一元二次方程的整数解(答案)

合集下载

10道公式法解一元二次方程练习题及答案

10道公式法解一元二次方程练习题及答案

10道公式法解一元二次方程练习题及答案公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

一元二?b?2?4ac2次方程ax?bx?c?0的求根公式:x?。

公式法2a2的步骤:就是把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项为c1.一般地,对于一元二次方程ax2+bx+c=0,当b2-4ac≥0时,它的根是_____ 当b-4ac 2.方程ax2+bx+c=0有两个相等的实数根,则有____ ____ ,?若有两个不相等的实数根,则有_____ ____,若方程无解,则有__________.3.不解方程,判断方程:①x2+3x+7=0;②x2+4=0;③x2+x-1=0中,有实数根的方程有个4.已知一个矩形的长比宽多2cm,其面积为8cm,则此长方形的周长为________.1?x2x2?x?15.当x=_____ __时,代数式与的值互为相反数.426.若方程x-4x+a=0的两根之差为0,则a的值为________.7.若方程3x2+bx+1=0无解,则b应满足的条件是________.8.用公式法解方程x2=-8x-15,其中b2-4ac=_______,x1=_____,x2=________.9.一元二次方程x2-2x-m=0可以用公式法解,则m=. A.0B.1C.-1D.±110.用公式法解方程4y2=12y+3,得到A.B.y= C.D.11.已知a、b、c是△ABC的三边长,且方程a+2bx-c=0的两根相等,则△ABC为A.等腰三角形 B.等边三角形 C.直角三角形 D.任意三角形12. 用公式法解下列方程:112x2-3x-5=02t2+3=7t x2+x-=03222x??2?0 x?6x?12?0 x=4x+222-3x+22x-24=0 x=x- x+5=02=44x-2=0x+x-35=013. 若规定两数a、b通过“※”运算,得到4ab,即a※b=4ab,例如2※6=4?×2?×6=48求3※5的值;求x※x+2※x-2※4=0中x的值;若无论x是什么数,总有a※x=x,求a的值.用公式法解一元二次方程练习题姓名______________一.填空题。

一元二次方程的正整数解拔高题

一元二次方程的正整数解拔高题

训练专题三——一元二次方程的整数解一、填空题(共5小题,每小题5分,满分25分)1.(5分)若关于x的方程(6﹣k)(9﹣k)x2﹣(117﹣15k)x+54=0的解都是整数,则符合条件的整数时k的值有_________个.2.(5分)已知关于x的方程(a﹣1)x2+2x﹣a﹣1=0的根都是一整数,那么符合条件的整数a有_________个.3.(5分)已知方程x2﹣1999x+m=0有两个质数解,则m=_________.4.(5分)给出四个命题:①整系数方程ax2+bx+c=0(a≠0)中,若△为一个完全平方数,则方程必有有理根;②整系数方程ax2+bx+c=0(a≠0)中,若方程有有理数根,则△为完全平方数;③无理数系数方程ax2+bx+c=0(a≠0)的根只能是无理数;④若a、b、c均为奇数,则方程ax2+bx+c=0没有有理数根,其中真命题是_________.5.(5分)已知关于x的一元二次方程x2+(2a﹣1)x+a2=0(a为整数)的两个实数根是x1、x2,则=_________.二、选择题(共1小题,每小题4分,满分4分)6.(4分)已知a,b为质数且是方程x2﹣13x+c=0的根,那么的值是()A.B.C.D.三、解答题(共12小题,满分91分)7.(8分)试确定一切有理数r,使得关于x的方程rx2+(r+2)x+r﹣1=0有根且只有整数根.8.(8分)当m为整数时,关于x的方程(2m﹣1)x2﹣(2m+1)x+1=0是否有有理根?如果有,求出m的值;如果没有,请说明理由.9.(8分)若关于x的方程ax2﹣2(a﹣3)x+(a﹣13)=0至少有一个整数根,求非负整数a的值.10.(8分)设m为整数,且4<m<40,方程x2﹣2(2m﹣3)x+4m2﹣14m+8=0有两个不相等的整数根,求m的值及方程的根.11.(7分)已知关于x的方程a2x2﹣(3a2﹣8a)x+2a2﹣13a+15=0(其中a是非负整数)至少有一个整数根,求a的值.12.(6分)求使关于x的方程kx2+(k+1)x+(k﹣1)=0的根都是整数的k值.13.(6分)当n为正整数时,关于x的方程2x2﹣8nx+10x﹣n2+35n﹣76=0的两根均为质数,试解此方程.14.(6分)设关于x的二次方程(k2﹣6k+8)x2+(2k2﹣6k﹣4)x+k2=4的两根都是整数.求满足条件的所有实数k的值.15.(6分)已知a是正整数,且使得关于x的一元二次方程ax2+2(2a﹣1)x+4(a﹣3)=0 至少有一个整数根,求a的值.16.(6分)已知p为质数,使二次方程x2﹣2px+p2﹣5p﹣1=0的两根都是整数,求出p的所有可能值.17.(12分)已知方程x2+bx+c=0与x2+cx+b=0各有两个整数根x1,x2,和x1′,x2′,且x1x2>0,x1′x2′>0.(1)求证:x1<0,x2<0,x1′<0,x2′<0;(2)求证:b﹣1≤c≤b+1;(3)求b,c的所有可能的值.18.(10分)如果直角三角形的两条直角边都是整数,且是方程mx2﹣2x﹣m+1=0的根(m为整数),这样的直角三角形是否存在?若存在,求出满足条件的所有三角形的三边长;若不存在,请说明理由.新课标九年级数学竞赛培训第05讲:一元二次方程的整数解参考答案与试题解析一、填空题(共5小题,每小题5分,满分25分)1.(5分)若关于x的方程(6﹣k)(9﹣k)x2﹣(117﹣15k)x+54=0的解都是整数,则符合条件的整数时k的值有5个.考点:一元二次方程的整数根与有理根。

专题培优-一元二次方程的整数根(含答案)

专题培优-一元二次方程的整数根(含答案)

