高二数学:数列(讲义)
4.1数列的概念课件——2022-2023学年高二上学期数学人教A版(2019) 选择性必修第二册

到第15天每天月亮可见部分的数:
5,10,20,40,80,
96,112,128,144,160,
176,192,208,224,240.
它们之间能否交换位置?具有确定的顺序吗? 记第i天月亮可见部分的数为si,那么 s1=5,s2=10,s3=20,…,s15=240.
不能交换位置, 具有确定顺序.
4.正、负数值间隔的数列可用 1n 或 1 n1来表示其正负号.
三、由图形的数量特征,猜想数列的通项公式 例3 图中的一系列三角形图案称为谢尔宾斯基三角形.在图中4个大三角 形中,着色的三角形的个数依次构成一个数列的前4项,写出这个数列的 一个通项公式.
1
3
9
27
这个数列的一个通项公式是
.
例3 图中的一系列三角形图案称为谢尔宾斯基三角形.在图中4个大三角 形中,着色的三角形的个数依次构成一个数列的前4项.
145,153,158,160,162,163,165,168.
它们之间能否交换位置?具有确定的顺序吗?
记王芳第i岁时的身高为hi,那么 h1=75,h2=87,h3=96,…,h17=168.
不能交换位置, 具有确定顺序.
新知探究
问题3:在两河流域发掘的一块泥版上,有一列依次表示一个月中从第1天
an
S1 ,
n=1,
Sn Sn1,n≥2.
知道了首项和递推公式,就能求出数列的每一项了. 1 , n=1,
an 3an1 ,n≥2. {an} :1,3,9,27,….
例4 已知数列{an}的首项为 a1
写出这个数列的前5项.
1 ,递推公式为
an
1 1 an1
(n≥2),
解:
由题意可知 a1 1 ,
必修5 第2章 2.1 数列-2020-2021学年江苏省高二数学上册课件(新教材)共42张PPT

20
[解] (1)在通项公式中依次取n=1,2,3,可得{an}的前3项分别 为:1,6,15.
(2)令2n2-n=45,得2n2-n-45=0, 解得n=5或n=-92(舍去),故45是数列{an}中的第5项. 令2n2-n=3,得2n2-n-3=0, 解得n=-1或n=32,即方程没有正整数解, 故3不是数列中的项.
栏目导航
9
合作探究 提素养
栏目导航
根据数列的前n项写出通项公式
写出下列数列的一个通项公式. (1)21,2,92,8,225,…; (2)9,99,999,9 999,…; (3)22-1 1,32-3 2,42-5 3,52-7 4,…; (4)-1×1 2,2×1 3,-3×1 4,4×1 5,….
(3)对于周期出现的数列,可考虑拆成几个简单数列和的形式, 或者利用周期函数,如三角函数等.
栏目导航
[跟踪训练] 1.写出下列数列的一个通项公式. (1)3,5,9,17,33,…; (2)21,34,78,1156,3312,…; (3)32,-1,170,-197,2116,-3173,….
16
栏导航
7
2.数列1,3,5,7,9,…的一个通项公式可以是________. [解析] 1,3,5,7,9,…的一个通项公式可以是an=2n-1,n∈N*. [答案] an=2n-1,n∈N*
栏目导航
8
3.若数列{an}的通项公式为an=3n-2,则a5=________. [解析] ∵an=3n-2,∴a5=3×5-2=13. [答案] 13
为10n,可得原数列的通项公式为an=10n-1(n∈N*).
栏目导航
13
(3)数列中每一项由三部分组成,分母是从1开始的奇数列,可 用2n-1表示;分子的前一部分是从2开始的自然数的平方,可用(n +1)2表示,分子的后一部分是减去一个自然数,可用n表示,综 上,原数列的通项公式为an=n+2n1-2-1 n(n∈N*).
