一元二次方程能力提高训练题代
一元二次方程提高题

九年级上辅导一一元二次方程提高题类型一、整体性思维在解题中的应用1、整体求值例、已知m 是一元二次方程x 2-2x -1=0的根,求2m 2-4m 的值。
2、整体代入例、已知x 2-5x -1=0,求x 2+-11的值.3、整体求积 例、在Rt ⊿ABC 中,∠C=90°,AC+BC=,AB=.求S ⊿ABC.4、变0代入例、当x=时,求式子(4x 3-2012x -2009)2009的值。
类型二、一元二次方程中的规律探究例、已知下列n (n 为正整数)个关于x 的一元二次方程:()x x x x x x n x n n 2222101202230310-=<>+-=<>+-=<>+--=<>……、(1)请解上述一元二次方程<1>、<2>、<3>、<n>;(2)请你指出这n 个方程的根具有什么共同特点。
x2165220091+类型三、方程中的绝对值例、解方程:220x x --=练习:解方程2330x x ---=。
类型四 配方法求二次三项式的最值例、求代数式x 2-4x +5的最小值是( )练习:1、多项式-2x 2+8x +5的说法正确的是( )A .有最大值13B .有最小值-3C .有最大值37D .有最小值12.求证:代数式3x 2-6x +9的值恒为正数.3、若M =10a 2+2b 2-7a +6,N =a 2+2b 2+5a +1,试说明无论a ,b 为何值,总有M >N .练习:1.如果二次三项式是一个完全平方式,那么的值是___.2.若与互为倒数,则实数为___..3.方程的根是,则可分解为 .4.直角坐标系xOy 中,已知点P (m ,n ),m ,n 满足(m 2+1+n 2)(m 2+3+n 2)=8,则OP 的长为()5.如果一元二方程有一个根为0,则 .6.已知,求的值.221)16x m x -++(m 12+x 12-x x 0222=--x x 31±=x 222--x x 043)222=-++-m x x m (m =)0(04322≠=-+y y xy x y x yx +-根与系数的关系1.已知α,β是方程x 2+2006x +1=0的两个根,则(1+2008α+α2)(1+2008β+β2)的值为( )2.方程的一个根为另一个根的2倍,则 .3. 若方程043222=-+-a x x 有两个不相等的实数根,则a 的取值范围为____,则a a a 81622-+--的值等于________。
一元二次方程专题能力培优(含答案)

一元二次方程专题能力培优(含答案)解得:m≠2m10当m≠2时,原方程可化为x-m+1=0.2.C解析:将方程化简可得(m-6)x+(m-6)=0,由于常数项为0,所以m-6=0,即m=6.3.a=2解析:由于一次项系数为0,所以根据一元二次方程的求根公式可得:x1=x2=-b/2a,代入a-b+c=0中得a=2.4.a=2解析:将方程化简可得(2a-4)x+(3a+6)x+(a-8)=0,由于一次项系数为0,所以2a-4+3a+6=0,解得a=2.5.D解析:由题可得另一个根为-b,代入x1x2=a/c=-a/b得到b=-2a,代入a-b得到a=2b,所以a-b=2b-b=b=2.6.a/2解析:由于a-b+c=0,所以c=b-a,代入一元二次方程的求根公式可得x1=(b+√(b^2-4ac))/2a,x2=(b-√(b^2-4ac))/2a,代入x1x2=a/c得到a=(b^2-a^2)/(b-a),解得a/2=b-a,即a=2b-2a,解得a/2.7.2012解析:由一元二次方程的求根公式可得a=2013/2+√(2013^2/4-1),代入a-2012a-2013/2得到2012.2或者当m+1+(m-2)≠0且m+1=1时,它是一元一次方程。
解得:m=-1,m=0.因此,当m=-1或m=0时,为一元一次方程。
给定方程m^2-1=0,解得m=-1.因为m-1≠0,所以这是一元一次方程。
解方程3a+6=0,得到a=-2.因此,这是一元一次方程。
根据题意,方程x+bx+a=0的一个根是-a(a≠0)。
由此得到a-b=-1.解方程x^2=1,得到x=±1.因此,x=-1.已知实数a是一元二次方程x-2013x+1=0的解,因此a-2013a+1=0.解得a=-1/2012.若方程25x-(k-1)x+1=0的左边可以写成一个完全平方式,则k的值为-8或9.如果代数式x+6x+m是一个完全平方式,则m=9.用配方法证明:无论x为何实数,代数式-2x^2+4x-5的XXX小于零。
2020初中数学一元二次方程的解法能力提升练习题(附答案)

2020初中数学一元二次方程的解法能力提升练习题(附答案)1.若分式22632x x x x ---+的值为0,则x 的值为( ) A .3或﹣2 B .3 C .﹣2 D .﹣3或22.在解答“一元二次方程211022x x a -+=的根的判别式为 ”的过程中,某班同学的作业中出现了下面几种答案,其中正确的答案是 ( ) A .1204a -≥; B .124a -; C .180a -≥; D .18a -.3.已知2222(1)()6m n m n --+=-,则m 2+n 2的值是( )A .3B .3或-2C .2或-3D .24.下列方程中是关于x 的一元二次方程的是( )A .x 2+2x=x 2﹣1B .ax 2+bx+c=0C .x (x ﹣1)=1D .3x 2﹣2xy ﹣5y 2=05.下列给出的四个命题:①若a b = ,则a a b b =;②若a 2﹣5a+5=01a =- ;③(1a -=④若方程x 2+px+q=0的两个实根中有且只有一个根为0,那么p≠0,q=0.其中是真命题是( )A .①②B .②③C .②④D .③④6.用配方法解一元二次方程x 2﹣6x+5=0,此方程可化为( )A .2x-3=4()B .2x-3=14()C .2x+3=4()D .2x+3=14()7.若关于x 的方程x 2+2x+a=0不存在实数根,则a 的取值范围是( )A .a <1B .a >1C .a≤1D .a≥18.方程4x 2=5x+2化为一般形式后的二次项、一次项、常数项分别是( )A .4x 2, 5x, 2B .