一元二次方程的整数根1.使一元二次方程x2+3x+m=0有整数根的非负整数m的个数为( ).A. 0B. 1C. 2D. 32.满足(n2-n-1)n+2=1的整数n有________个.3.已知关于x的方程(a-1)x2+2x-a-1=0的根都是整数,那么符合条件的整数a有________个.4.方程x2+px+q=0的两个根都是正整数,并且p+q=1992,则方程较大根与较小根的比等于________.5.已知k为整数,且关于x的方程(k2-1)x2-3(3k-1)x+18=0有两个不相同的正整数根,则k=________.6.关于x的一元二方程4x2+4mx+m2+m-10=0(m为正整数)有整数根,则满足条件的m值的个数为________个.7.已知关于x的方程((m2−1)x2−3(3m−1)x+18=0有两个正整数根(m是整数).△ABC的三边a,b,c满足c=2√3,m2+a2m−8a=0,m2+b2m−8b=0.求:(1)m的值;(2)△ABC的面积.8.当k为何整数时,方程(k2-1)x2-6(3k-1)x+72=0有两个不相等的正整数根?9.当n为何整数时,关于x的一元二次方程x2-3nx+2n2-6=0的两根都为整数?10.求这样的正整数a,使得方程ax2+2(2a-1)x+4a-7=0至少有一个整数解.11.设关于x的一元二次方程(k2-6k+8)x2+(2k2-6k-4)x+k2=4的两根都是整数,求满足条件的所有实数k的值.12.已知m,n为正整数,关于x的方程x2-mnx+(m+n)=0有正整数解,求m,n的值.13.k为何值时,关于x的方程x2-4mx+4x+3m2-2m+4k=0的根是有理数?14.已知关于x的一元二次方程x2+cx+a=0的两个整数根恰好比方程x2+ax+b=0的两个根都大1,求a+b+c的值.15.已知一元二次方程x2+ax+b=0,①有两个连续的整数根,一元二次方程x2+bx+a=0,②有整数根,求a,b的值.答案1.C2.43.54.9975.26.47.解:(1)∵关于x 的方程(m 2-1)x 2-3(3m -1)x +18=0有两个正整数根(m 是整数).∵a =m 2-1,b =-9m +3,c =18,∴b 2-4ac =(9m -3)2-72(m 2-1)=9(m -3)2≥0,设x 1,x 2是此方程的两个根,∴x 1•x 2=c a =18m 2−1,∴18m 2−1也是正整数,即m 2-1=1或2或3或6或9或18, 又m 为正整数,∴m =2;(2)把m =2代入两等式,化简得a 2-4a +2=0,b 2-4b +2=0当a =b 时,a =b =2±√当a ≠b 时,a 、b 是方程x 2-4x +2=0的两根,而△>0,由韦达定理得a +b =4>0,ab =2>0,则a >0、b >0.①a ≠b ,c =2√3时,由于a 2+b 2=(a +b )2-2ab =16-4=12=c2 故△ABC 为直角三角形,且∠C =90°,S △ABC =12ab =1.②a =b =2-√2,c =2√3时,因2(2−√2)<2√3,故不能构成三角形,不合题意,舍去. ③a =b =2+√2,c =2√3时,因2(2+√>2√3,故能构成三角形.S △ABC =12×(2√)×√=√综上,△ABC 的面积为1或√. 8.解:∵k 2-1≠0∴k ≠±1∵△=36(k -3)2>0∴km ≠3用求根公式可得:x 1=6k−1,x 2=12k+1∵x 1,x 2是正整数∴k -1=1,2,3,6,k +1=1,2,3,4,6,12,解得k =2.这时x 1=6,x 2=4. 9.解:原方程变形得(x −2n)(x −n)=6,∵x ,n 均为整数,∴原方程化为{x −2n =±2,x −n =±3或{x −2n =±3,x −n =±2或{x −2n =±6,x −n =±1或{x −2n =±1,x −n =±6,解得n =-1或1或-5或5.10.解:原方程变形为(x +2)2a =2x +7(x ≠−2),解得a =2x +7(x +2)2.∵a ≥1,∴2x +7(x +2)2⩾1,∴-3≤x ≤1,∴x 可取值为-3,-1,0,1,分别代入a =2x +7(x +2)2中,解得a =1或a =5或a =74或a =1.又∵a 是正整数,∴当a =1或a =5时,方程至少有一个整数解. 11.解:原方程可化为[(k −4)x +(k −2)][(k −2)x +(k +2)]=0,∵k 2−6k +8=(k −4)(k −2)≠0,∴x 1=−k−2k−4=−1−2k−4,x 2=−k +2k−2=−1−4k−2, ∴k −4=−2x 1+1,k −2=−4x 2+1(x 1≠−1,x 2≠−1),消去k ,得x 1x 2+3x 1+2=0. ∴x 1(x 2+3)=−2.由于x 1,x 2都是整数,∴{x 1=−2,x 2+3=1或{x 1=1,x 2+3=−2或{x 1=2,x 2+3=−1.或{x 1=−2,x 2=−2或{x 1=1,x 2=−5或{x 1=2,x 2=−4. ∴k =6或3或103.经检验均满足题意.12.解:设方程x 2−mnx +(m +n )=0的两根分别为:x 1,x 2,∵m ,n 为正整数,∴x 1+x 2=mn >0,x 1⋅x 2=m +n >0,∴这两个根x 1,x 2均为正数,又∵(x 1−1)(x 2−1)+(m −1)(n −1)=x 1x 2−(x 1+x 2)+1−[mn −(m +n )+1]=(m +n )−mn +1+[mn −(m +n )+1]=2, 其中(x 1−1)(x 2−1),m −1,n −1均非负,而为两个非负整数和的情况仅有0+2;1+1;2+0.∵(x 1−1)(x 2−1)=x 1x 2−(x 1+x 2)+1=m +n −mn +1,(m −1)(n −1)=mn −(m +n )+1,∴{m +n −mn +1=0mn −(m +n)+1=2或{m +n −mn +1=1mn −(m +n )+1=1或{m +n −mn +1=2mn −(m +n)+1=0,解得:{m =2n =3或{m =3n =2或{m =2n =2或{m =1n =5或{m =5n =1.13.解:根据题意得:△=(-4m +4)2-4×(3m 2-2m +4k )=4(m 2-6m +4-4k ),∵方程的解为有理数,∴4(m 2-6m +4-4k )是一个完全平方数,即4-4k =9,解得:k =-54. 14.解:设方程x 2+ax +b =0的两个根为α,β,∵方程有整数根,设其中 α,β为整数,且α≤β,则方程x 2+cx +a =0的两根为α+1,β+1,∴α+β=-a ,(α+1)(β+1)=a ,两式相加,得 αβ+2α+2β+1=0,即 (α+2)(β+2)=3,∴{α+2=1β+2=3或{α+2=−3β+2=−1.解得{α=−1β=1或{α=−5β=−3.又 ∵a =-(α+β)=-[(-1)+1]=0,b =αβ=-1×1=-1,c =-[(α+1)+(β+1)]=-[(-1+1)+(1+1)]=-2, 或a =-(α+β)=-[(-5)+(-3)]=8,b =αβ=(-5)×(-3)=15,c =-[(α+1)+(β+1)]=-[(-5+1)+(-3+1)]=6, ∴a =0,b =-1,c =-2;或者a =8,b =15,c =6,∴a +b +c =0+(-1)+(-2)=-3或a +b +c =8+15+6=29,故a +b +c =-3,或29.15.解:设方程①的两个根式n ,n +1,则{n +(n +1)=−a n(n +1)=b∴a =-(2n +1),b =n (n +1),则方程②可变为x 2+n (n +1)x -(2n +1)=0③,∵方程③有整数根,视n 为主元,∴n 2x +n (x -2)+x 2-1=0④有整数解,∴设△=(x -2)2-4x (x 2-1)=x 2+4-4x 3=p 2(p 为正整数),∴x 2(1-4x )=(p +2)(p -2)⑤.∵p +2>p -2,∴{p +2=x 2p −2=1−4x ⑥,{p +2=x p −2=(1−4x)x ⑦,{p +2=1−4x p −2=x2⑧,{p +2=(1−4x)x p −2=x ⑨, 由⑥得:x 2+4x -1=0,解得:x 1=-5,x 2=1,把x 1=-5代入③得:n =-3或n =85(不合题意,舍去),当n =-3时,a =5,b =6, 把x 2=1代入③得:n 1=0,n 2=1,当n =0时,a =-1,b =0,当n =1时,a =-3,b =2, 对⑦,⑧,⑨继续讨论.综上所述,{a =−1b =0或{a =−3b =2或{a =5b =6.。

(完整版)一元二次方程应用题20及答案

(完整版)一元二次方程应用题20及答案

一元二次方程应用题20及答案1、有两个连续整数,它们的平方和为25,求这两个数。

解:设这两个数分别是a和a+1. 根据题意列方程:a²+(a+1)²=25整理得:a²+a-12=0 解得:a1=3 a2=-4当a=3时,两个数分别是3和4 当a=-4时,两个数分别是-3和-42、有一个两位数,它的十位上的数字比个位上的数字小2,十位上的数字与个位上的数字之积的3倍刚好等于这个两位数。

求这个两位数。

解:设个位数为x,则十位数为x-2 x(x-2)3=10(x-2)+x3 a²2-17x+20=0 (3x-5)(x-4)=0 x=5/3(舍去)或x=4则这两位数为243、有一个两位数,它的个位上的数字与十位上的数字之和是6,如果把它的个位数字与十位数字调换位置,所得的两位数乘以原来的两位数所得的积等于1008,求调换位置后得到的两位数。

解:设这个两位数个位数为x,则(10x+6-x)(10(6-x)+x) = 1008,化简得到x ²-6x+8=0,所以x=2或4面积问题4、用一块长80cm,宽60cm的薄钢片,在四个角上截去四个相同的边长为Xcm的小正方形,然后做成底面积为1500cm2的无盖的长方形盒子,求X的值。

解:设小正方形的边长为X厘米(80-2X)(60-2X)=1500 x² -70X+825=0(X-15)(X-55)=0 X=15或X=55(不符合,舍去)X=155、如图,在长为32m,宽为20m的矩形耕地上,修筑同样宽的三条道路,把耕地分成大小不等的六块作实验田,要使试验田面积为570m2,道路的宽应为多少?解:设宽度为xm,640-(20*2*x+32*x)+2x^=570x²-36x+35=0 (X-1)(X-35)=0x=1 或35(不合题意,舍去)x=1增长率问题6、某新华书店计划第一季度共发行图书122万册,其中一月份发行图书32万册,二、三月份平均每月增长率相同,求二、三月份各应发行图书多少万册?解:设增长率为x,则 32+32(1+x)+32(1+x)(1+x)=122(4x-1)(4x+13)=0 x=0.25或-3.25(不合题意,舍去)二月发行图书32(1+x)=40册三月发行图书32(1+x)(1+x)=50册7、某校2009年捐款1万元给希望工程,以后每年都捐款,计划到2011年共捐款4.75万元,问该校捐款的平均年增长率是多少?解:设平均年增长率为X。