高二数学第一讲等差数列

高二数学第一讲等差数列数学讲义一、知识梳理1、等差数列的定义:数列{an}满足:anan1d(n≥2,nN某)(d是与n 的取值的常数);2、等差数列的通项公式:(1)ana1d;(2)anamd(n,mN);3、等差中项:三个数a,A,b组成等差数列,A叫做a,b的等差中项,且A=;4、等差数列前n项和的公式:Sn=;5、等差数列{an}的常用性质:(1)数列{an}是等差数列,则数列{anp}、{pan}(p是常数)都是等差数列;(2)在等差数列{an}中,等距离取出若干项也构成一个等差数列,即an,ank,an2k,an3k为等差数列,公差为kd(3)若mnpq,则特别地当pq2m时,(4)Sn,S2nSn,S3nS2n仍是等差数列,其公差为(5)两个等差数列{an}、{bn}的前n项和分别为Sn、Tn,则等差数列anS2n1.bnT2n1二、典例研习类型一、等差数列的判断与证明例1、已知Sn为等差数列{an}的前n项和,bnSn(nN),求证:数列{bn}是等差数列n-1-变式1、已知数列{an}中,a11,an1an(nN某)2an11(1)求证数列为等差数列;an(2)求数列{an}的通项公式方法点拨:等差数列的判定方法:①定义法:即证明an1and(d是常数,nN某)。
②中项公式法:即证明2an1anan2(nN某)。
类型二、等差数列的基本运算例2、已知等差数列{an}中,Sn是其前n项和,a97,S20155,求:a11及S10变式2、(1)已知{an}为等差数列,且a72a41,a30,则公差d()11B.C.D.2221(2)若数列{an}为等差数列,公差为,且S100145,则a2a4a100的值为()2A.2A.60B.85C.1452D.其它值项重要的量,是解题的关键。
②等差数列{an}中,当项数为2n(nN)时,有SaS偶S奇nd,偶n1;S奇an-2-类型三、等差数列性质的运用例3、若一个等差数列的前4项和为36,后4项和为124,且所有项的和为780,求这个数列的项数n。
数列的概念(第一课时)课件 高二上学期数学人教A版(2019)选择性必修第二册

典例分析
例1 根据下列数列{an}的通项公式 , 写出前5项 , 并画出它们的图象:
n2 + n
( n - 1)π
(1) an =
;(2) an =cos
.
2
2
an
15
解:(1)当通项公式中的n=1 , 2 , 3 , 4 , 5时 ,
首项 第2项
第n项
注: 右下角标表
示这一项在数列
中的位置序号
概念辨析
追问:在数列中,符号的{an}与an所表示的意义是否相同?
{an}表示整个数列 a1,a2,a3,…,an,… ;
an只是表示数列 { an }中的第 n 项,
问题6:对于不同的数列,他们的项数有何特点?
①
75,87,96,103,110,116,120,128,138,145,153,158,160,162,163,165,168.
②
5 , 10 , 20 , 40 , 80 , 96 , 112 , 128 , 144 , 160 , 176 , 192 , 208 , 224 , 240.
1 1
1 1
③ − , ,− , ......
2 4
8 16
有穷数列:项数有限的数列
无穷数列:项数无限的数列
新知探究:数列与函数的关系
列表法
图像法
解析法
75,87,96,103,110,116,120,128,138,145,153,158,160,162,163,
165,168.
数列③− , ,
可以表示为
−
2024-2025学年高二数学选择性必修第二册(北师版)教学课件第一章-§1数列

按项的变
化趋势
常数列
摆动数列
相等
各项________的数列
大于
从第 2 项起,有些项________它的前一项,有些项小于
它的前一项的数列
高中数学
选择性必修第二册
北师大版
谢 谢!
该数列从第2项起,第项与第-1项的差为(2-12)-[(-1)2-12(-1)]=2-13,所以
该数列的前6项单调递减,从第6项往后单调递增,故选D.