-4x 2, -5x, -2C .4x 2 , -5x,, -2D .4x 2, -5x, 29.用配方法解方程2410x x -+= 时,配方后所得的方程是( )A .2(2)1x -=B .2(2)1x -=-10.把方程 13x 2﹣x ﹣5=0,化成(x+m )2=n 的形式得( ) A .(x ﹣ 32)2= 294 B .(x ﹣ 32)2= 272 C .(x ﹣ 32)2= 514 D .(x ﹣ 32)2= 69411.x 的一元二次方程1(1)(2)30n n x n x n +++-+=中,一次项系数是______.12.一元二次方程2(2)63x x -=-的解为__________13.若一元二次方程ax 2=b (ab >0)的两个根分别是2m +与25m -,则b a=________. 14.根据下表得知,方程x 2+2x ﹣10=0的一个近似解为x≈_____(精确到0.1)15.若关于x 的方程260x mx -+=的一个根为12x =,则另一个根2x =__________. 16.若m 、2m ﹣1均为关于x 的一元二次方程x 2=a 的根,则常数a 的值为________. 17.关于m 22720--=nm n m 的一个根为2,则22=-+n n ____. 18.若方程2980kx x -+=的一个根为1,则k =________,另一个根为________。
一元二次方程(能力提升)(原卷版)

专题2.1 一元二次方程(能力提升)(原卷版)一、选择题。
1.(2021秋•龙沙区期末)若m是方程x2﹣x﹣1=0的一个根,则m2﹣m+2020的值为()A.2019B.2020C.2021D.20222.(2022春•霍邱县期末)将一元二次方程5x2﹣1=4x化成一般形式后,二次项的系数和一次项系数分别是()A.5,﹣1B.5,4C.5,﹣4D.5,13.(2021秋•揭阳期末)若一元二次方程ax2+bx+c=0有一个根为﹣1,则下列等式成立的是()A.a+b+c=1B.a﹣b+c=0C.a+b+c=0D.a﹣b+c=1 4.(2022春•惠民县期末)若关于x的一元二次方程ax2+bx+5=0(a≠0)的一个解是x=1,则2021﹣a﹣b的值是()A.2016B.2020C.2025D.20265.(2021秋•长汀县校级月考)若m是方程x2﹣x﹣1=0的一个根,则2m2﹣2m+2020的值为()A.2019B.2020C.2021D.2022 6.(2021•阳东区模拟)若方程x2﹣4x+c=0的一个实数根是3,则c的值是()A.c=﹣3B.c=3C.c=5D.c=0 7.(2021•宣州区校级自主招生)已知三个关于x的一元二次方程ax2+bx+c=0,bx2+cx+a=0,cx2+ax+b=0恰有一个公共实数根,则的值为()A.0B.1C.2D.38.(2021秋•长安区校级期中)下列方程中,属于一元二次方程的是()A.﹣3x+2=0B.2x2+y﹣1=0C.2x﹣3y+1=0D.x2﹣x﹣3=09.(2021•江油市模拟)关于x的方程(m﹣1)x2+x+m2+2m﹣3=0的一个根是0,则m的值是()A.7B.﹣3C.1或﹣3D.010.(2022春•淄川区期中)若关于x的一元二次方程ax2+bx+5=0(a≠0)有一根为2022,则方程a(x+1)2+b(x+1)=﹣5必有根为()A.2022B.2020C.2019D.2021二、填空题。
人教版九年级上册数学第21章 《一元二次方程实际应用》能力提升练习题(含答案)

人教版九年级上册数学第21章《一元二次方程实际应用》能力提升练习题基础题训练(一):限时30分钟1.风筝又称“纸鸢”、“鸢儿”,放风筝是民间传统游戏之一,也是清明时节人们所喜爱的活动.小李打算抓住这一机遇,以每个20元的成本制作了30个风筝,再以每个40元的价格售出,很快就被一抢而空,于是小李计划加紧制作第二批风筝.(1)预计第二批风筝的成本是每个15元,仍以原价出售,若两批风筝的总利润不低于2850元,则第二批至少应该制作多少个风筝?(2)在实际制作过程中,小李按照(1)中风筝的最低数量进行制作,但制作风筝的成本比预期的15元多了a%(a>10),于是小李决定将售价也提高a%,附近的商户受到小李的启发,也纷纷卖起了风筝,在市场冲击下,小李实际还剩下a%的风筝没卖出去,但仍然比第一次获利多1668元,求a的值.2.新能源汽车投放市场后,有效改善了城市空气质量.经过市场调查得知,某市去年新能源汽车总量已达到3250辆,预计明年会增长到6370辆.(1)求今、明两年新能源汽车数量的平均增长率;(2)为鼓励市民购买新能源汽车,该市财政部门决定对今年增加的新能源汽车给予每辆0.8万元的政府性补贴.在(1)的条件下,求该市财政部门今年需要准备多少补贴资金?3.我市某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲产品或1件乙产品,根据市场需求和生产经验甲产品每件可获利15元,乙产品每件可获利120元,而实际生产中,生产乙产品需要额外支出一定的费用,经过核算,每生产1件乙产品,当天平均每件获利减少2元,设每天安排x人生产乙产品.(1)根据信息填表:产品种类每天工人数(人)每天产量(件)每件产品可获利润(元)甲65﹣x15乙x x(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多650元,试问:该企业每天生产甲、乙产品可获得总利润是多少元?4.毎年6月,学校门口的文具店都会购进毕业季畅销商品进行销售.已知校门口“小光文具店“在5月份就售出每本8元的A种品牌同学录90本,每本10元的B种品牌同学录175本.(1)某班班长帮班上同学代买A种品牌和B种品牌同学录共27本,共花费246元,请问班长代买A种品牌和B种品牌同学录各多少本?(2)该文具店在6月份决定将A种品牌同学录每本降价3元后销售,B种品牌同学录每本降价a%(a>0)后销售.于是,6月份该文具店A种品牌同学录的销量比5月份多了a%,B种品牌同学录的销量比5月份多了(a+20)%,且6月份A、B两种品牌的同学录的销售总额达到了2550元,求a的值.5.