初一数学一元二次方程试题答案及解析

初一数学一元二次方程试题答案及解析

初一数学一元二次方程试题答案及解析1.已知:关于x的方程mx2+(m﹣3)x﹣3=0(m≠0).(1)求证:方程总有两个实数根;(2)如果m为正整数,且方程的两个根均为整数,求m的值.【答案】(1)详见解析;(2)m=1或3【解析】(1)根据判别式得到△=(m﹣3)2﹣4m•(﹣3)=(m+3)2,利用非负数的性质得到△≥0,然后根据判别式的意义即可得到结论;(2)利用公式法可求出x1=,x2=﹣1,然后利用整除性即可得到m的值.试题解析:(1)证明:∵m≠0,∴方程mx2+(m﹣3)x﹣3=0(m≠0)是关于x的一元二次方程,∴△=(m﹣3)2﹣4m•(﹣3)=(m+3)2,∵(m+3)2≥0,即△≥0,∴方程总有两个实数根;(2)解:∵x=,∴x1=,x2=﹣1,∵m为正整数,且方程的两个根均为整数,∴m=1或3.【考点】根的判别式2.方程的解是.【答案】【解析】二次方程的解可利用公式==,即.本题涉及了二次方程解的公式,该题较为简单,是常考题,主要考查学生对二次方程根的公式的应用,另外其他求根的方法,都要求学生熟记。

3.下列是二元一次方程的是()A.B.C.D.【答案】B【解析】A、未知数的项的次数是2,不符合二元一次方程的定义;B、符合二元一次方程的定义;C、x2是二次,不是二元一次方程,故此选项错误;D、不是整式方程,不符合二元一次方程的定义;故选B.【考点】一元二次方程的定义.4.下列算式能用平方差公式计算的是()A.B.C.D.【答案】C【解析】平方差公式为;选项A中,不满足平方差公式的结构特点,所以不能用平方差公式来计算;选项B中,其不符合平方差公式的特点,所以不能用平方差公式进行计算;选项C中,所以选C;选项D中,不符合平方差公式的结构特点,所以不能用其进行计算【考点】平方差公式点评:本题考查平方差公式,解答本题需要考生掌握平方差公式,熟悉平方差公式的结构,会灵活运用平方差公式5.若是一个完全平方式,那么的值是()A.2B.±2C.4D.±4【答案】D【解析】若是一个完全平方式,因为,它要是完全平方式,那么,即,所以M=±4【考点】完全平方式点评:本题考查完全平方式,解答本题需要考生掌握完全平方式,及其完全平方式的结构。

一元二次方程应用题精选含答案

一元二次方程应用题精选含答案

一元二次方程应用题精选一、数字问题1、有两个连续整数,它们的平方和为25,求这两个数.2、一个两位数,十位数字与个位数字之和是6,把这个数的个位数字与十位数字对调后,所得的新两位数与原来的两位数的积是1008,求这个两位数.二、销售利润问题3、某市场销售一批名牌衬衫,平均每天可销售20件,每件赢利40元.为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.求:(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?(2)要使商场平均每天赢利最多,请你帮助设计方案.4。

某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施,调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台,商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?5.西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克。

为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价O。

1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利2O0元,应将每千克小型西瓜的售价降低多少元?三、平均变化率问题增长率(1)原产量+增产量=实际产量.(2)单位时间增产量=原产量×增长率.(3)实际产量=原产量×(1+增长率).6. 某钢铁厂去年一月份某种钢的产量为5000吨,三月份上升到7200吨,这两个月平均每月增长的百分率是多少?7. 某产品原来每件600元,由于连续两次降价,现价为384元,如果两个降价的百分数相同,求每次降价百分之几?四、形积问题8、有一块长方形的铝皮,长24cm、宽18cm,在四角都截去相同的小正方形,折起来做成一个没盖的盒子,使底面积是原来面积的一半,求盒子的高.9、如图,在一块长为32m,宽为20m长方形的土地上修筑两条同样宽度的道路,余下部分作为耕地要使耕地的面积是540m2,求小路宽的宽度.五、围篱笆问题10、如图,利用一面墙(墙的长度不超过45m ),用80m 长的篱笆围一个矩形场地. ⑴怎样围才能使矩形场地的面积为750m2?⑵能否使所围矩形场地的面积为810m2,为什么?六、相互问题(传播、循环)11、(1)参加一次聚会的每两人都握了一次手,所有人共握手15次,有多少人参加聚会?(2)要组织一场篮球联赛,赛制为单循环形式,即每两队之间都赛一场,计划安排28场比赛,应邀请多少个球队参加比赛?(3) 某初三毕业班的每一个同学都把自己的照片向全班其他的同学各送一张留作纪念,全班共送了3080张照片.如果该班有x 名同学,根据题意可列出方程为?12、有一人患了流感,经过两轮传染后共有169人患了流感.(1)求每一轮传染中平均一个人传染了几个人?(2)如果按照这样的传染速度,经过三轮传染后共有多少人患上流感?第21题图13、某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出多少小分支?七.行程问题:14、甲、乙两艘旅游客轮同时从台湾省某港出发来厦门。