答案 D
高中数学
选择性必修第二册
北师大版
(2)已知下列数列:
①1,2,22,23,…,260;②1,0.5,0.52 ,0.53,…;③-2,2,-2,2,…;④3,3,3,3,…;
即+1 < .所以数列{}为递减数列.
反思感悟用作差法判断数列的单调性关键是判断符号,为此,一般要对差式进行通分,因式分解等变
形;若用作商法则要特别注意分母的符号.
高中数学
选择性必修第二册
北师大版
跟踪训练
2
∗
已知数列{}的第项可以表示为3+1, ∈ ,试判断数列的增减性.
递增数列;如果从第2项起,每一项都小于它的前一项,即
+1 < ,那么这个数列叫作递减数列;
如果数列 的各项都相等,那么这个数列叫作常数列.
名师点拨
(1)数列1,2,3,4,5和数列5,3,2,4,1为两个不同的数列,因为二者的元素顺序不同,而集合{1,2,3,4,5}与这两
个数列也不相同,一方面形式上不一致,另一方面,集合中的元素具有无序性.
(3)数列的函数特性.
2. 常见误区:
忽视数列中的条件: ∈ 版
类别
含义
数列的概念(第一课时)课件-高二数学人教A版(2019)选择性必修第二册

函数值
=
自变量
项
n
an =
序号
问题1:你能求出这个函数的解析式吗?
数列通项公式
如果数列 的第n项与序号n之间的
关系可以用一个公式来表示,那么这
个公式就叫做这个数列的通项公式.
探究新知
, , , , ⋯
项
序号
1 2 3 4
=
, , , , , … .
解析 (3)数列的项有的是分数,有的是整数,可将各项统一成分数再观察:
, , , , , ⋯ .所以,它的一个通项公式为
=
.
(4)可看作+,可看作+,可看作+,可看作+,
人教A版同步教材名师课件
数列的概念
---第一课时
学习目标
学习目标
核心素养
了解数列的概念
掌握数列的几种表示方法
能由数列的递推关系写出数列的通项公式
数学抽象
数学运算
数学运算
学习目标
学习目标:
1.理解数列的概念.
2.掌握数列的通项公式及应用.
3.理解数列是一种特殊的函数,理解数列与函数的关系 .
4.能根据数列的前几项写出数列的一个通项公式.
=
, 为偶数, ∈ ∗ .
法二: =
即 =
+ + − + −
−
+
.
=
+ − + −
方法归纳
1.常见数列的通项公式归纳
(1)数列, , , , …的一个通项公式为=;
高二数学数列(讲义)

数列的一般形式: a , a , a ,……, a ,……,简记作 {a }。
n , ② 同一个数列的通项公式的形式不一定唯一。
例如, (-1) = ⎨ (k ∈ Z ) ;③+1,n = 2k ⎩ f (n ),其图象是一群孤立点。
a =⎨ ⎩S n - S n -1 (n ≥ 2)数列{ a }的前n 项和 S 与通项 a 的关系: n2a高考数学基础知识复习:数列概念知识清单1.数列的概念(1)数列定义:按一定次序排列的一列数叫做数列;数列中的每个数都叫这个数列的项。
记作a ,在数列第一个位置的项叫第 1 项(或首项) 在 n第二个位置的叫第 2 项,……,序号为 n 的项叫第 n 项(也叫通项)记作 a ; n123nn(2)通项公式的定义:如果数列{a } 的第 n 项与 n 之间的关系可以用一个公式表示,那么这 n个公式就叫这个数列的通项公式。
例如,数列①的通项公式是 a = n ( n ≤ 7, n ∈ N ),n +1数列②的通项公式是 a = ( n ∈ N )。
n +说明:① {a }表示数列, a nn表示数列中的第 n 项, a = f (n )表示数列的通项公式;n⎧-1,n = 2k -1 n不是每个数列都有通项公式。
例如,1,1.4,1.41,1.414,……(3)数列的函数特征与图象表示:序号:1 2 3 4 5 6 项 :4 5 6 7 8 9上面每一项序号与这一项的对应关系可看成是一个序号集合到另一个数集的映射。
从函数观 点看,数列实质上是定义域为正整数集 N (或它的有限子集)的函数 f (n ) 当自变量 n 从 1 +开始依次取值时对应的一系列函数值 f (1), f (2), f (3), ……, f (n ) ,…….通常用a 来代替n(4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关系分:单调数列(递增数列、递减数列) 常数列和摆动数列。