重庆不仅是网红城市,更是拥有长安,力帆等大型车企的一座汽车城,为了更好的推广和销售汽车,每年都会在悦来会展中心举办大型车展.去年该车展期间大众旗下两品牌汽车迈腾和途观L共计销售240辆,迈腾销售均价为每辆20万元,途观L销售均价为每辆30万元,两种车型去年车展期间销售额共计5600万元.(1)这两种车型在去年车展期间各销售了多少辆?(2)在今年的该车展上,各大汽车经销商纷纷采取降价促销手段,而途观L坚持不降价,与去年相比,销售均价不变,销量比去年车展期间减少了a%,而迈腾销售均价比去年降低了a%,销量较去年增加了2a%,两种车型今年车展期间销售总额与去年相同,求a的值.基础题训练(二):限时30分钟6.小王开了一家便利店.今年1月份开始盈利,2月份盈利5000元,4月份的盈利达到7200元,且从2月到4月,每月盈利的平均增长率都相同.(1)求每月盈利的平均增长率;(2)按照这个平均增长率,预计5月份这家商店的盈利将达到多少元?7.如图,在矩形ABCD中,AB=16cm,BC=6cm,动点P、Q分别以3cm/s、2cm/s的速度从点A、C同时出发,点Q从点C向点D移动.(1)若点P从点A移动到点B停止,点Q随点P的停止而停止移动,点P、Q分别从点A、C同时出发,问经过多长时间P、Q两点之间的距离是10cm?(2)若点P沿着AB→BC→CD移动,点P、Q分别从点A、C同时出发,点Q从点C移动到点D停止时,点P随点Q的停止而停止移动,试探求经过多长时间△PBQ的面积为12cm2?8.如图,在宽为20m,长为32m的矩形地面上,修筑同样宽的道路(即图中阴影部分),余下的部分种上草坪,要使草坪的面积为540m2,求道路的宽.9.水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤.通过调查发现,这种水果每斤的售价每降低1元,每天可多售出200斤.为了保证每天至少售出260斤,张阿姨决定降价销售.(1)若将这种水果每斤的售价降低x元,则每天的销售量是斤(用含x的代数式表示);(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?10.某服装店销售一批衬衫,每件进价150元,开始以每件200元的价格销售,每星期能卖出20件,后来因库存积压,决定降价销售,经两次降价后的每件售价162元,每星期能卖出96件.(1)已知两次降价百分率相同,求每次降价的百分率;(2)聪明的店主在降价过程中发现,适当的降价既可增加销售又可增加收入,且每件衬衫售价每降低1元,销售会增加2件,若店主想要每星期获利1750元,应把售价定为多少元?参考答案1.解:(1)设第二批制作x个风筝,(40﹣15)x+(40﹣20)×30≥2850,解得,x≥90,答:第二批至少应该制作90个风筝;(2)[40(1+a%)﹣15(1+a%)]×90(1﹣a%)﹣15(1+a%)×90×a%﹣(40﹣20)×30=1668,解得,a=20或a=5(舍去),答:a的值是20.2.解:(1)设今、明两年新能源汽车数量的平均增长率为x,由题意,得3250(1+x)2=6370.解得,x1=0.4=40%,x2=﹣2.4(舍去).答:今、明两年新能源汽车数量的平均增长率为40%;(2)3250×40%×0.8=1040(万元).答:该市财政部门今年需要准备1040万元补贴资金.3.解:(1)设每天安排x人生产乙产品,则每天安排(65﹣x)人生产甲产品,每天可生产x件乙产品,每件的利润为(120﹣2x)元,每天可生产2(65﹣x)件甲产品.故答案为:2(65﹣x);120﹣2x.(2)依题意,得:15×2(65﹣x)﹣(120﹣2x)•x=650,整理,得:x2﹣75x+650=0解得:x1=10,x2=65(不合题意,舍去),∴15×2(65﹣x)+(120﹣2x)•x=2650.答:该企业每天生产甲、乙产品可获得总利润是2650元.4.解:(1)设班长代买A种品牌同学录x本,B种品牌同学录y本,依题意,得:,解得:.答:班长代买A种品牌同学录12本,B种品牌同学录15本.(2)依题意,得:(8﹣3)×90(1+a%)+10(1﹣a%)×175[1+(a+20)%]=2550,整理,得:a2﹣20a=0,解得:a1=20,a2=0(舍去).答:a的值为20.5.解:(1)设去年车展期间迈腾销售了x辆,途观L销售了y辆,依题意,得:,解得:.答:去年车展期间迈腾销售了160辆,途观L销售了80辆.(2)依题意,得:20(1﹣a%)×160(1+2a%)+30×80(1﹣a%)=5600,整理,得:8a﹣0.64a2=0,解得:a1=12.5,a2=0(舍去).答:a的值为12.5.6.解:(1)设每月盈利平均增长率为x,根据题意得:5000(1+x)2=7200.解得:x1=20%,x2=﹣220%(不符合题意舍去)答:每月盈利的平均增长率为20%;(2)7200(1+20%)=8640,答:按照这个平均增长率,预计5月份这家商店的盈利将达到8640元.7.解:(1)过点P作PE⊥CD于E.则根据题意,得设x秒后,点P和点Q的距离是10cm.(16﹣2x﹣3x)2+62=102,即(16﹣5x)2=64,∴16﹣5x=±8,∴x1=,x2=;∴经过s或sP、Q两点之间的距离是10cm;(2)连接BQ .设经过ys 后△PBQ 的面积为12cm 2.①当0≤y ≤时,则PB =16﹣3y , ∴PB •BC =12,即×(16﹣3y )×6=12,解得y =4; ②当<x ≤时,BP =3y ﹣AB =3y ﹣16,QC =2y ,则BP •CQ =(3y ﹣16)×2y =12,解得y 1=6,y 2=﹣(舍去); ③<x ≤8时,QP =CQ ﹣PQ =22﹣y ,则QP •CB =(22﹣y )×6=12,解得y =18(舍去).综上所述,经过4秒或6秒△PBQ 的面积为 12cm 2.8.解:设道路的宽x 米,则(32﹣x )(20﹣x )=540,解得:x =2,x =50(舍去),答:道路的宽是2米.9.解:(1)∵售价每降低1元,每天可多售出200斤,∴售价降低x 元时,每天销售量为:100+200x .故答案为:200x +100.(2)由已知得:(4﹣2﹣x )(200x +100)=300,整理得:2x 2﹣3x +1=0,解得:x1==0.5,x2=1,当x=0.5时,200x+100=200,∵200<260,∴x=0.5不合适.∴销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低1元.10.解:(1)设每次降价的百分率为x,200(1﹣x)2=162解得,x1=0.1,x2=1.9(舍去),即每次降价的百分率是10%;(2)设店主将售价降价x元,(200﹣150﹣x)(20+2x)=1750解得,x1=15,x2=25∴200﹣15=185,200﹣25=175,即应把售价定为185元或175元.。
