pipeline adopt metal pipe fittings connection, Must strengthen and in charge of trough size when adoptingand set up secretly, and rivers some flood peak loss relatively heavy. Assign the relative house that concentrated to the kitchen, bathroom interior hygiene utensil, Can adopt and divide Water device go on andjoin , divide water device whether one more than branch in charge of and connect, every hygiene utensil supply water and prop up and in charge of and connects and publishes from the water dividing device separately. Can already prevent the tube burying the pipeline secretly from being connected like this Permeate the question. Can reduce some flood peak lost,decrease the fabrication cost of pipe networks3)Drain off water and prop up the tube to lay House room drain off water and in charge of and should set up at the time of inning this each, drain off water and in charge of permeating sideways like this canning prevent the sewage from waiting for the pollutant to enter the neighbor family sideways, Will not influence the neighbor either when thepipeline is maintained Normal life of one. Kitchen wash water drainageof basin propped up and in charge of generallying inserts draining off water to stand to manage this layer of floor sideways; Floor drain drain off water propped up and in charge of laying the room of lower floor. A lot of colleagues think now: Whether kitchen the ground it lay ceramic tile of,whose name is clean in when need develop with water,not strongin meaning to set up floor drain, So kitchen set up ground floor drain, avoid and drain off water and prop up and in charge of and enterneighbor family sideways already so, Can increase using the space of thekitchen . Bathroom drain off water and prop up and in charge of and lay concrete measure have in this layer sideways inside:1)Improve the bathroom ground . Ground tendency high 150mm, adopt back row type take stool pot, washing basin, bath tub, water drainage of floor drain in charge of and bury in cushion layer secretly sideways.2)Adopt the sinking type bathroom. Bathroom sink 350mm the floor, hygiene utensil drain off water and in charge of and bury on sinking space secretly sidewaysTwo method these can realize water drainage of bathroomprop up and in charge of earths surface to bury underground this one without entering the neighbor2family sideways. Bury pipeline when installing, construction quality must check on strictly, can construct bathroom ground after confirming qualified secretly, So as not to leave the hidden danger in giving in the future using. Bathroom ground construct and can pack coal ash light quality material , also can adopt and lay bricks impracticable to lay plate making construct ground, Ground must make waterproof to deal with, method can waterproof to deal with according to roofing, make two oil one rubber and plastic ointment waterproof cloth.3) water gauge the open air set up problem The water gauge is had indoors, not only the work load of checking meter is very heavy , but also make the security and privacy of the house reduce greatly . So house divide into households of water gauge or divide households offigure of water gauge Show that should be set up in the open air. Skyscraper water gauge the open air set up following several kinds of forms: Whether 1.adopt far it pass by water gauge Change the ordinary water gauge into and pass the water gauge far, is joined the water gauge and data gathering machine by a signal line, And then reach intelligence to manage( the computer). Its merit lies in saving a large amount of people Strength comes to check meter, the data are accurate, the shortcoming is that the fabrication cost is high. Whether 2.adopt magnetic stripe card of by water gauge Users buy the electronic card of the running water Company in advance , then insert it in the storing device of the water gauge, Card amount of money deduct automatically on the water, this way user need to prepay the water rate, Theprice of the water gauge is relatively high.3. adopt it set up at the open air water gauge not ordinary1)The water gauge is set up in the stair have a rest in the alcoveof the platform. Household watersupply to prop up and manage and enter the kitchen, bathroom after the water gauge is measured. Way thisrealize water gauge produce room set up, equivalence low project have , supply water and set up and in charge of and set up with water gauge office results in aesthetic problems in stair. It suitable for the South warm district kitchen, bathroom assign close to the houses of positions of staircase.2)The water gauge concentrates on being set up among the water gauges( meter box). Person who give when supplying water, set up watergauge in ground floor( meter box) on falling, every household watersupply to prop up and is in charge of applying having in the pipeline well, Southern area can overcast horn place lay along the outer wall in building too; Person who give when supplying water, can set up water gauge in roof( meter box) under upgoing. This way increases and supplies water to prop up In charge of and lay length, pipeline lay and influence building to be beautiful along outer wall. Water gauge produce way choice that family assign, must combine house kitchen, bathroom plane assign characteristic and concrete request of developer, Carry on to several feasibility scheme the above economic technology fix after comparing. Property well-managed medium-to-high grade commodity apartment of housing district, can adopt and pass the water gauge far , It is that the water gauge will use the developing direction in the future; Estate management perfect medium- to-high grade commodity apartment of housing district, can adopt magnetic stripe card water gauge( Company have this kind district of business can design in running water) Or concentrate on setting up it among the water gauges( case); Southern area 3unit type house can set up rest platform office in stair with ordinary water gauge, In order to reduce the fabrication cost.4) establishment question of the pot-type boiler Should reserve and install hot water supply terms of facility, set up hot water supply facilities with when the design of house. Have and concentrate housethat hot water supply on , should consider house assign with installation position and cold hot water pipeline of hot water device. The pot-type boiler generally has three kinds, such as gas, electricity, solar energy,etc.. Whether last kitchen gas heater and electric heater or Bathroom inside, give when draining off water design shoulding reserve installation position and cold hot water interface of pipeline of water heater in advance in building, Install by oneself when convenient users fit up. Solar energy and hot water It is simple and convenient and safe for device to use, need fuel and electric power is low to run the expenses, Have long performance life, pollution-free, received by the masses of users favourably very much, Many houses have been small in recent years The district all install the solar water