11.2.1 一元二次方程的解法-直接开平方法(七大题型)-原

1.2.1一元二次方程的解法-直接开平方法考点一、直接开方法解一元二次方程:(1)直接开方法解一元二次方程:利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法.(2)直接开平方法的理论依据:平方根的定义.(3)能用直接开平方法解一元二次方程的类型有两类:①形如关于x 的一元二次方程,可直接开平方求解.若,则;表示为,有两个不等实数根;若,则x=O;表示为,有两个相等的实数根;若,则方程无实数根.②形如关于x 的一元二次方程,可直接开平方求解,两根是.要点:用直接开平方法解一元二次方程的理论依据是平方根的定义,应用时应把方程化成左边是含未知数的完全平方式,右边是非负数的形式,就可以直接开平方求这个方程的根.题型1:直接开平方法解一元二次方程1.一元二次方程2250x -=的解为()A .125x x ==B .15=x ,25x =-C .125x x ==-D .1225x x ==2.若()222a =-,则a 是()A .-2B .2C .-2或2D .43.方程x 2-=0的根为_______.4.有关方程290x +=的解说法正确的是()A .有两不等实数根3和3-B .有两个相等的实数根3C .有两个相等的实数根3-D .无实数根5.若方程()20ax b ab =>的两个根分别是4m -与38m -,则ba=_____.6.解方程:(1)23270x -=;(2)2(5)360x --=;(3)21(2)62x -=;(4)()()4490+--=y y .7.计算:4(3x +1)2﹣1=0、3274y ﹣2=0的结果分别为()A .x =±12,y =±23B .x =±12,y =23C .x =﹣16,y =23D .x =﹣16或﹣12,y =2382x =)A .120,x x ==B .120,x x ==C .12x x =D .12x x ==题型2:直接开平方法解一元二次方程的条件9.下列方程中,不能用直接开平方法求解的是()A .230x =-B .2(14)0x =--C .220x =+D .22()12()x =--10.方程y 2=-a 有实数根的条件是()A .a ≤0B .a ≥0C .a >0D .a 为任何实数11.有下列方程:①x 2-2x=0;②9x 2-25=0;③(2x-1)2=1;④21(x 3)273+=.其中能用直接开平方法做的是()A .①②③B .②③C .②③④D .①②③④12.方程x 2=(x ﹣1)0)A .x=-1B .x=1C .x=±1D .x=013.如果方程()257x m -=-可以用直接开平方求解,那么m 的取值范围是().A .0m >B .7mC .7m >D .任意实数14.已知方程()200ax c a +=≠有实数根,则a 与c 的关系是().A .0c =B .0c =或a 、c 异号C .0c =或a 、c 同号D .c 是a 的整数倍题型3:直接开平方法解一元二次方程的复合型15.用直接开平方的方法解方程22(31)(25)x x +=-,做法正确的是()A .3125x x +=-B .31(25)x x +=--C .31(25)x x +=±-D .3125x x +=±-16.方程224(21)25(1)0x x --+=的解为()A .127x x ==-B .1217,3x x =-=-C .121,73x x ==D .1217,3x x =-=17.解方程:(1)21(2)602y +-=;(2)22(4)(52)x x -=-.题型3:一元二次方程的根的概念深入理解18.一元二次方程2251440t -=的根与249(1)25x -=的根()A .都相等B .都不相等C .有一个根相等D .无法确定题型4:直接开平方法解一元二次方程的根的通用形式19.关于x 的方程(x+a)2=b(b>0)的根是()A .-aB .C .当b≥0时,D .当a≥0时,20.形如2()(0)ax b p a +=≠的方程,下列说法错误的是()A .0p >时,原方程有两个不相等的实数根B .0p =时,原方程有两个相等的实数根C .0p <时,原方程无实数根D .原方程的根为x =题型5:直接开平方法解一元二次方程-降次21.方程4160x -=的根的个数是()A .1B .2C .3D .4题型6:直接开平方法解一元二次方程-换元法22.若()222225a b +-=,则22a b +的值为()A .7B .-3C .7或-3D .21题型7:直接开平方法解一元二次方程-创新题,数系的扩充23.我们知道,一元二次方程21x =-没有实数根,即不存在一个实数的平方等于1-.若我们规定一个新数“i ”,使其满足21i =-(即方程21x =-有一个根为i ),并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有()21232422,1,(1),(1)1i i i i i i i i i i ==-=⋅=-=-==-=,从而对于任意正整数n ,我们可以得到()41444nn n i i i i i +=⋅=⋅=,同理可得424341,,1n n n i i i i ++=-=-=.那么234202*********i i i i i i ++++++ 的值为________.一、单选题10.若方程()200ax bx c a ++=≠中,,,a b c 满足420a b c ++=和420a b c -+=,则方程的根是()A .1,0B .1,0-C .1,1-D .2,2-二、填空题三、解答题19.解下列方程:224(1)x x =-.20.用直接开平方法解下列方程.(1)2160x -=;(2)2(2)9x -=.21.用开平方法解下列方程:(1)2 2.25x =;(2)243x =;(3)27560x -=;(4)()22714x -=.22.解方程:22(1)(12)x x +=-.→→→的顺序运算,请列式并计算结果;(1)嘉嘉说-2,对-2按C A D B答案与解析题型1:直接开平方法解一元二次方程1.一元二次方程2250x -=的解为()A .125x x ==B .15=x ,25x =-C .125x x ==-D .1225x x ==【答案】B 【解析】【分析】先移项,再通过直接开平方法进行解方程即可.解:2250x -=,移项得:2=25x ,开平方得:15=x ,25x =﹣,故选B .【点睛】本题主要考查用开平方法解一元二次方程,解题关键在于熟练掌握开平方方法.2.若()222a =-,则a 是()A .-2B .2C .-2或2D .4【答案】C 【解析】【分析】先计算2(2)-,再用直接开平方法解一元二次方程即可.()2224a =-= 2a ∴=±故选C 【点睛】本题考查了有理数的乘方,直接开平方法解一元二次方程,熟练直接开平方法是解题的关键.3.方程x 2-=0的根为_______.【答案】x=±【解析】【分析】,得出x 2=8,利用直接开平方法即可求解.解:x 2-=0,∴x 2=8,∴x =±.故答案为:x =±.【点睛】本题考查直接开平方法解一元二次方程及算术平方根,解题关键是熟练掌握直接开平方法的解题步骤.4.有关方程290x +=的解说法正确的是()A .有两不等实数根3和3-B .有两个相等的实数根3C .有两个相等的实数根3-D .无实数根【答案】D 【解析】【分析】利用直接开平方法求解即可.∵290x +=,∴290x =-<,∴该方程无实数解.故选:D 【点睛】考查了直接开平方法解一元二次方程.解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x 2=a (a ≥0)的形式,利用数的开方直接求解.5.若方程()20ax b ab =>的两个根分别是4m -与38m -,则ba=_____.【答案】1【解析】【分析】利用直接开平方法得到x =,得到方程的两个根互为相反数,所以4380m m -+-=,解得3m =,则方程的两个根分别是1与1-1=,然后两边平方得到b a 的值.解:∵()20ax b ab =>,∴2b x a=,∴x =,∴方程的两个根互为相反数,∵方程2ax b =的两个根分别是4m -与38m -,∴4380m m -+-=,解得3m =,∴4341m -=-=-,383381m -=⨯-=,∴一元二次方程ax 2=b 的两个根分别是1与1-,1=,∴1ba=.故答案为:1.【点睛】本题考查了解一元二次方程﹣直接开平方法:形如2x p =或()()20nx m p p +=≥的一元二次方程可采用直接开平方的方法解一元二次方程.如果方程化成2x p =的形式,那么可得x =()()20nx m p p +=≥的形式,那么nx m +=6.解方程:(1)23270x -=;(2)2(5)360x --=;(3)21(2)62x -=;(4)()()4490+--=y y .【答案】(1)123,3x x ==-;(2)1211,1x x ==-;(3)122,2x x ==-;(4)125,5y y ==-.【解析】【分析】(1)先移项,再两边同除以3,然后利用直接开方法解方程即可得;(2)先移项,再利用直接开方法解方程即可得;(3)先两边同乘以2,再利用直接开方法解方程即可得;(4)先利用平方差公式去括号,再移项合并同类项,然后利用直接开方法解方程即可得.(1)23270x -=,2327x =,29x =,3x =±,即123,3x x ==-;(2)2(5)360x --=,2(5)36x -=,56x -=或56x -=-,11x =或1x =-,即1211,1x x ==-;(3)21(2)62x -=,2(2)12x -=,2x -=2x -=-,2x =或2x =-+,即122,2x x ==-;(4)()()4490+--=y y ,21690y --=,225y =,5y =±,即125,5y y ==-.【点睛】本题考查了利用直接开方法解一元二次方程,一元二次方程的主要解法包括:直接开方法、配方法、公式法、因式分解法、换元法等,熟练掌握各解法是解题关键.7.计算:4(3x +1)2﹣1=0、3274y ﹣2=0的结果分别为()A .x =±12,y =±23B .x =±12,y =23C .x =﹣16,y =23D .x =﹣16或﹣12,y =23【答案】D 【解析】【分析】直接开平方与开立方,再解一次方程即可.解:由4(3x +1)2﹣1=0得(3x +1)2=14,所以3x +1=±12,解得x =﹣16或x =﹣12,由3274y ﹣2=0得y 3=827,所以y =23,所以x =﹣16或﹣12,y =23.故选:D .【点睛】本题考查开平方法解一元二次方程与立方根法解三次方程,掌握平方根与立方根性质与区别是解题关键.82x =)A .120,x x ==B .120,x x ==C .12x x =D .12x x ==【答案】A 【解析】【分析】利用直接开方法解一元二次方程即可得.2x =(23x =,利用直接开方法得:x ,解得120,x x ==故选:A .【点睛】本题考查了利用直接开方法解一元二次方程,熟练掌握直接开方法是解题关键.题型2:直接开平方法解一元二次方程的条件9.下列方程中,不能用直接开平方法求解的是()A .230x =-B .2(14)0x =--C .220x =+D .22()12()x =--【答案】C 【解析】【分析】方程整理后,判断即可得到结果230x =-移项得23x =,可用直接开平方法求解;2(10)4x -=-移项得2(14)x =-,可用直接开平方法求解;22()(12)4x ==--,可用直接开平方法求解.故选C.【点睛】此题考查解一元二次方程直接开平方法,掌握运算法则是解题关键10.方程y 2=-a 有实数根的条件是()A .a ≤0B .a ≥0C .a >0D .a 为任何实数【答案】A 【解析】【分析】根据平方的非负性可以得出﹣a ≥0,再进行整理即可.解:∵方程y 2=﹣a 有实数根,∴﹣a ≥0(平方具有非负性),∴a ≤0;故选:A .【点睛】此题考查了直接开平方法解一元二次方程,关键是根据已知条件得出﹣a ≥0.11.有下列方程:①x 2-2x=0;②9x 2-25=0;③(2x-1)2=1;④21(x 3)273+=.其中能用直接开平方法做的是()A .①②③B .②③C .②③④D .①②③④【答案】C 【解析】【分析】利用因式分解法与直接开平方法判断即可得到结果.①x 2-2x=0,因式分解法;②9x 2-25=0,直接开平方法;③(2x-1)2=1,直接开平方法;④21(x 3)273+=,直接开平方法,则能用直接开平方法做的是②③④.