北师大版高二数学上册必修5第一章数列第一课数列的概念课件(共21张PPT)

昨日的明天是今天。明天的昨日是今天。为什么要计较于过去呢(先别急着纠正我的错误,你确实可以在评判过去中学到许多)。但是我发现有的人过分地瞻前顾后了。为 何不想想“现在”呢?为何不及时行乐呢?如果你的回答是“不”,那么是时候该重新考虑一下了。成功的最大障碍是惧怕失败。这些句子都教育我们:不要惧怕失败。如 果你失败了他不会坐下来说:“靠,我真失败,我放弃。”并且不是一个婴儿会如此做,他们都会反反复复,一次一次地尝试。如果一条路走不通,那就走走其他途径,不 断尝试。惧怕失败仅仅是社会导致的一种品质,没有人生来害怕失败,记住这一点。宁愿做事而犯错,也不要为了不犯错而什么都不做。不一定要等到时机完全成熟才动手。 开头也许艰难,但是随着时间的流逝,你会渐渐熟悉你的事业。世上往往没有完美的时机,所以当你觉得做某事还不是时候,先做起来再说吧。喜欢追梦的人,切记不要被 梦想主宰;善于谋划的人,切记空想达不到目标;拥有实干精神的人,切记选对方向比努力做事重要。太阳不会因为你的失意,明天不再升起;月亮不会因为你的抱怨,今 晚不再降落。蒙住自己的眼睛,不等于世界就漆黑一团;蒙住别人的眼睛,不等于光明就属于自己!鱼搅不浑大海,雾压不倒高山,雷声叫不倒山岗,扇子驱不散大雾。鹿 的脖子再长,总高不过它的脑袋。人的脚指头再长,也长不过他的脚板。人的行动再快也快不过思想!以前认为水不可能倒流,那是还没有找到发明抽水机的方法;现在认 为太阳不可能从西边出来,这是还没住到太阳从西边出来的星球上。这个世界只有想不到的,没有做不到的!不是井里没有水,而是挖的不够深;不是成功来的慢,而是放 弃速度快。得到一件东西需要智慧,放弃一样东西则需要勇气!终而复始,日月是也。死而复生,四时是也。奇正相生,循环无端,涨跌相生,循环无端,涨跌相生,循环 无穷。机遇孕育着挑战,挑战中孕育着机遇,这是千古验证了的定律!种子放在水泥地板上会被晒死,种子放在水里会被淹死,种子放到肥沃的土壤里就生根发芽结果。选
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学基础知识复习:数列概念知识清单1.数列的概念(1)数列定义:按一定次序排列的一列数叫做数列;数列中的每个数都叫这个数列的项。
记作n a ,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作n a ; 数列的一般形式:1a ,2a ,3a ,……,n a ,……,简记作 {}n a 。
(2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式。
例如,数列①的通项公式是n a = n (n ≤7,n N +∈), 数列②的通项公式是n a = 1n(n N +∈)。
说明:①{}n a 表示数列,n a 表示数列中的第n 项,n a = ()f n 表示数列的通项公式;② 同一个数列的通项公式的形式不一定唯一。
例如,n a = (1)n-=1,21()1,2n k k Z n k -=-⎧∈⎨+=⎩; ③不是每个数列都有通项公式。
例如,1,1.4,1.41,1.414,……(3)数列的函数特征与图象表示:序号:1 2 3 4 5 6 项 :4 5 6 7 8 9上面每一项序号与这一项的对应关系可看成是一个序号集合到另一个数集的映射。
从函数观点看,数列实质上是定义域为正整数集N +(或它的有限子集)的函数()f n 当自变量n 从1开始依次取值时对应的一系列函数值(1),(2),(3),f f f ……,()f n ,…….通常用n a 来代替()f n ,其图象是一群孤立点。
(4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关系分:单调数列(递增数列、递减数列)、常数列和摆动数列。
(5)递推公式定义:如果已知数列{}n a 的第1项(或前几项),且任一项n a 与它的前一项1n a -(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式。