(完整版)一元二次方程培优提高例题

考点一、概念(1)定义:①只含有一个未知数........,并且②未知数的最高次数是.........2.,这样的③整式方程....就是一元二次方程。
(2)一般表达式:)0(02≠=++a c bx ax⑶难点:如何理解 “未知数的最高次数是2”: ①该项系数不为“0"; ②未知数指数为“2”;③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。
典型例题:例1、下列方程中是关于x 的一元二次方程的是( )A ()()12132+=+x x B 02112=-+x xC 02=++c bx axD 1222+=+x x x变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。
例2、方程()0132=+++mx x m m是关于x 的一元二次方程,则m 的值为 。
针对练习:★1、方程782=x 的一次项系数是 ,常数项是 。
★2、若方程()021=--m xm 是关于x 的一元一次方程,⑴求m 的值;⑵写出关于x 的一元一次方程.★★3、若方程()112=•+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。
★★★4、若方程nx m+x n—2x 2=0是一元二次方程,则下列不可能的是( )A 。
m=n=2 B.m=2,n=1 C.n=2,m=1 D.m=n=1考点二、方程的解⑴概念:使方程两边相等的未知数的值,就是方程的解。
⑵应用:利用根的概念求代数式的值;典型例题:例1、已知322-+y y 的值为2,则1242++y y 的值为 .例2、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。
说明:任何时候,都不能忽略对一元二次方程二次项系数的限制.例3、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。
说明:本题的关键点在于对 “代数式形式”的观察,再利用特殊根“-1”巧解代数 式的值。
一元二次方程提高题

一元二次方程提高题一.选择题(共10小题)1.一元二次方程x2﹣6x﹣6=0配方后化为()A.(x﹣3)2=15 B.(x﹣3)2=3 C.(x+3)2=15 D.(x+3)2=32.若关于x的方程x2+2x﹣3=0与=有一个解相同,则a的值为()A.1 B.1或﹣3 C.﹣1 D.﹣1或33.若关于x的方程kx2﹣3x﹣=0有实数根,则实数k的取值范围是()A.k=0 B.k≥﹣1且k≠0 C.k≥﹣1 D.k>﹣14.关于x的一元二次方程x2+(a2﹣2a)x+a﹣1=0的两个实数根互为相反数,则a的值为()A.2 B.0 C.1 D.2或05.已知一元二次方程x2﹣2x﹣1=0的两根分别为x1,x2,则+的值为()A.2 B.﹣1 C.D.﹣26.对于方程x2﹣2|x|+2=m,如果方程实根的个数为3个,则m的值等于()A.1 B.C.2 D.2.57.方程x2﹣|2x﹣1|﹣4=0,求满足该方程的所有根之和为()A.0 B.2 C.D.2﹣8.已知关于x的方程(m﹣1)+2x﹣3=0是一元二次方程,则m的值为()A.1 B.﹣1 C.±1 D.不能确定9.m是方程x2+x﹣1=0的根,则式子2m2+2m+2015的值为()A.2013 B.2016 C.2017 D.201810.三角形两边长分别为5和8,第三边是方程x2﹣6x+8=0的解,则此三角形的周长是()A.15 B.17 C.15或17 D.不能确定二.填空题(共5小题)11.关于x的一元二次方程(k﹣1)x2+6x+k2﹣k=0的一个根是0,则k的值是.12.已知实数m满足m2﹣3m+1=0,则代数式m2+的值等于.13.已知m是方程x2﹣2017x+1=0的一个根,则代数式m2﹣2018m++3的值是.14.关于x的方程x2﹣2mx+3m=0的两个根是等腰△ABC的两条边长,已知一个根是2,则△ABC的周长为.15.若实数a、b满足(a+b)(a+b﹣6)+9=0,则a+b的值为.三.解答题(共11小题)16.解方程:(x﹣3)(x﹣1)=3.17.解一元二次方程:x2﹣3x=1.18.解方程:(2x+1)2=2x+1.19.4x2﹣3=12x(用公式法解)20.解方程:2x2﹣4x=1(用配方法)21.已知M=5x2+3,N=4x2+4x.(1)求当M=N时x的值;(2)当1<x<时,试比较M,N的大小.22.已知关于x的一元二次方程x2+(2m+1)x+m2﹣4=0(1)当m为何值时,方程有两个不相等的实数根?(2)若边长为5的菱形的两条对角线的长分别为方程两根的2倍,求m的值.23.关于x的方程x2﹣(2k﹣1)x+k2﹣2k+3=0有两个不相等的实数根.(1)求实数k的取值范围;(2)设方程的两个实数根分别为x1、x2,存不存在这样的实数k,使得|x1|﹣|x2|=?若存在,求出这样的k值;若不存在,说明理由.24.学校为奖励“汉字听写大赛”的优秀学生,派王老师到商店购买某种奖品,他看到如图所示的关于该奖品的销售信息,便用1400元买回了奖品,求王老师购买该奖品的件数.购买件数销售价格单价40元不超过30件超过30件每多买1件,购买的所有衬衫单价降低0.5元,但单价不得低于30元25.随着柴静纪录片《穹顶之下》的播出,全社会对空气污染问题越来越重视,空气净化器的销量也大增,商社电器从厂家购进了A,B两种型号的空气净化器,已知一台A型空气净化器的进价比一台B型空气净化器的进价多300元,用7500元购进A型空气净化器和用6000元购进B型空气净化器的台数相同.