故选:C.【点睛】考查直接开方法解一元二次方程,掌握一元二次方程的几种解法是解题的关键.12.方程x 2=(x ﹣1)0)A .x=-1B .x=1C .x=±1D .x=0【答案】A 【解析】【分析】根据(x-1)0有意义,可得x-1≠0,求出x≠1,通过解方程x 2=1,确定x 的值即可.∵(x-1)0有意义,∴x-1≠0,即x≠1,∵x 2=(x ﹣1)0∴x 2=1,即x=±1∴x=-1.故选A.【点睛】本题考查了解一元二次方程—直接开平方法,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x 2=a (a≥0)的形式,利用数的开方直接求解.同时还考查了零次幂.13.如果方程()257x m -=-可以用直接开平方求解,那么m 的取值范围是().A .0m >B .7mC .7m >D .任意实数【答案】B 【解析】【分析】根据70-≥m 时方程有实数解,可求出m 的取值范围.由题意可知70-≥m 时方程有实数解,解不等式得7m,故选B .【点睛】形如()2+m =a x 的一元二次方程当a≥0时方程有实数解.14.已知方程()200ax c a +=≠有实数根,则a 与c 的关系是().A .0c =B .0c =或a 、c 异号C .0c =或a 、c 同号D .c 是a 的整数倍【答案】B 【解析】【分析】将原方程化为2a=c-x 的形式,根据2x 0≥可判断出正确答案.原方程可化为2a =c -x ,∵2x 0≥,∴c0a-≥时方程才有实数解.当c=0时,20=x 有实数根;当a 、c 异号时,c0a-≥,方程有实数解.故选B .【点睛】形如2=a x 的一元二次方程当a≥0时方程有实数解.题型3:直接开平方法解一元二次方程的复合型15.用直接开平方的方法解方程22(31)(25)x x +=-,做法正确的是()A .3125x x +=-B .31(25)x x +=--C .31(25)x x +=±-D .3125x x +=±-【答案】C【分析】一元二次方程22(31)(25)x x +=-,表示两个式子的平方相等,因而这两个数相等或互为相反数,据此即可把方程转化为两个一元一次方程,即可求解.解:22(31)(25)x x +=-开方得31(25)x x +=±-,故选:C .【点睛】本题考查了解一元二次方程-直接开平方法,关键是将方程右侧看做一个非负已知数,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.16.方程224(21)25(1)0x x --+=的解为()A .127x x ==-B .1217,3x x =-=-C .121,73x x ==D .1217,3x x =-=【答案】B 【解析】【分析】移项后利用直接开平方法解答即可.解:移项,得224(21)25(1)x x -=+,两边直接开平方,得2(21)5(1)x x -=±+,即2(21)5(1)x x -=+或2(21)5(1)x x -=-+,解得:17x =-,213x =-.故选:B .【点睛】本题考查了一元二次方程的解法,属于基本题型,熟练掌握直接开平方法是解题的关键.17.解方程:(1)21(2)602y +-=;(2)22(4)(52)x x -=-.【答案】(1)122,2y y ==-;(2)121,3x x ==.【分析】(1)原方程先整理,再利用直接开平方法解答即可;(2)利用直接开平方法求解即可.解:(1)21(2)602y +-=,整理,得2(2)12y +=.∴2y +=±即122,2y y ==-;(2)22(4)(52)x x -=- ,4(52)x x ∴-=±-,∴452x x -=-或()452x x -=--,解得:121,3x x ==.【点睛】本题考查了一元二次方程的解法,属于基础题型,熟练掌握直接开平方法是解题的关键.题型3:一元二次方程的根的概念深入理解18.一元二次方程2251440t -=的根与249(1)25x -=的根()A .都相等B .都不相等C .有一个根相等D .无法确定【答案】C 【解析】【分析】运用直接开平方法分别求出两个方程的解,然后再进行判断即可得解.2251440t -=,214425t =,∴125t =±;249(1)25x -=,715x -=±,∴1125x =,225x =-;∴两个方程有一个相等的根125.故选C.【点睛】此题主要考查了用直接开平方法解一元二次方程和确定方程的解,用直接开方法求一元二次方程的解的类型有:x 2=a (a≥0);ax 2=b (a ,b 同号且a≠0);(x+a )2=b (b≥0);a (x+b )2=c (a ,c 同号且a≠0).题型4:直接开平方法解一元二次方程的根的通用形式19.关于x 的方程(x+a)2=b(b>0)的根是()A .-aB .C .当b≥0时,D .当a≥0时,【答案】A 【解析】【分析】由b>0,可两边直接开平方,再移项即可得.∵b>0,∴两边直接开平方,得:,∴-a ,故选A 【点睛】此题考查解一元二次方程-直接开平方法,解题关键在于掌握运算法则20.形如2()(0)ax b p a +=≠的方程,下列说法错误的是()A .0p >时,原方程有两个不相等的实数根B .0p =时,原方程有两个相等的实数根C .0p <时,原方程无实数根D .原方程的根为x =【答案】D 【解析】【分析】根据应用直接开平方法求解的条件逐项判断即得答案.解:A 、当0p >时,原方程有两个不相等的实数根,故本选项说法正确,不符合题意;B 、当0p =时,原方程有两个相等的实数根,故本选项说法正确,不符合题意;C 、当0p <时,原方程无实数根,故本选项说法正确,不符合题意;D 、当0p ≥时,原方程的根为x =故选:D .【点睛】本题考查了一元二次方程的解法,属于基本题目,熟练掌握应用直接开平方法求解的条件是关键.题型5:直接开平方法解一元二次方程-降次21.方程4160x -=的根的个数是()A .1B .2C .3D .4【答案】B 【解析】【分析】移项得416x ==24,然后两边同时开四次方得x-=±2,由此即可解决问题.解:∵4160x -=∴416x ==24,∴x=±2,∴方程4160x -=的根是x=±2.故选B.【点睛】本题考查高次方程的解法,解题的关键是降次,这里通过开四次方把四次降为了一次.题型6:直接开平方法解一元二次方程-换元法22.若()222225a b +-=,则22a b +的值为()A .7B .-3C .7或-3D .21【答案】A 【解析】【分析】把()222225a b +-=两边开方得到a 2+b 2-2=±5,然后根据非负数的性质确定22a b +的值.解:∵()222225a b +-=,∴a 2+b 2-2=±5,∴a 2+b 2=7或a 2+b 2=-3(舍去),即a 2+b 2的值为7.故选A .【点睛】本题考查解一元二次方程-直接开平方法:形如x 2=p 或(nx+m )2=p (p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.题型7:直接开平方法解一元二次方程-创新题,数系的扩充23.我们知道,一元二次方程21x =-没有实数根,即不存在一个实数的平方等于1-.若我们规定一个新数“i ”,使其满足21i =-(即方程21x =-有一个根为i ),并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有()21232422,1,(1),(1)1i i i i i i i i i i ==-=⋅=-=-==-=,从而对于任意正整数n ,我们可以得到()41444nn n i i i i i +=⋅=⋅=,同理可得424341,,1n n n i i i i ++=-=-=.那么234202*********i i i i i i ++++++ 的值为________.【答案】1-【解析】【分析】根据()41444nn n i i i i i +=⋅=⋅=,424341,,1n n n i i i i ++=-=-=,化简各式即可求解.解:依题意有()()()22123242,1,1,11i i i i i i i i i i ==-=⋅=-=-==-=,∵2022÷4=505…2,∴2022i =21i =-∴234202*********i i i i i i ++++++ =−1−i +1+i +…+1+i −1=−1.故答案为:-1.【点睛】此题考查了一元二次方程的解,实数的运算,根据题意得出数字之间的变化规律是解本题的关键.一、单选题二、填空题11.方程240x -=的根是______.【答案】12x =-,22x =【分析】根据直接开平方法求解即可.【解析】解:240x -=,18.我们知道,一元二次方程21x =-没有实数根,即不存在一个实数的平方等于1-.若我们规定一个新数“i ”,使其满足21i =-(即方程21x =-有一个根为i ),并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有()21232422,1,(1),(1)1i i i i i i i i i i ==-=⋅=-=-==-=,从而对于任意正整数n ,我们可以得到()41444n n n i i i i i +=⋅=⋅=,同理可得424341,,1n n n i i i i ++=-=-=.那么234202*********i i i i i i ++++++ 的值为________.【答案】1-【分析】根据()41444n n n i i i i i +=⋅=⋅=,424341,,1n n n i i i i ++=-=-=,化简各式即可求解.【解析】解:依题意有()()()22123242,1,1,11i i i i i i i i i i ==-=⋅=-=-==-=,∵2022÷4=505…2,∴2022i =21i =-∴234202*********i i i i i i ++++++ =−1−i +1+i +…+1+i −1=−1.故答案为:-1.【点睛】此题考查了一元二次方程的解,实数的运算,根据题意得出数字之间的变化规律是解本题的关键.三、解答题【解析】解:原式=m 2﹣1﹣(4m 2+4m +1)+3m 2+6m=m 2﹣1﹣4m 2﹣4m ﹣1+3m 2+6m=2m ﹣2,∵m 2﹣1=0,∴m =±1,当m =1时,原式=2﹣2=0,当m =﹣1时,原式=﹣2﹣2=﹣4,综上所述:原式的值为0或﹣4.【点睛】本题考查整式的化简求值,准确掌握乘法公式是解题的关键,计算中注意符号问题.26.计算(1)化简:2(1)(1)+--m m m (2)小华在解方程2(6)90x +-=时,解答过程如下:解:移项,得2(6)9x +=第一步两边开平方,得63x +=第二步所以3x =-第三步“小华的解答从第_________步开始出错,请写出正确的解答过程.【答案】(1)-1;(2)二;正确的解答过程,见解析【分析】(1)利用平方差公式展开,合并同类项即可;(2)根据直接开平方法求解即可.【解析】(1)解:2(1)(1)+--m m m 221m m =--=-1;(2)解:第二步开始出现错误;正确解答过程:移项,得(x +6)2=9,两边开平方,得x +6=3或x +6=-3,解得x 1=-3,x 2=-9,故答案为:二.【点睛】本题主要考查了整式的混合运算、解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.27.嘉嘉和琪琪用图中的A 、B 、C 、D 四张带有运算的卡片,做一个“我说你算”的数学游戏,规则如下:嘉嘉说一个数,并对这个数按这四张带有运算的卡片排列出一个运算顺序,然后琪琪根据这个运算顺序列式计算,并说出计算结果.例如,嘉嘉说2,对2按A B C D →→→的顺序运算,则琪琪列式计算得:222[(23)(3)2](152)(17)289+⨯--=--=-=.(1)嘉嘉说-2,对-2按C A D B →→→的顺序运算,请列式并计算结果;(2)嘉嘉说x ,对x 按C B D A →→→的顺序运算后,琪琪得到的数恰好等于12,求x .【答案】(1)2(223)(3)--+⨯-,3-;(2)嘉嘉出的数是1或3.【分析】(1)根据题意,可以写出相应的算式,然后计算即可;(2)根据题意,可以得到关于x 的方程,然后解方程即可.【解析】(1)2(223)(3)--+⨯-1(3)=⨯-3=-.(2)根据题意得2[(2)(3)]312x -⨯-+=,29(2)9x -=,2(2)1x -=,11x =,23x =.x 为整数,∴嘉嘉出的数是1或3.【点睛】本题考查有理数的混合运算、解一元二次方程,解答本题的关键是明确题意,列出相应的算式,。