(6)数列{n a }的前n 项和n S 与通项n a 的关系:11(1)(2)n nn S n a S S n -=⎧=⎨-⎩≥课前预习1.(04 江苏)设数列{}n a 的前n 项和为n S ,n S =2)13(1-n a (对于所有1≥n ),且544=a ,则1a 的数值是2.(05广东,14)设平面内有n 条直线)3(≥n ,其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用)(n f 表示这n 条直线交点的个数,则)4(f =____________;当4>n 时,=)(n f (用n 表示)。
3.(01上海)若数列{}n a 前8项的值各异,且n n a a =+8,对任意的+∈N n 都成立,则下列数列中可取遍{}n a 前8项值的数列为( ) A{}12+k a B {}13+k a C {}14+k a D {}16+k a6.数列{}n a 的前n 项和为n S ,若1(1)n a n n =+,则5S 等于( )A .1B .56C .16D .1304.(07广东理)已知数列{n a }的前n 项和29n S n n =-,第k 项满足58k a <<,则k =( )A .9B .8 C. 7 D .64.(02上海)若数列{}n a 中,1a =3,且1+n a =2n a (n 是正整数),则数列的通项n a =5.(04 上海)根据下列5个图形及相应点的个数的变化规律,试猜测第n 个图中有 个点。
○ ○○○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○○ ○ ○ ○ ○ ○ ○ ○ ○ ○○○ ○○○○○○○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 6.(全国2文)已知数列的通项52n a n =-+,则其前n 项和n S = .7.(07江西理)已知数列{}n a 对于任意*p q ∈N ,,有p q p q a a a ++=,若119a =,则36a = .9.若数列{}n a 的前n 项和210(123)n S n n n =-=,,,,则此数列的通项公式为8.若数列{}n a 的前n 项和210(123)n S n n n =-=,,,,则此数列的通项公式为;数列{}n na 中数值最小的项是第项.高考数学基础知识复习:等差数列知识清单1、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。
用递推公式表示为1(2)n n a a d n --=≥或1(1)n n a a d n +-=≥。
2、等差数列的通项公式:1(1)n a a n d =+-;说明:等差数列(通常可称为A P 数列)的单调性:d 0>为递增数列,0d =为常数列,0d < 为递减数列。
3、等差中项的概念:定义:如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项。
其中2a bA +=a ,A ,b 成等差数列⇔2a bA +=。
4、等差数列的前n 和的求和公式:11()(1)22n n n a a n n S na d +-==+。
5、等差数列的性质:(1)在等差数列{}n a 中,从第2项起,每一项是它相邻二项的等差中项; (2)在等差数列{}n a 中,相隔等距离的项组成的数列是AP ,如:1a ,3a ,5a ,7a ,……;3a ,8a ,13a ,18a ,……; (3)在等差数列{}n a 中,对任意m ,n N +∈,()n m a a n m d =+-,n ma a d n m-=-()m n ≠;(4)在等差数列{}n a 中,若m ,n ,p ,q N +∈且m n p q +=+,则m n p q a a a a +=+; 说明:设数列{}n a 是等差数列,且公差为d ,(Ⅰ)若项数为偶数,设共有2n 项,则①S 奇-S 偶nd =; ② 1n n S a S a +=奇偶; (Ⅱ)若项数为奇数,设共有21n -项,则①S 偶-S 奇n a a ==中;②1S nS n =-奇偶。
6、数列最值(1)10a >,0d <时,n S 有最大值;10a <,0d >时,n S 有最小值;(2)n S 最值的求法:①若已知n S ,可用二次函数最值的求法(n N +∈);②若已知n a ,则n S 最值时n 的值(n N +∈)可如下确定100n n a a +≥⎧⎨≤⎩或10n n a a +≤⎧⎨≥⎩。