(1)求一台A型空气净化器和一台B型空气净化器的进价各为多少元?(2)在销售过程中,A型空气净化器因为净化能力强,噪音小而更受消费者的欢迎.为了增大B型空气净化器的销量,商社电器决定对B型空气净化器进行降价销售,经市场调查,当B型空气净化器的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台,如果每天商社电器销售B 型空气净化器的利润为3200元,请问商社电器应将B型空气净化器的售价定为多少元?26.关于x的方程x2+2x+2,其中p是实数.(1)若方程没有实数根,求P的范围;(2)若p>0,问p为何值时,方程有两个相等的实数根?并求出这两个根.参考答案与试题解析一.选择题(共10小题)1.(2017•泰安)一元二次方程x2﹣6x﹣6=0配方后化为()A.(x﹣3)2=15 B.(x﹣3)2=3 C.(x+3)2=15 D.(x+3)2=3【分析】方程移项配方后,利用平方根定义开方即可求出解.【解答】解:方程整理得:x2﹣6x=6,配方得:x2﹣6x+9=15,即(x﹣3)2=15,故选A【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.2.(2017•凉山州)若关于x的方程x2+2x﹣3=0与=有一个解相同,则a 的值为()A.1 B.1或﹣3 C.﹣1 D.﹣1或3【分析】两个方程有一个解相同,可以先求得第一个方程的解,然后将其代入第二个方程来求a的值即可.注意:分式的分母不等于零.【解答】解:解方程x2+2x﹣3=0,得x1=1,x2=﹣3,∵x=﹣3是方程的增根,∴当x=1时,代入方程,得,解得a=﹣1.故选:C.【点评】本题考查了解一元二次方程﹣因式分解法,分式方程的解.此题属于易错题,解题时要注意分式的分母不能等于零.3.(2017•齐齐哈尔)若关于x的方程kx2﹣3x﹣=0有实数根,则实数k的取值范围是()A.k=0 B.k≥﹣1且k≠0 C.k≥﹣1 D.k>﹣1【分析】讨论:当k=0时,方程化为﹣3x﹣=0,方程有一个实数解;当k≠0时,△=(﹣3)2﹣4k•(﹣)≥0,然后求出两个中情况下的k的公共部分即可.【解答】解:当k=0时,方程化为﹣3x﹣=0,解得x=;当k≠0时,△=(﹣3)2﹣4k•(﹣)≥0,解得k≥﹣1,所以k的范围为k≥﹣1.故选C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.4.(2017•呼和浩特)关于x的一元二次方程x2+(a2﹣2a)x+a﹣1=0的两个实数根互为相反数,则a的值为()A.2 B.0 C.1 D.2或0【分析】设方程的两根为x1,x2,根据根与系数的关系得a2﹣2a=0,解得a=0或a=2,然后利用判别式的意义确定a的取值.【解答】解:设方程的两根为x1,x2,根据题意得x1+x2=0,所以a2﹣2a=0,解得a=0或a=2,当a=2时,方程化为x2+1=0,△=﹣4<0,故a=2舍去,所以a的值为0.故选B.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a ≠0)的两根时,x1+x2=﹣,x1x2=.也考查了根的判别式.5.(2017•黔东南州)已知一元二次方程x2﹣2x﹣1=0的两根分别为x1,x2,则+的值为()A.2 B.﹣1 C.D.﹣2【分析】根据根与系数的关系得到x1+x2=2,x1x2=﹣1,利用通分得到+=,然后利用整体代入的方法计算【解答】解:根据题意得x1+x2=2,x1x2=﹣1,所以+===﹣2.故选D.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a ≠0)的两根时,x1+x2=﹣,x1x2=.6.(2017•江阴市自主招生)对于方程x2﹣2|x|+2=m,如果方程实根的个数为3个,则m的值等于()A.1 B.C.2 D.2.5【分析】先把已知方程转化为关于|x|的一元二次方程的一般形式,再根据方程有三个实数根判断出方程根的情况,进而可得出结论.【解答】解:原方程可化为x2﹣2|x|+2﹣m=0,解得|x|=1±,∵若1﹣>0,则方程有四个实数根,∴方程必有一个根等于0,∵1+>0,∴1﹣=0,解得m=2.故选C.【点评】本题考查的是根的判别式及用公式法解一元二次方程,先根据题意得出|x|的值,判断出方程必有一根为0是解答此题的关键.7.(2017•雨城区校级自主招生)方程x2﹣|2x﹣1|﹣4=0,求满足该方程的所有根之和为()A.0 B.2 C.D.2﹣【分析】因为题目中带有绝对值符号,所以必须分两种情况进行讨论,去掉绝对值符号,得到两个一元二次方程,求出方程的根,不在讨论范围内的根要舍去.【解答】解:①当2x﹣1≥0时,即x≥,原方程化为:x2﹣2x﹣3=0,(x﹣3)(x+1)=0,x1=3,x2=﹣1,∵﹣1<,∴x2=﹣1(舍去)∴x=3;②当2x﹣1<0,即x<时,原方程化为:x2+2x﹣5=0,(x+1)2=6,x+1=±,x1=﹣1+,x2=﹣1﹣∵﹣1+>,∴x1=﹣1+(舍去)∴x=﹣1﹣.则3+(﹣1﹣)=2﹣.故选:D.【点评】本题考查的是解一元二次方程,由于带有绝对值符号,必须对题目进行讨论,对不在讨论范围内的根要舍去.8.(2017•凉山州一模)已知关于x的方程(m﹣1)+2x﹣3=0是一元二次方程,则m的值为()A.1 B.﹣1 C.±1 D.不能确定【分析】根据一元二次方程的定义得出m﹣1≠0,m2+1=2,求出即可.【解答】解:∵关于x的方程(m﹣1)+2x﹣3=0是一元二次方程,∴m﹣1≠0且m2+1=2,即m≠1且m=±1,解得:m=﹣1.故选B.【点评】本题考查了对一元二次方程的定义的理解和运用,注意:①是整式方程,②只含有一个未知数,③所含未知数的项的最高次数是2.9.(2017•潮阳区模拟)m是方程x2+x﹣1=0的根,则式子2m2+2m+2015的值为()A.2013 B.2016 C.2017 D.2018【分析】根据一元二次方程的解的定义得到m2+m﹣1=0,即m2+m=1,然后利用整体代入的方法计算2m2+2m+2015的值.