(完整版)一元二次方程经典习题及深度解析

一元二次方程及解法经典习题及解析知识技能: 一、填空题:1.下列方程中是一元二次方程的序号是 .42=x ① 522=+y x ② ③01332=-+x x 052=x ④5232=+x x ⑤ 412=+x x⑥ x x x x x x 2)5(0143223-=+=+-。

⑧⑦ ◆答案:⑤④③①,,,◆解析:判断一个方程是否是一元二次方程,要根据一元二次方程的定义,看是否同时符合条件 ①含有一个未知数;②未知数的最高次数是③;2整式方程.若同时符合这三个条件的就是一元次方程,否则缺一不可.其中方程②含两个未知数,不符合条件①;方程⑥不是整式方程,lil 不符合条件③;方程⑦中未知数的最高次数是3次,不符合条件②;方程⑧经过整理后;次项消掉,也不符合条件②. 2.已知,关于2的方程12)5(2=-+ax x a 是一元二次方程,则a◆答案:5-=/◆解析:方程12)5(2=-+ax x a 既然是一元二次方程,必符合一元二次方程的定义,所以未知数 的最高次数是2,因此,二次项系数,05=/+a 故.5-=/a 3.当=k 时,方程05)3()4(22=+-+-x k x k 不是关于X 的一元二次方程.◆答案:2±◆解析:方程05)3()4(22=+-+-x k x k 不是关于2的一元二次方程,则二次项系数.042=-k 故.2±=k4.解一元二次方程的一般方法有 , , , ·◆答案:直接开平方法;配方法;公式法;因式分解法 5.一元二次方程)0(02=/=++a c bx ax 的求根公式为: .◆答案:◆解析:此题不可漏掉042≥-ac b 的条件.6.(2004·沈阳市)方程0322=--x x 的根是 .◆答案:3.1-◆解析:.4)1(,412,032222=-=+-=--x x x x x 所以.3,121=-=x x7.不解方程,判断一元二次方程022632=+--x x x 的根的情况是 .◆答案:有两个不相等的实数根◆解析:原方程化为,02)26(32=++-x x,04864348234)]26([422>-=-=⨯-+-=-ac b.‘.原方程有两个不相等的实数根.8.(2004·锦州市)若关于X 的方程052=++k x x 有实数根,则k 的取值范围是 .◆答案:425≤k ◆解析:‘..方程有实根,⋅≤∴≥-=-∴425,045422k k ac b 9.已知:当m 时,方程0)2()12(22=-+++m x m x 有实数根.◆答案:43≥◆解析:..‘方程0)2()12(22=-+++m x m x 有实数根.⋅≥∴≥-=-+-++=--+=-∴43,0152016164144)2(4)12(42.2222m m m m m m m m ac b 10.关于x 的方程0)4(2)1(222=++-+k kx x k 的根的情况是 .◆答案:无实根 ◆解析:,)2(4)44(4162044)4)(1(4)2(422242422222+-=++-=---=++--=-k k k k k k k k k ac b∴<-∴>+∴≥,04,02,0222ac b k k 原方程无实根. 二、选择题:11.(2004·北京市海淀区)若a 的值使得1)2(422-+=++x a x x 成立,则a 的值为( ) A .5 8.4 C .3 D .2◆答案:C◆解析:,341441)2(222++=-++=-+x x x x x a 的值使得,3,341)2(4222=∴++=-+=++a x x x a x x 故C 正确.12.把方程x x 332-=-化为02=++c bx ax 后,a 、b 、c 的值分别为( )3.3.0.--A 3.3.1.--B 3.3.1.-C 3.3.1.--D◆答案:C ◆解析:方程x x 332-=-化为.0332=-+x x 故.3.3.1-===c b a 故C 正确. 13.方程02=+x x 的解是( )x A .=土1 0.=x B 1,0.21-==x x C 1.=x D◆答案:C◆解析:运用因式分解法得,0)1(=+x x 故.1,021-==x x 故C 正确.14.(2006·广安市)关于X 的一元二次方程有两个不相等的实数根,则k 的取值范围是( )1.->k A 1.>k B 0.=/k C 1.->k D 且0=/k ◆答案:D◆解析:由题意知⎩⎨⎧>+=/.044,0k k 解得1->k 且.0=/k15.(2006·广州市)一元二次方程0322=--x x 的两个根分别为( )3,1.21==x x A 3,1.21-==x x B 3,1.21=-=x x C 3,1.21-=-=x x D◆答案:C16.解方程.251212;0)23(3)32(;0179;072222x x x x x x x =+=-+-=--=-④③②① 较简便的方法是( )A .依次为:开平方法、配方法、公式法、因式分解法B .依次为:因式分解法、公式法、配方法、直接开平方法①.C 用直接开平方法,②④用公式法,③用因式分解法 ①.D 用直接开平方法,②用公式法,③④用因式分解法 ◆答案:D17.(2004·云南省)用配方法解一元二次方程.0782=++x x 则方程可变形为( )9)4.(2=-x A 9)4.(2=+x B 16)8.(2=-x C 57)8.(2=+x D ◆答案:B18.一元二次方程012)1(2=---x x k 有两个不相等的实数根,则k 的取值范围是( )2.>k A 2.<k B 且1=/k 2.<k C 2.>k D 且1=/k◆答案:B◆解析:‘.‘方程有两个不相等的实根4)2(4,22--=-∴ac b(1,048)1()>-=-⨯-k k 2<∴k 且,1=/k 故B 正确.19.下列方程中有两个相等的实数根的方程是( )09124.2=++x x A 032.2=-+x x B 02.2=++x x C 072.2=-+x x D ◆答案:A◆解析:只有A 的判别式的值为零,故A 正确.20.(2004·大连市)一元二次方程0422=++x x 的根的情况是( ) A .有一个实数根 B .有两个相等的实数根 C .有两个不相等的实数根 D .没有实数根 ◆答案:D◆解析:∴<-=⨯-=-,012442422ac b 方程没有实数根,故D 正确 21.下列命题正确的是( )x x A =22.。