课前预习 1.(01天津理,2)设S n 是数列{a n }的前n 项和,且S n =n 2,则{a n }是( ) A.等比数列,但不是等差数列 B.等差数列,但不是等比数列 C.等差数列,而且也是等比数列 D.既非等比数列又非等差数列2.(06全国I )设{}n a 是公差为正数的等差数列,若12315a a a ++=,12380a a a =,则111213a a a ++=( )A .120B .105C .90D .75 4.(01全国理)设数列{a n }是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( ) A.1 B.2 C.4 D.6 3.(02京)若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )A.13项B.12项C.11项D.10项 5.(06全国II )设S n 是等差数列{a n }的前n 项和,若36S S =13,则612S S =( ) A .310B .13 C .18D .197.(94全国)等差数列{a n }的前m 项和为30,前2m 项和为100,则它的前3m 项和为( )A.130B.170C.210D.2606.(02上海)设{a n }(n ∈N *)是等差数列,S n 是其前n 项的和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误..的是( ) A.d <0 B.a 7=0 C.S 9>S 5D.S 6与S 7均为S n 的最大值2.(07重庆理)若等差数列{n a }的前三项和93=S 且11=a ,则2a 等于( ) A .3 B.4 C. 5 D. 64.(07天津理)设等差数列{}n a 的公差d 不为0,19a d =.若k a 是1a 与2k a 的等比中项,则k =( ) A.2 B.4 C.6 D.86.等差数列{a n }中,a 1=1,a 3+a 5=14,其前n 项和S n =100,则n =( ) (A)9 (B)10 (C)11 (D)128.已知{}n a 是等差数列,1010a =,其前10项和1070S =,则其公差d =( ) A.23-B.13-C.13D.233.(07湖北理)已知两个等差数列{}n a 和{}n b 的前n 项和分别为A n 和n B ,且7453n n A n B n +=+,则使得nna b 为整数的正整数n 的个数是( ) A .2B .3C .4D .55.设等差数列{}n a 的公差d 是2,前n 项的和为n S ,则22lim n n na n S →∞-= .10.已知{}n a 是等差数列,466a a +=,其前5项和510S =,则其公差d = . 1.(07江西文)已知等差数列{}n a 的前n 项和为n S ,若1221S =,则25811a a a a +++=.高考数学基础知识复习:等比数列知识清单1.等比数列定义一般地,如果一个数列从第二项起....,每一项与它的前一项的比等于同一个常数..,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比;公比通常用字母q 表示(0)q ≠,即:1n a +:(0)n a q q =≠数列对于数列(1)(2)(3)都是等比数列,它们的公比依次是2,5,21-。
(注意:“从第二项起”、“常数”q 、等比数列的公比和项都不为零)2.等比数列通项公式为:)0(111≠⋅⋅=-q a q a a n n 。
说明:(1)由等比数列的通项公式可以知道:当公比1d =时该数列既是等比数列也是等差数列;(2)等比数列的通项公式知:若{}n a 为等比数列,则m n mna q a -=。
3.等比中项如果在b a 与中间插入一个数G ,使b G a ,,成等比数列,那么G 叫做b a 与的等比中项(两个符号相同的非零实数,都有两个等比中项)。
4.等比数列前n 项和公式 一般地,设等比数列123,,,,,n a a a a 的前n 项和是=n S 123n a a a a ++++,当1≠q 时,qq a S n n --=1)1(1 或11n n a a qS q -=-;当q=1时,1na S n =(错位相减法)。