【解答】解:∵m是方程x2+x﹣1=0的根,∴m2+m﹣1=0,即m2+m=1,∴2m2+2m+2015=2(m2+m)+2015=2+2015=2017.故选C.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.10.(2017•市中区三模)三角形两边长分别为5和8,第三边是方程x2﹣6x+8=0的解,则此三角形的周长是()A.15 B.17 C.15或17 D.不能确定【分析】求出已知方程的解确定出第三边,即可求出三角形周长.【解答】解:方程x2﹣6x+8=0,分解因式得:(x﹣2)(x﹣4)=0,解得:x=2或x=4,当x=2时,三角形三边长为2,5,8,不能构成三角形,舍去;当x=4时,三角形三边长为4,5,8,周长为4+5+8=17,故选B【点评】此题考查了解一元二次方程﹣因式分解法,以及三角形三边关系,熟练掌握因式分解的方法是解本题的关键.二.填空题(共5小题)11.(2017•菏泽)关于x的一元二次方程(k﹣1)x2+6x+k2﹣k=0的一个根是0,则k的值是0.【分析】由于方程的一个根是0,把x=0代入方程,求出k的值.因为方程是关于x的二次方程,所以未知数的二次项系数不能是0.【解答】解:由于关于x的一元二次方程(k﹣1)x2+6x+k2﹣k=0的一个根是0,把x=0代入方程,得k2﹣k=0,解得,k1=1,k2=0当k=1时,由于二次项系数k﹣1=0,方程(k﹣1)x2+6x+k2﹣k=0不是关于x的二次方程,故k≠1.所以k的值是0.故答案为:0【点评】本题考查了一元二次方程的解法、一元二次方程的定义.解决本题的关键是解一元二次方程确定k的值,过程中容易忽略一元二次方程的二次项系数不等于0这个条件.12.(2017•镇江)已知实数m满足m2﹣3m+1=0,则代数式m2+的值等于9.【分析】先表示出m2=3m﹣1代入代数式,通分,化简即可得出结论.【解答】解:∵m2﹣3m+1=0,∴m2=3m﹣1,∴m2+=3m﹣1+=3m﹣1+=====9,故答案为:9.【点评】此题主要考查了代数式的化简求值,分式的通分,约分,解本题的关键是得出m2=3m﹣1.13.(2017•北仑区模拟)已知m是方程x2﹣2017x+1=0的一个根,则代数式m2﹣2018m++3的值是2.【分析】根据一元二次方程根的定义得到m2=2017m﹣1,再利用整体代入的方法得到原式=2017m﹣1﹣2018m++3,然后合并即可.【解答】解:∵m是方程x2﹣2017x+1=0的一个根,∴m2﹣2017m+1=0,∴m2=2017m﹣1,∴原式=2017m﹣1﹣2018m++3=﹣1﹣m+m+3=2.故答案为2.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.14.(2017•威海一模)关于x的方程x2﹣2mx+3m=0的两个根是等腰△ABC的两条边长,已知一个根是2,则△ABC的周长为14.【分析】利用一元二次方程解的定义,把x=2代入x2﹣2mx+3m=0得m=4,则方程化为x2﹣8x+12=0,利用因式分解法解得x1=2,x2=6,然后利用三角形三边的关系确定三角形三边,再计算它的周长.【解答】解:把x=2代入x2﹣2mx+3m=0得4﹣4m+3m=0,解得m=4,所以方程化为x2﹣8x+12=0,解得x1=2,x2=6,所以三角形三边为6、6、2,所以△ABC的周长为14.故答案为14.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.15.(2017•曹县模拟)若实数a、b满足(a+b)(a+b﹣6)+9=0,则a+b的值为3.【分析】设t=a+b,则原方程转化为关于t的方程t(t﹣6)+9=0,由此求得t的值即可.【解答】解:设t=a+b,则由原方程得到:t(t﹣6)+9=0,整理,得(t﹣3)2=0,解得t=3.即a+b=3.故答案是:3.【点评】本题考查了换元法解一元二次方程.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.三.解答题(共11小题)16.(2017•丽水)解方程:(x﹣3)(x﹣1)=3.【分析】先把方程化为一般式,然后利用因式分解法解方程.【解答】解:方程化为x2﹣4x=0,x(x﹣4)=0,所以x1=0,x2=4.【点评】本题考查了解一元二次方程﹣因式分解法:就是因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.17.(2017•埇桥区模拟)解一元二次方程:x2﹣3x=1.【分析】配方,开方,即可得出两个方程,求出方程的解即可.【解答】解:x2﹣3x=1,x2﹣3x+()2=1+()2,(x﹣)2=,开方得:x﹣=±,x1=,x2=.【点评】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键.18.(2017•广元模拟)解方程:(2x+1)2=2x+1.【分析】因式分解法求解可得.【解答】解:∵(2x+1)2﹣(2x+1)=0,∴(2x+1)(2x+1﹣1)=0,即2x(2x+1)=0,则x=0或2x+1=0,解得:x=0或x=﹣.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.19.(2017•江汉区校级模拟)4x2﹣3=12x(用公式法解)【分析】利用公式法求解可得.【解答】解:原方程整理为:4x2﹣12x﹣3=0,∵a=4,b=﹣12,c=﹣3,∴△=144﹣4×4×(﹣3)=192>0,则x==.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.20.(2017•江汉区校级模拟)解方程:2x2﹣4x=1(用配方法)【分析】方程两边都除以2,配方,开方,即可得出两个方程,求出方程的解即可.【解答】解:方程整理得:x2﹣2x=,配方得:x2﹣2x+1=,即(x﹣1)2=,开方得:x﹣1=±,解得:x1=1+,x2=1﹣.【点评】本题考查了解一元二次方程,能正确配方是解此题的关键.21.