含参数的一元二次方程整数解

含参数的一元二次方程整数解知识定位对于一元二次方程ax 2+bx +c=0(a≠0)的实根情况,可以用判别式Δ=b 2-4ac 来判别,但是对于一个含参数的一元二次方程来说,要判断它是否有整数根或有理根,那么就没有统一的方法了,只能具体问题具体分析求解,当然,经常要用到一些整除性的性质。

知识梳理1、一元二次方程ax 2+bx+c=0(a ≠0)的实数根,是由它的系数a, b, c 的值确定的.根公式是:x=aac b b 242-±-. (b 2-4ac ≥0)2、根的判别式① 实系数方程ax 2+bx+c=0(a ≠0)有实数根的充分必要条件是:b 2-4ac ≥0.② 有理系数方程ax 2+bx+c=0(a ≠0)有有理数根的判定是:b 2-4ac 是完全平方式⇔方程有有理数根.③整系数方程x 2+px+q=0有两个整数根⇔p 2-4q 是整数的平方数. 3、设x 1, x 2 是ax 2+bx+c=0的两个实数根,那么③ ax 12+bx 1+c=0 (a ≠0,b 2-4ac ≥0), ax 22+bx 2+c=0 (a ≠0, b 2-4ac ≥0);④ x 1=a ac b b 242-+-, x 2=aac b b 242--- (a ≠0, b 2-4ac ≥0);⑤ 韦达定理:x 1+x 2= a b -, x 1x 2=ac(a ≠0, b 2-4ac ≥0). 4、方程整数根的其他条件整系数方程ax 2+bx+c=0 (a ≠0)有一个整数根x 1的必要条件是:x 1是c 的因数. 特殊的例子有: C=0⇔x 1=0 ,a+b+c=0⇔x 1=1 ,a -b+c=0⇔x 1=-1.例题精讲【试题来源】【题目】b 为何值时, 方程x 2 - bx - 2 = 0 和x 2 - 2x - b (b - 1) = 0有相同的整数根?并且求出它们相同的整数根..【答案】1;2【解析】解:设相同的整数根为x 0, 由根的定义, 知x20- bx0 - 2 = 0, ①x20- 2x0-b(b - 1) = 0. ②① - ②并整理, 得(2 - b)[x0-(1 + b)]=0,②∴b = 2 或x0 = b + 1.当b = 2 时, 两方程均为x2-2x-2 = 0, 但无整数根;当x0 = b + 1 时, 代入①或②, 解之得b = 1, 于是公共根x0 =b + 1 = 2.【知识点】含参数的一元二次方程整数解【适用场合】当堂例题【难度系数】3【试题来源】【题目】设二次方程ax2+bx+c=0的两根为x1、x2,记S1=x1+1993x2,S2=x12+1993x22,…,Sn=x1n+1993x2n,则aS1993+bS1992+cS1991=【答案】0【解析】解:∵x1、x2是方程ax2+bx+c=0的两根,∴ax12+bx1+c=0, ax22+bx2+c=0。

苏科版九年级(上)数学课时练习:1.2一元二次方程的解法(含答案)

1.2一元二次方程的解法题号一二三总分得分第Ⅰ卷(选择题)一.选择题(共12小题)1.已知关于x的一元二次方程3x2+4x﹣5=0,下列说法正确的是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C.没有实数根D.无法确定2.关于x的一元二次方程x2﹣4x+3=0的解为()A.x1=﹣1,x2=3 B.x1=1,x2=﹣3 C.x1=1,x2=3 D.x1=﹣1,x2=﹣33.一元二次方程(x+1)(x﹣3)=2x﹣5根的情况是()A.无实数根 B.有一个正根,一个负根C.有两个正根,且都小于3 D.有两个正根,且有一根大于3 4.若α,β是一元二次方程3x2+2x﹣9=0的两根,则+的值是()A. B.﹣C.﹣D.5.一元二次方程y2﹣y﹣=0配方后可化为()A.(y+)2=1 B.(y﹣)2=1 C.(y+)2=D.(y﹣)2= 6.下列一元二次方程中,没有实数根的是()A.x2﹣2x=0 B.x2+4x﹣1=0 C.2x2﹣4x+3=0 D.3x2=5x﹣2[来源:]7.若实数x满足方程(x2+2x)•(x2+2x﹣2)﹣8=0,那么x2+2x的值为()A.﹣2或4 B.4 C.﹣2 D.2或﹣48.△ABC三边a,b,c满足a2+b+|﹣2|=10a+2﹣22,△ABC 为()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形9.若a满足不等式组,则关于x的方程(a﹣2)x2﹣(2a﹣1)x+a+=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.以上三种情况都有可能10.如图,若将左图正方形剪成四块,恰能拼成右图的矩形,设a=1,则这个正方形的面积为()A. B.C.D.(1+)211.关于x的一元二次方程的两根应为()A.B.,C.D.12.已知α,β是方程x2+2019x+1=0的两个根,则(1+2019α+α2)(1+2019β+β2)的值为()A.1 B.2 C.3 D.4第Ⅱ卷(非选择题)二.填空题(共5小题)13.若关于x的一元二次方程x2﹣2x+a﹣1=0有实数根,则a的取值范围是.14.如果α,β(α≠β)是一元二次方程x2+2x﹣1=0的两个根,则α2+α﹣β的值是.15.若关于x的方程(3+a)x2﹣5x+1=0有实数根,则整数a的最大值.16.已知关于x的一元二次方程x2﹣mx+2m﹣1=0的两根x1、x2满足x12+x22=14,则m=17.对于一切正整数n,关于x的一元二次方程x2﹣(n+3)x﹣3n2=0的两个根记为a n、b n,则++…+=.三.解答题(共6小题)18.解方程(1)x2﹣36=0(2)x2﹣3x+2=019.已知关于x的一元二次方程(x﹣3)(x﹣2)=p(p+1).(1)试证明:无论p取何值此方程总有两个实数根;(2)若原方程的两根x1,x2,满足x12+x22﹣x1x2=3p2+1,求p的值.20.我们规定:方程ax2+bx+c=0的变形方程为a(x+1)2+b(x+1)+c=0.例如,方程2x2﹣3x+4=0的变形方程为2(x+1)2﹣3(x+1)+4=0(1)直接写出方程x2+2x﹣5=0的变形方程;(2)若方程x2+2x+m=0的变形方程有两个不相等的实数根,求m的取值范围;(3)若方程ax2+bx+c=0的变形方程为x2+2x+1=0,直接写出a+b+c 的值.21.已知关于x的一元二次方程(m2﹣4)x2+(2m﹣1)x+1=0.(1)m为何值时,方程有实数根?(2)若x1,x2是方程的两个实数根,S=﹣+﹣++10,求S的取值范围.22.阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知a2+6ab+10b2+2b+1=0,求a﹣b的值;(2)已知△ABC的三边长a、b、c都是正整数,且满足2a2+b2﹣4a ﹣6b+11=0,求△ABC的周长;(3)已知x+y=2,xy﹣z2﹣4z=5,求xyz的值.23.先阅读后解题.已知m2+2m+n2﹣6n+10=0,求m和n的值.解:把等式的左边分解因式:(m2+2m+1)+(n2﹣6n+9)=0.即(m+1)2+(n﹣3)2=0.因为(m+1)2≥0,(n﹣3)2≥0.所以m+1=0,n﹣3=0即m=﹣1,n=﹣3.利用以上解法,解下列问题:(1)已知:x2﹣4x+y2+2y+5=0,求x和y的值.(2)已知a,b,c是△ABC的三边长,满足a2+b2=12a+8b﹣52且△ABC为等腰三角形,求c.参考答案一.选择题1.B.2.C.3.D.4.C.5.B.6.C.7.B.8.A.9.C.10.A.11.B.12.D二.填空题13.a≤2.14.315.3.16.[来源:]﹣2.17.﹣三.解答题18.解:(1)∵x2﹣36=0,∴x2=36,则x=6或x=﹣6;(2)∵x2﹣3x+2=0,∴(x﹣1)(x﹣2)=0,则x﹣1=0或x﹣2=0,解得:x=1或x=2.19.解:(1)证明:原方程可变形为x2﹣5x+6﹣p2﹣p=0.∵△=(﹣5)2﹣4(6﹣p2﹣p)=25﹣24+4p2+4p=4p2+4p+1=(2p+1)2≥0,∴无论p取何值此方程总有两个实数根;[来源:学+科+网Z+X+X+K] (2)∵原方程的两根为x1、x2,∴x1+x2=5,x1x2=6﹣p2﹣p.又∵x12+x22﹣x1x2=3p2+1,∴(x1+x2)2﹣3x1x2=3p2+1,∴52﹣3(6﹣p2﹣p)=3p2+1,∴25﹣18+3p2+3p=3p2+1,∴3p=﹣6,∴p=﹣2.20.解:(1)用x+1表示方程x2+2x﹣5=0里的x,可得(x+1)2+2(x+1)﹣5=0.(2)用x+1表示方程x2+2x+m=0里的x,得(x+1)2+2(x+1)+m=0.整理,得x2+4x+3+m=0∵变形后的方程有两个不相等的实数根,∴△=42﹣4(3+m)=4﹣4m>0,∴m<1.(3)a+b+c=1.(方程ax2+bx+c=0的变形方程为a(x+1)2+b(x+1)+c=0,[来源:学。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程的整数解方法1:求根公式,整除性质1、 若关于x 的方程2(6)(9)(11715)540k k x k x ----+=的解都是整数,求符合条件的整数k 的值。