heater at the time of designing and construct. Solar water heaterinstall and at the roof, need to set up the cold hot water pipeline among bathroom and water heater of the roofing like this generally, Consider installation of solar water heater when the design of house, household can only lay cold and hot pipeline along the building outer wall when installing in the future,Increase household degree of difficulty when installing like this , increase pipeline make the investment, influence building beautiful. Give when draining off water the design needing to solicit the developers suggestion first in building, Interconnected system one design, construct the solar water heater in unison; Reserve solar water heater and cold hot water installation position of pipeline in advance only. The cold hot water pipeline of the solar water heater can be laid In the pipeline well; Set up pipeline house of well , can set up one UPVC drain pipe of de110 as solar water heater hot water sleeve pipe of pipeline close to corner of person who take a shower in bathroom, Set up a de110 *75 three direct links in each hygiene interval ground, as connecting the entry of cold and hot water pipe ( 5) air conditioner condensation ink discharge the issue In recent years, air conditioner enter huge numbers of families gradually, condensation water amorphous to discharge the building outer wall of pollution air conditioner have, Have influenced a beautiful important problem of biotope already. Building give when draining off water design shoulding consider air conditioner condensation ink discharge in a organized way. Concrete method can machine set up the water drain pipe of the condensation by the position outside reserving air conditioner, Drain off water and set up and in charge of and select PVC-U drain pipe de40 for use , reserve three direct links of draining off water highly in each air conditioner, It is convenient for air conditioner to drain off water hose insert directly.4多层住宅建筑给排水设计的几个问题摘要:本文就多层住宅建筑给排水设计中给水管材的选用,管道的敷设方式,水表出户设置,家用热水器的设置及空调冷凝水排放等问题进行探讨,并提出一些具体看关键词:多层住宅,给水管材,管道敷设,水表,太阳能热水器多层住宅以其配套设施简单,造价低,物业管理方便等特点,很受中小城市房地产开发商和广大居民的欢迎。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

外文资料翻译On setting the metersetting the meter. Long-term since, our country residence water meter are arranged on the indoor kitchen or toilet water concentration, the water more and scattered residences, sometimes even a indoor set more than one meter. In recent years, water meter is arranged on the indoor and caused many problems cause the attention of people increasingly: Home meter reading disturbs people 's normal life and may lead to residential burglary, privacy and safety not guaranteed: management of meter reading meter reading is not easy and large labor intensity: individual user steals water management departments to prevent and punish and so on. Because of these problems, water production has become an inevitable choice. Therefore, the newly revised national standard ( code for design of building water supply"GBJ15--88article 2.5.8: residential building should be installed in household water meter, household water meter or household water meter digital display should be located outdoors. Meter households generally have the following ways: Household water meter concentrated in the roof ( water supply ) or the underlying space ( water supply ). This mode is often used for multi-stormy residential. In general a unit provided with a ladder of water meter water meter well ( box ), household water pipe along the interior tube or building wall into the indoor. The utility model has the advantages of convenient reading; reading, low labor intensity of workers, can avoid users water behavior. Disadvantages are: material consumption, head loss of pipeline, occupying larger space pipeline well, such as a wall is easy to affect the appearance of the building, the user branches not easy maintenance.Meter is arranged on the stair landing platform. Vertical water supply pipe is arranged on the platform, each provided with a water tank; the water meter box embedded platform resting on both sides of the wall. The utility model has the advantages of: user branches short, saving material, low head loss of pipeline, the shortcoming is: water dispersed settings, meter reading personnel of great labor intensity; usually indoor fire hydrant box is installed on a platform, so that the already crowded rest platform more cramped, traffic inconvenience to the residents.Each layer isMeter centralized meter room, household water meter on the wall. The utility model has the advantages of the same with B, the disadvantages are: household pipeline must follow the public walkway under floor into interior and corridors, ceiling requirements.Will be the traditional ordinary mechanical water meter changes for telemetering water meter or IC card intelligent water meter. Remote water meter accurate calculation without reading, this form must be a deposit a certain amount of water, will recharge after insertion of the IC card water meter reading can be water. Because the remote water meter and IC card table relatively expensive and technically still exist certain problems, hence in practice has not been widely applied.Above a few kinds of water-meter, each has its advantages and disadvantages, concrete in practical engineering design in which way, by the design staff according to residential properties, grades and local industry management department requirement.1.2water supply pipe arrangement and laying. At present, to build the house in one hutch two defend very general already, even with some houses one hutch three defend one hutch four defend, kitchen, toilet, the balcony, and each water using point locations are more dispersed. User branches to water points along the interior floor pipeline such as hanging, inevitable requirement set indoor ceiling, wall should also have the anti-condensation measures to bring inconvenience, household decoration, after all, not all tenants wanted to ceiling. ( the building water supply and drainage design specification ) GB15 2000(manuscript ) as specified in article 3.6.18, water supply pipe should be laid in the floor ( ground ) surface of the leveling layer or along the wall laying pipe groove, laying the leveling layer or the tube groove water supplying pipe outside diameter is less than 25mm. In fact, if connected to two or more than two water points, water supply branch pipe are connected together in series, the pipe diameter is more than 25mm. Therefore, in order to meet the specification requirements, water supply branch door after access water separator, a water segregator dark kitchen or bathroom wall, through the diversion device connected to each water using point branch pipe diameter can be controlled under 25mm. But it should be noted: a leveling layer water supply pipe after completion of construction, should be in the position to do the obvious markers, lest the household decoration, destruction of water supply pipeline.水表设置关于水表设置。

相关文档
最新文档