(2017•萧山区模拟)已知M=5x2+3,N=4x2+4x.(1)求当M=N时x的值;(2)当1<x<时,试比较M,N的大小.【分析】(1)利用题意列方程5x2+3=4x2+4x,然后利用因式分解法解方程即可;(2)利用求差法得到M﹣N=(x﹣1)(x﹣3),然后根据x的取值范围确定积的符合,从而得到M与N的关系关系.【解答】解:(1)根据题意得5x2+3=4x2+4x,整理得x2﹣4x+3=0,(x﹣1)(x﹣3)=0,x﹣1=0或x﹣3=0,所以x1=1,x2=3;(2)M﹣N=5x2+3﹣(x2+4x)=x2﹣4x+3=(x﹣1)(x﹣3),∵1<x<,∴x﹣1>0,x﹣3<0,∴M﹣N=(x﹣1)(x﹣3)<0,∴M<N.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.注意因式分解的应用.22.(2017•绥化)已知关于x的一元二次方程x2+(2m+1)x+m2﹣4=0(1)当m为何值时,方程有两个不相等的实数根?(2)若边长为5的菱形的两条对角线的长分别为方程两根的2倍,求m的值.【分析】(1)根据方程的系数结合根的判别式,即可得出△=4m+17>0,解之即可得出结论;(2)设方程的两根分别为a、b,根据根与系数的关系结合菱形的性质,即可得出关于m的一元二次方程,解之即可得出m的值,再根据a+b=﹣2m﹣1>0,即可确定m的值.【解答】解:(1)∵方程x2+(2m+1)x+m2﹣4=0有两个不相等的实数根,∴△=(2m+1)2﹣4(m2﹣4)=4m+17>0,解得:m>﹣.∴当m>﹣时,方程有两个不相等的实数根.(2)设方程的两根分别为a、b,根据题意得:a+b=﹣2m﹣1,ab=m2﹣4.∵2a、2b为边长为5的菱形的两条对角线的长,∴a2+b2=(a+b)2﹣2ab=(﹣2m﹣1)2﹣2(m2﹣4)=2m2+4m+9=52=25,解得:m=﹣4或m=2.∵a>0,b>0,∴a+b=﹣2m﹣1>0,∴m=﹣4.若边长为5的菱形的两条对角线的长分别为方程两根的2倍,则m的值为﹣4.【点评】本题考查了根的判别式、根与系数的关系、菱形的性质以及解一元二次方程,解题的关键是:(1)根据方程的系数结合根的判别式,找出△=4m+17>0;(2)根据根与系数的关系结合菱形的性质,找出关于m的一元二次方程.23.(2017•鄂州)关于x的方程x2﹣(2k﹣1)x+k2﹣2k+3=0有两个不相等的实数根.(1)求实数k的取值范围;(2)设方程的两个实数根分别为x1、x2,存不存在这样的实数k,使得|x1|﹣|x2|=?若存在,求出这样的k值;若不存在,说明理由.【分析】(1)由方程有两个不相等的实数根知△>0,列出关于k的不等式求解可得;(2)由韦达定理知x1+x2=2k﹣1,x1x2=k2﹣2k+3=(k﹣1)2+2>0,将原式两边平方后把x1+x2、x1x2代入得到关于k的方程,求解可得.【解答】解:(1)∵方程有两个不相等的实数根,∴△=[﹣(2k﹣1)]2﹣4(k2﹣2k+3)=4k﹣11>0,解得:k>;(2)存在,∵x1+x2=2k﹣1,x1x2=k2﹣2k+3=(k﹣1)2+2>0,∴将|x1|﹣|x2|=两边平方可得x12﹣2x1x2+x22=5,即(x1+x2)2﹣4x1x2=5,代入得:(2k﹣1)2﹣4(k2﹣2k+3)=5,解得:4k﹣11=5,解得:k=4.【点评】本题主要考查根与系数的关系及根的判别式,熟练掌握判别式的值与方程的根之间的关系及韦达定理是解题的关键.24.(2017•皇姑区一模)学校为奖励“汉字听写大赛”的优秀学生,派王老师到商店购买某种奖品,他看到如图所示的关于该奖品的销售信息,便用1400元买回了奖品,求王老师购买该奖品的件数.购买件数销售价格不超过30单价40元件超过30件每多买1件,购买的所有衬衫单价降低0.5元,但单价不得低于30元【分析】根据题意首先表示出每件商品的价格,进而得出购买商品的总钱数,进而得出等式求出答案.【解答】解:∵30×40=1200<1400,∴奖品数超过了30件,设总数为x件,则每件商品的价格为:[40﹣(x﹣30)×0.5]元,根据题意可得:x[40﹣(x﹣30)×0.5]=1400,解得:x1=40,x2=70,∵x=70时,40﹣(70﹣30)×0.5=20<30,∴x=70不合题意舍去,答:王老师购买该奖品的件数为40件.【点评】此题主要考查了一元二次方程的应用,根据题意正确表示出每件商品的价格是解题关键.25.(2017•三门峡一模)随着柴静纪录片《穹顶之下》的播出,全社会对空气污染问题越来越重视,空气净化器的销量也大增,商社电器从厂家购进了A,B两种型号的空气净化器,已知一台A型空气净化器的进价比一台B型空气净化器的进价多300元,用7500元购进A型空气净化器和用6000元购进B型空气净化器的台数相同.(1)求一台A型空气净化器和一台B型空气净化器的进价各为多少元?(2)在销售过程中,A型空气净化器因为净化能力强,噪音小而更受消费者的欢迎.为了增大B型空气净化器的销量,商社电器决定对B型空气净化器进行降价销售,经市场调查,当B型空气净化器的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台,如果每天商社电器销售B 型空气净化器的利润为3200元,请问商社电器应将B型空气净化器的售价定为多少元?【分析】(1)设每台B种空气净化器为x元,A种净化器为(x+300)元,根据用6000元购进B种空气净化器的数量与用7500元购进A种空气净化器的数量相同,列方程求解;(2)根据总利润=单件利润×销量列出一元二次方程求解即可.【解答】解:(1)设每台B型空气净化器为x元,A型净化器为(x+300)元,由题意得,=,解得:x=1200,经检验x=1200是原方程的根,则x+300=1500,答:每B型空气净化器、每台A型空气净化器的进价分别为1200元,1500元;(2)设B型空气净化器的售价为x元,根据题意得;(x﹣1200)(4+)=3200,解得:x=1600,答:如果每天商社电器销售B型空气净化器的利润为3200元,请问商社电器应将B型空气净化器的售价定为1600元.