解:当6k =时,2x =;当9k =时,3x =-;当6k ≠且9k ≠时,[(6)9][(9)6]0k x k x ----=, ∴196x k =-,269x k=- ∵12,,k x x 都是整数 ∴k =3,6,7,9,15. 2、 设m 为整数,且440m <<,方程222(23)41480x m x m m --+-+=有两个整数根,求m 的值及方程的根。

解: ∵222(23)41480x m x m m --+-+=∴23x m ==-±∵方程有两个整数根,m 为整数,且440m <<,∴1224m =或, ∴当12m =时,116x =,226x =;当24m =时,138x =,252x =。

3、 已知方程2222(38)213150a x a a x a a --+-+=(0a ≠)至少有一个整数根,求整数a的值。

解:∵2222(38)213150a x a a x a a --+-+=(0a ≠)∴[(5)][(23)]0ax a ax a ----= ∴1551a x a a -==-,22332a x a a-==-, ∵方程至少有一个整数根,a 为整数 ∴1a =,3,5,1-,3-,5-。

方法2:从△入手,引入参数1、 当m 为整数时,关于x 的方程2(21)(21)10m x m x --++=是否有有理根?如果有,求出m 的值;如果没有,请说明理由。

解:∵方程有有理根,m 为整数,∴24b ac ∆=-为完全平方数可设222(21)4(21)(21)4m m m n ∆=+--=-+=(n 为整数) ∴(21)(21)4n m n m +--+=, ∵21n m +-与21n m -+奇偶性相同∴212212n m n m +-=⎧⎨-+=⎩,212212n m n m +-=-⎧⎨-+=-⎩, ∴12m =,这与m 为整数相矛盾,∴方程没有有理根。

2、 已知p 为质数,使二次方程222510x px p p -+--=的两根都是整数,求出p 的所有可能值。

解:∵222510x px p p -+--=,∴x p ==±∵p 为质数,x 为整数,∴51p +为完全平方数,可设251p k +=(k 为整数) ∴(1)(1)5k k p +-=,∴1k +与1k -中必有一个为5的倍数,∴51k a =±(a 为整数),∴2251(51)25101p a a a +=±=±+,∴(52)p a a =±, ∵p 为质数,521a ±>,∴1a =, ∴3p =或7, 当3p =时,2670x x --=,11x =-,27x =;当7p =时,214130x x -+=,11x =,213x =,均符合题意。

∴3p =或7。

方法3:韦达定理,消去参数1、 试确定一切有理数r ,使得关于x 的方程2(2)320rx r x r +++-=有根且只有整数根。

解:(1)当0r =时,220x -=,∴1x =,符合题意;(2)当0r ≠时,设1x 、2x 为方程的两个整数根,且12x x ≤, ∴12221r x x r r ++=-=--,123223r x x r r-==-, ∴12124x x x x --=,∴12(1)(1)5x x --=, ∴121115x x -=⎧⎨-=⎩,121511x x -=-⎧⎨-=-⎩,∴1226x x =⎧⎨=⎩,1240x x =-⎧⎨=⎩,∴129r =-,223r =,综上所述,10r =,229r =-,323r =。

2、 已知关于x 的一元二次方程22(21)0x a x a +-+=(a 为整数)的两个实数根是1x 、2x ,解:∵方程22(21)0x a x a +-+=有两个实数根 ∴22(21)4410a a a ∆=--=-+≥∴14a ≤, 又∵a 为整数, ∴0a ≤, ∴||a a =-, ∵1212x x a +=-,212x x a =,1==±3、 求使关于x 的方程2(1)10kx k x k +++-=的根都是整数的k 值。

解:当0k =时,1x =符合题意;当0k ≠时,设方程2(1)10kx k x k +++-=的两根为1x 、2x (12x x ≤), ∴12111k x x k k ++=-=-- ①, 12111k x x k k-==- ②, 由①-②得:12122x x x x +-=-,∴12(1)(1)3x x --= ∴121113x x -=⎧⎨-=⎩,121311x x -=-⎧⎨-=-⎩, ∴1224x x =⎧⎨=⎩,1220x x =-⎧⎨=⎩,∴117k =-,21k =。

综上所述,满足题意的k 值为10k =,217k =-,31k =。

4、 当n 为正整数时,关于x 的方程22281035760x nx x n n -+-+-=的两根均为质数,试解此方程。

解:∵22281035760x nx x n n -+-+-=, ∴1245x x n +=-,∵n 为正整数,∴45n -为奇数,∵1x 与2x 均为质数,∴其中必有一个为2,不妨设12x =,则247x n =-,∵21235762n n x x -+-=,∴219480n n -+=,∴13n =,216n =,(1)当13n =时,12x =,25x =;(2)当216n =时,12x =,259x =。

5、 设关于x 的二次方程2222(68)(264)4k k x k k x k -++--+=的两根都是整数,试求满足条件的所有实数k 的值。

解:∵[(4)(2)][(2)(2)]0k x k k x k -+--++=,∴122144k x k k -=-=----,224122k x k k +=-=----, ∴1241k x -=-+,2421k x -=-+,∴12132x x x +=-,∴12(3)2x x +=- ∵1x 、2x 为整数,且不等于1-,∴12132x x =⎧⎨+=-⎩,12231x x =-⎧⎨+=⎩,12231x x =⎧⎨+=-⎩,∴1215x x =⎧⎨=-⎩,1222x x =-⎧⎨=-⎩,1224x x =⎧⎨=-⎩,∴3k =,6,103。

6、 如果直角三角形的两条直角边都是整数,且是方程2210mx x m --+=的根(m 为整数),这样的直角三角形是否存在?若存在,求出满足条件的所有三角形的三边长;若不存在,请说明理由。

解:设两条直角边分别为1x 、2x ,∵1x 、2x 是2210mx x m --+=的根,∴122x x m +=,12111m x x m m-==-, ∵10x >、20x >,∴20m>,∴0m >。

又∵m 为整数, 当1m =时,122x x +=,120x x =,∴两条直角边为2与0,这样的三角形不存在; 当1m >时,110m-<,而12x x 为正整数,相矛盾,不合题意。

综上所述,这样的直角三角形不存在。

方法4:变更主元,反客为主1、 若关于x 的方程22(3)(13)0ax a x a +-+-=至少有一个整数根,求非负整数a 的值。

解:当0a =时,6130x --=,136x =-不合题意, ∴0a ≠, ∵22(3)(13)0ax a x a +-+-= ∴2(1)613x a x +=+ ∴26131(1)x a x +=≥+ ∴24120x x --≤ ∴26x -≤≤ ∵x 为整数,1x ≠-,∴2,0,1,2,3,4,5,6x =-,把x 分别代入求得a 的值,且a 为非负整数,∴1a =,13。

2、 若关于x 的方程2(1)210a x x a -+--=的根都是整数,求符合条件的整数a 。

解:当1a =时,0x =符合题意;当1a ≠时,∵2(1)210a x x a -+--=,∴22(1)(1)x a x -=-,∴12111x a x x -==-++ ∵x 、a 均为整数,∴3x =-、2-、0、1,∴2a =、3、1-、0;综上,符合条件的整数a 有5个,2a =、3、1-、0、1。

3、试求所有这样的正整数a ,使得方程22(21)4(3)0ax a x a +-+-=至少有一个整数解。

解:∵22(21)4(3)0ax a x a +-+-=,a 为正整数,∴22(6)1(2)x a x +=≥+,∴42x -≤≤, ∵x 为整数,∴4x =-、3-、2-、1-、0、1、2, 又∵a 为正整数,∴1a =、3、6、10。

相关文档
最新文档