【点评】本题考查了一元二次方程及分式方程的应用,解题的关键是根据题意找到等量关系,注意分式方程应该检验,难度不大.26.(1999•重庆)关于x的方程x2+2x+2,其中p是实数.(1)若方程没有实数根,求P的范围;(2)若p>0,问p为何值时,方程有两个相等的实数根?并求出这两个根.【分析】(1)换元,令=y,把中根号下的数看成整体,再求p的范围;(2)方程有两个相等的实数根,判别式=0,求出p,再求得两实根.【解答】解:(1)令=y,①则原方程变为y2+2y﹣(p2+2p)=0.(3分)∵△=4+4(p2+2p)=4(p2+2p+1)=4(p+1)2≥0,即y1=p,y2=﹣2﹣p.(6分)若原方程没有实数根,只须解这个不等式组,得﹣2<p<0.(9分)(2)∵p>0,把y1=p代入①,得=p②而y2=﹣2﹣p<0,舍去.(11分)将②式平方,整理得x2+2x﹣(p2﹣2p)=0.③(12分)令△=4+4(p2﹣2p)=4(p2﹣2p+1)=4(p﹣1)2=0,解得p=1.(15分)当p=1时,原方程有两个相等的实数根.把p=1代入③,得x2+2x+1=0,∴x1=x2=﹣1.(17分)经检验,当p=1时,x1=x2=﹣1是原方程的根.(18分)【点评】本题是换元法解无理方程,注意这个方程无解条件的讨论是解决本题的关键.。
一元二次方程综合提高精选题含答案

一元二次方程综合提高题一、选择题1.若关于x的一元二次方程(x-2)(x-3)=m有实数根x1,x2,且x1≠x2,有下列结论:①x1=2,x2=3;②1m4 >-;③二次函数y=(x-x1)(x-x2)+m的图象与x轴交点的坐标为(2,0)和(3,0).其中,正确结论的个数是【】(A)0 (B)1 (C)2 (D)3【答案】C。
【考点】抛物线与x轴的交点,一元二次方程的解,一元二次方程根的判别式和根与系数的关系。
【分析】①∵一元二次方程实数根分别为x1、x2,∴x1=2,x2=3,只有在m=0时才能成立,故结论①错误。
②一元二次方程(x-2)(x-3)=m化为一般形式得:x2-5x+6-m=0,∵方程有两个不相等的实数根x1、x2,∴△=b2-4ac=(-5)2-4(6-m)=4m+1>0,解得:1m4>-。
故结论②正确。
③∵一元二次方程x2-5x+6-m=0实数根分别为x1、x2,∴x1+x2=5,x1x2=6-m。
∴二次函数y=(x-x1)(x-x2)+m=x2-(x1+x2)x+x1x2+m=x2-5x+(6-m)+m =x2-5x+6=(x-2)(x-3)。
令y=0,即(x-2)(x-3)=0,解得:x=2或3。
∴抛物线与x轴的交点为(2,0)或(3,0),故结论③正确。
综上所述,正确的结论有2个:②③。
故选C。
2.如果关于x的一元二次方程x2+4x+a=0的两个不相等实数根x1,x2满足x1x2﹣2x1﹣2x2﹣5=0,那么a的值为【】A.3 B.﹣3 C.13 D.﹣13【答案】B。
【考点】一元二次方程根与系数的关系。
【分析】∵x1,x2是关于x的一元二次方程x2+4x+a=0的两个不相等实数根,∴x 1+x 2=﹣4,x 1x 2=a 。
∴x 1x 2﹣2x 1﹣2x 2﹣5=x 1x 2﹣2(x 1+x 2)﹣5=a ﹣2×(﹣4)﹣5=0,即a+3=0, 解得,a=﹣3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《一元二次方程》能力提高训练题
1、已知x 2+21x
=3,求1242++x x x =
2、如果m 、n 是两个不相等于的实数,且满足122=-m m ,122
=-n n ,那么代数式=+-+199944222n n m
3、已知a 、b 、c 是ABC ∆三条边的长,那么方程()042
=+++c x b a cx 的根的情况是 4、方程0132=--x x 与032=+-x x 的所有实数根的和是
5、将代数式2x 2+3x+5配方得
6、某工厂计划在长24m ,宽20m 的空地中间划出一块322
m 的长方形建一住房,并且使剩余的地为正方形,则这个宽度是 m
7、下列二次三项式在实数范围内不能分解因式的是( )
A 1562-+x x
B 3732++y y
C 2242y xy x --
D 22542y xy x +- 三、应用题(每小题10分,共20分)
8.在等腰△ABC 中,a=3,b ,c 是x 2+mx+2-
12
m=0的两个根,试求△ABC 的周长.
9.一幢33层的大楼有一部电梯停在第一层,它一次最多容纳32人,而且只能在第2层
至第33层中某一层停一次,对于每个人来说,他往下走一层楼梯感到1分不满意,•往上走一层楼梯感到3分不满意,现在有32个人在第一层,并且他们分别住在第2至第33层的每一层,问:电梯停在哪一层时,可以使得这32个人不满意的总分达到最小?最小值是多少?(有些人可以不乘电梯即直接从楼梯上楼)
四、创新新(12分)
10.问题:构造ax 2+bx+c=0解题,已知:21a +1a -1=0,b 4+b 2-1=0,且1a
≠b 2,求21ab a
的值.
五、中考题(共30分)
11.(6分)某商场今年2月份的营业额为400万元,3•月份的营业额比2月份增加10%,5月份的营业额达到633.6万元,求3月份到5月份营业额的平均增长率是__________.
12.(6分)解方程:
2
2
2(1)6(1)
11
x x
x x
++
+
++
=7时,利用换元法将方程化为6y2-7y+2=0,
•则应设y=_________.
13.(6分)已知关于x的方程x2-3x+m=0的一个根是另一个根的2倍,则m的值为________.
14.(12分)已知:关于x的两个方程①2x2+(m+4)x+m-4=0与②mx2+(n-2)x+m-3=0,方程①有两个不相等的负实数根,方程②有两个实数根.
(1)求证:方程②两根的符号相同;
(2)设方程②的两根分别为α、β,若α:β=1:2,且n为整数,求m的最小整数值.
附加题(20分)
设m是不小于-1的实数,使得关于x的方程x2+2(m-2)x+m2-3m+3=0•有两个不相等的实数根x1,x2.
(1)若x12+x22=0,求m的值;(2)求
22
12
12
11
mx mx
x x
+
--
的最大值.。